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Whole intestinal microbiota
transplantation is more effective
than fecal microbiota
transplantation in reducing the
susceptibility of DSS-induced
germ-free mice colitis
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1Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth
People’s Hospital, Tongji University, Shanghai, China, 2State Key Laboratory of Agricultural
Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University,
Wuhan, Hubei, China, 3Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen
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Fecal microbiota transplantation (FMT) is an emerging and effective therapy for

the treatment of inflammatory bowel disease (IBD). Previous studies have

reported that compared with FMT, whole intestinal microbiota transplantation

(WIMT) can more precisely replicate the community structure and reduce the

inflammatory response of the host. However, it remains unclear whether WIMT is

more effective in alleviating IBD. To examine the efficacy of WIMT and FMT in the

intervention of IBD, GF (Germ-free) BALB/c mice were pre-colonized with whole

intestinal microbiota or fecal microbiota before being treated with dextran

sodium sulfate (DSS). As expected, the symptoms of colitis were alleviated by

both WIMT and FMT, as demonstrated by the prevention of body weight loss and

decreased the Disease activity index and histological scores in mice. However,

WIMT’s anti-inflammatory effect was superior to that of FMT. In addition, the

inflammatory markers myeloperoxidase (MPO) and eosinophil peroxidase were

dramatically downregulated by WIMT and FMT. Furthermore, the use of two

different types of donors facilitated the regulation of cytokine homeostasis in

colitis mice; the level of the pro-inflammatory cytokine IL-1b in the WIMT group

was significantly lower than that in the FMT group, while the level of the anti-

inflammatory factor IL-10 was significantly higher than that in the FMT group.

Both groups showed enhanced expression of occludin to protect the intestinal

barrier in comparison with the DSS group, and the WIMT group demonstrated

considerably increased levels of ZO-1. The sequencing results showed that the

WIMT group was highly enriched in Bifidobacterium, whereas the FMT group was

significantly enriched in Lactobacillus and Ochrobactrum. Correlation analysis

revealed that Bifidobacterium was negatively correlated with TNF-a, whereas

Ochrobactrum was positively correlated with MPO and negatively correlated
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with IL-10, which might be related to different efficacies. Functional prediction

using PICRUSt2 revealed that the FMT group was considerably enriched in the L-

arginine biosynthesis I and L-arginine biosynthesis IV pathway, whereas the

WIMT group was enriched in the L-lysine fermentation to acetate and

butanoate pathway. In conclusion, the symptoms of colitis were subsided to

varying degrees by the two different types of donors, with the WIMT group being

more effective than the FMT group. This study provides new information on

clinical interventions for IBD.
KEYWORDS

whole intestinal microbiota transplantation, fecal microbiota transplantation,
inflammatory bowel disease, germ-free mice, 16S rDNA
GRAPHICAL ABSTRACT
Introduction

Inflammatory bowel disease (IBD), which comprises Crohn’s

disease (CD) and ulcerative colitis (UC) (1), is a chronic, fatal

condition that primarily manifests as diarrhea, stomach pain, and

rectal bleeding (2, 3). At present, IBD affects up to 0.5% of the

population in the West, and this number is projected to continue to

rise over the next ten years (2, 4). Additionally, China, a newly
splantation; FMT, fecal

; P341-PWY, glycolysis

ion; P163-PWY, lysine

SYN-PWY, L-arginine
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industrialized nation with a sizable population, may eventually see

more cases of IBD than theWest due to its move toward urbanization

and westernization (2). Thus, IBD is a global illness (4).

Owing to advancements in next-generation sequencing

methods, numerous variations in the gut microbiota ’s

composition and community have been reported in patients with

IBD. The most common finding in IBD is a reduction in bacterial

diversity, with a reduced abundance of Firmicutes, and an increased

abundance of Proteobacteria, although some of the results linked to

dysbiosis in IBD vary among studies due to changes in sample type,

survey techniques, patient state, and pharmacological therapy (5–

8). Probiotic therapy and other dysbiosis-correcting therapies, such

as fecal microbiota transplantation (FMT), have shown promise for

treating IBD (9). FMT is a therapeutic approach to ameliorate the
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abnormal microbial composition of the gut by delivering a patient

with fecal microbiota from a healthy donor (9, 10). It has been

emphasized as a treatment for correcting dysbiosis in IBD (9). FMT

was originally used to treat UC in 1989 (11) and numerous clinical

studies have demonstrated that it can dramatically reduce UC

symptoms (12, 13). To increase the effectiveness of FMT

intervention in UC, it is necessary to further investigate the active

ingredients of fecal donors and the mechanism of action of FMT

(13, 14). In addition, the composition of donor flora affects the

efficacy of FMT in UC, indicating that variations in the composition

of donor fecal flora are one of the factors affecting the therapeutic

efficacy of FMT (15).

To date, most FMT have relied on stool samples from healthy

donors (16). However, different gut segment microbes may also be

involved in regulating host health (17). Less commonly, the topic of

gut bacteria, both small and large intestinal microbes, has been

investigated. By comparing the differences between FMT and whole

intestinal microbiota transplantation (WIMT) in reshaping the

community structure in germ-free (GF) mice, Li et al. found that

WIMT better reproduced the donor microbiota structure and

reduced the inflammatory response of the host compared to FMT

(18). Given the link between microbiota and IBD, the effect of

WIMT intervention in IBD is worth examining. It is possible to

explore the connection between IBD and microbiota in GF animals

because their microbial backgrounds are well understood (19).

Therefore, to explore the differences in the efficacy of WIMT and

FMT intervention in colitis mice, we used GF mice colonized with

whole intestinal flora and fecal flora followed by dextran sodium

sulfate (DSS) to induce the development of colitis in mice. This

study provides basic data to support pertinent clinical applications.
Materials and methods

Preparation for WIMT and FMT

Fresh feces and contents of whole intestinal segments (all

contents of the jejunum, ileum, cecum, and colon) were collected

from 8-week-old male SPF BALB/c mice (from the Experimental

Animal Center of Huazhong Agricultural University) were collected

in sterile fecal collector under anaerobic conditions (80% N2, 10%
Frontiers in Immunology 03
H2, 10% CO2), and the WIMT and FMT donor samples were

homogenized at a ratio of 1:10 (m/v) to sterile saline glycerol buffer

(15% glycerol concentration) and mixed well. After the samples

were fully dissolved using coarse filtration with sterilized gauze, the

bacterial solution was finally obtained by filtration through a 100

mm filter membrane (20).
Experimental animals and treatments

Female GF BALB/c mice at 8-10 weeks were obtained from the

Germ-Free Animal Platform of Huazhong Agricultural University.

Mice were housed in a sterile environment (temperature 25 ± 2°C;

relative humidity 45-60%; photoperiod 12h/d; light hours 06:30-

18:30), and had free access to sterilized food and water. To study the

effects of WIMT and FMT transplantation on the development of

UC, the mice were divided into Control, DSS, WIMT, and FMT

groups. The mice were instilled with 100 mL of bacterial solution or

saline daily; the experimental design is shown in Figure 1. Body

weight was recorded daily during the experiment to calculate the

difference between the weight on the day of measurement and that

on day 0 (21). At the end of the experiment, the feces of the mice

were collected inside the isolator. The colon tissue, small intestinal

contents (jejunal and ileal contents), and large intestinal contents

(cecum and colon contents) were collected after the experimental

mice were euthanized. Blood was immediately collected from the

eyeball, and the separated serum was frozen at -80°C until analysis.

All experimental methods were performed according to the

Huazhong Agricultural University of Health Guide for the Care

and Use of Laboratory Animals. The animal experiment ethics

number for this study is HZAUMO-2023-0026.
Disease activity index

The Disease Activity Index (DAI) includes weight loss score,

fecal bleeding score, and stool traits, as shown in Table 1 (22, 23).

Briefly, DAI was measured by weight change (no change = 0; 1-5%

= 1; 5-10% = 2; 10-15% = 3; >15% = 4), fecal bleeding score (normal

colored stool = 0; brown stool = 1; red stool = 2; bloody stool = 3;

heavy bleeding = 4), and fecal traits (normal stool, good shape = 0;
FIGURE 1

Study design.
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soft stool, soft stool adhering to the anus = 1-2; diarrhea, adherent

anal = 3-4), which were determined by averaging the three scores

(see Table 1).
Mice colon histologic analysis

Distal colon segments from each group of mice were fixed with

4% paraformaldehyde, paraffin-embedded, and cut into 4 mm-thick

sections. Sections were stained with hematoxylin-eosin (H&E) and

immunohistochemistry (IHC), and images were acquired under a

microscope (Nikon Eclipse 80i, Japan). The H&E-stained sections

were examined for the degree of inflammatory cell infiltration and

tissue damage, and intestinal damage was assessed for the degree of

infection, extent of infection, crypt damage, and extent of mucosal

involvement (24) (see Table 2). The expression of ZO-1

(Proteintech Group, Inc. 21773-1-AP) and occludin (Proteintech

Group, Inc. 27260-1-AP) was detected by immunohistochemistry

according to the manufacturer’s instructions using Image Pro Plus

6.0 (Media Cybernetics, Inc.) for statistical analysis of mean

optical density.
Enzyme-linked immunosorbent assay

The kits were purchased from Shanghai Enzyme-linked

Biotechnology Co. Ltd. (Shanghai, China). All assays were

performed according to the manufacturer’s instructions, and IL-

1b (ml063132), IL-6 (ml002293), IL-8 (ml001856), IL-17A

(ml037864), TNF-a (ml002095), myeloperoxidase (MPO)

(ml002070), eosinophil peroxidase (EPO) (ml769125), and serum

diamine oxidase (DAO) (ml002070) concentrations were

determined by ELISA. Tissue processing for ELISAs are as
Frontiers in Immunology
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follows, 1g of tissue sample was weighed and 9ml of PBS (pH 7.2-

7.4) was added to homogenise the sample. Centrifuge for about 20

minutes (2000-3000 rpm) and carefully collect the supernatant for

testing. Briefly, the kits’ included diluent buffer was used to dilute

both standards and samples. A microtitre plate with an antibody

precoated in each well was then filled with 100 mL of the sample or

standard in duplicate. Diluent buffer was used as a negative control.

The plates were incubated for 2 h at 37°C. After incubation, 100 mL
of biotin antibody was added to each well after removing the liquid

and incubated for 1 h at 37°C. The wells were washed 3 times with

200 mL volume of wash buffer. Next, each well received 100 mL of

horseradish peroxidase-avidin for 1 hour at 37°C. After a final wash,

90 mL of the supplied TMB substrate was added and incubated for

30 min in the dark at 37°C. 50 mL of the supplied stop solution was

used to stop the reaction. Absorbance was measured at 450 nm

using a plate reader (BioTek Instruments, Inc.), and the levels of

cytokines in the samples was calculated from the standard curve.
D-lactate measurements

The levels of DAO and D-lactic acid (D-LA) in serum were

tested for permeability. D-LA (ml158174) was determined by

spectrophotometry using a D-Lactic acid detection kit (Shanghai

Enzyme-linked Biotechnology Co. Ltd.). Briefly, the visible

spectrophotometer (Shanghai Enzyme-linked Biotechnology Co.

Ltd.) is preheated for more than 30min, the wavelength is

adjusted to 450nm and zeroed with distilled water. The reagents

and samples were added sequentially to 1mL glass cuvette according

to the reagent manufacturer’s instructions, mixed and immediately

reacted in the dark at 37°C for 30min, and the absorbance value was

read at 450nm. The levels of D-LA in the sample were calculated

from the standard curve.
TABLE 2 Histological grading of colitis.

Grade Inflammation Extent Crypt damage Percent involvement

0 None None 0

1 Slight Mucosa Basal 1/3 damage 1%-33%

2 Moderate Mucosa and Submucosa Basal 2/3 damage 34%-66%

3 Severe Transmural Entire crypt and epithelium lost 67%-100%
TABLE 1 Disease activity index.

Score Weight loss (%) Stool consistency Bloody stool score

0 None Normal Normal colored stool

1 1-5 Loose stool Brown stool

2 5-10 Loose stool Reddish stool

3 10-15 Diarrhea Bloody stool

4 > 15 Diarrhea Gross bleeding
Disease activity index (DAI), mean score of weight loss, stool consistency, and bloody stool score.
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16S rDNA sequencing and analysis

Samples were collected inside the isolator, immediately

transported on ice to a −80°C refrigerator, and transported on

dry ice for amplicon sequencing. Genomic DNA was extracted by

the Cetyltrimethylammonium Bromide (CTAB) method and then

amplified using specific primers with barcode (515F-806R for 16S

V4 region) after assessing the purity and concentration of DNA.

The PCR products were mixed in equal concentrations according to

the concentration of the PCR product and then purified by

electrophoresis using 1×TAE on a 2% agarose gel. Sequences with

a primary band size between 400-450 bp were selected and the gel

was cut to recover the target bands. Libraries were constructed using

an Illumina TruSeq DNA PCR-Free Library Preparation Kit. The

libraries were sequenced using NovaSeq 6000 after they were

qualified using Qubit quantification and library testing. The

analysis was carried out by splitting each sample from the

downstream data based on barcode sequences and PCR

amplification primer sequences, and the reads were spliced using

FLASH software (V1.2.11, http://ccb.jhu.edu/software/FLASH/)

after truncating the barcode and primer sequences to obtain Raw

Tags. Raw Tags were then quality-controlled using the Fastp

software to obtain high-quality Clean Tags. Finally, Clean Tags

were compared to the database using Usearch software to detect

chimeras and remove them (25) to obtain the final Effective Tags,

and the DADA2 module or deblur in QIIME2 software (26)

(https://qiime2.org/) was used for a module or deblur for noise

reduction (27) and filtering out low-quality sequences to obtain the

final Amplicon Sequence Variants (ASVs) and feature-table. The

ASVs were then compared to the Silva database (V138-99) using the

classify-sklearn module in R software to obtain species information

for each ASV. Alpha diversity: R was used to calculate Shannon,

Simpson, and Pielou indices and analyze the inter-group differences

in alpha diversity. Beta diversity: Jaccard distances were calculated

using R. The PCoA was plotted using the vegan package (versions

2.6-2) in R. Subsequently, the adonis function in R was used to

analyze the significance of differences in community structure

between groups. Functional annotation: Prediction of colony

metabolic function using PICRUSt2. Distinctive and shared

features and linear discriminant analysis effect size (LEfSe, p <

0.05, LDA > 2.0) were completed using Wekemo Bioincloud

(https://www.bioincloud.tech).
Statistical methods

Data were analyzed using GraphPad Prism 6 (GraphPad

Software, LLC), and the Student’s t-test was used for statistical

analysis between the two groups. A non-parametric test was used to

analyse count data with Kruskal-Wallis test followed by Dunn’s

multiple comparisons test. One-way ANOVA and Bonferroni’s

multiple comparison test were performed on data from more

than two groups, and the data are expressed as mean ± SEM. The

differences were considered statistically significant at p < 0.05.
Frontiers in Immunology 05
Results

WIMT is more effective in relieving DSS-
induced acute colitis

To investigate the effects ofWIMT and FMT on colitis, mice with

3% DSS-induced colitis were treated with WIMT, FMT, and saline.

The body weight of mice in the DSS group decreased significantly,

and those of mice in theWIMT group decreased less than those of the

mice in the FMT group. On the final day of the experiment, the body

weights of mice in the FMT group were not statistically different

compared with the DSS group, while the mice in the WIMT group

were significantly heavier than those in the DSS group (p = 0.0056)

(Figures 2A, B). WIMT and FMT intervention reduced DSS-induced

DAI scores, with no significant difference on the last day DAI

between the WIMT and FMT groups (Figures 2C, D). Mice in

both groups with microbiota transplantation had lower weight of

the spleen weight to body weight (Figure 2E). Histological staining

showed that DSS treatment resulted in different degrees of

histological damage in each group of mice (WIMT vs. DSS, p =

0.0002; FMT vs. DSS, p = 0.0163). Compared with the DSS group,

donor fluids in both groups showed reduced inflammatory cell

infiltration and mucosal damage in colonic tissue and reduced

histological scores, with the lowest scores in the WIMT group,

however, no significant difference was observed between the WIMT

and FMT groups (Figures 2F, G). In summary, these results suggest

that pre-colonization of both donor flora could alleviate DSS-induced

colitis, with WIMT having a higher intervention efficacy than FMT.
Effect of WIMT and FMT on colonic
inflammatory markers and cytokines

To explore the effects of the two donors flora on immune

homeostasis and inflammatory markers of colitis, the levels of pro-

inflammatory factors IL-1b, IL-6, IL-8, IL-17A, TNF-a, anti-

inflammatory factor IL-10, and colitis markers MPO and EPO in

colonic tissues were measured by ELISA. As shown in Figures 3A, B,

WIMT and FMT interventions significantly reduced the levels of

MPO (WIMT vs. DSS, p < 0.0001; FMT vs. DSS, p = 0.0008) and EPO

(WIMT vs. DSS, p < 0.0001; FMT vs. DSS, p = 0.0001) in colonic

tissues compared to those in the DSS group, and there was no

significant difference between the WIMT and FMT groups. WIMT

and FMT interventions significantly reduced the levels of pro-

inflammatory factors IL-1b (WIMT vs. DSS, p < 0.0001; FMT vs.

DSS, p = 0.0007), IL-6 (WIMT vs. DSS, p = 0.022; FMT vs. DSS, p =

0.0133), IL-8 (WIMT vs. DSS, p = 0.0002; FMT vs. DSS, p = 0.034),

IL-17A (WIMT vs. DSS, p = 0.0003; FMT vs. DSS, p = 0.0011), and

TNF-a (WIMT vs. DSS, p < 0.0001; FMT vs. DSS, p = 0.0034) in

colonic tissues (Figures 3C-G) and increased IL-10 levels (WIMT vs.

DSS, p < 0.0001; FMT vs. DSS, p = 0.0009) (Figure 3H). IL-1b levels

were significantly lower in the WIMT group compared to the FMT

group (p = 0.0345), while IL-10 levels were higher in the WIMT

group (p = 0.0052). In summary, WIMT intervention alleviated the

symptoms of colitis in mice by improving cytokine homeostasis.
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A B C D

G HE F

FIGURE 3

Effect of WIMT and FMT on the inflammatory response in DSS-induced colitis. (A) Colonic MPO; (B) Colonic EPO;(C) Colonic IL-1b; (D) Colonic IL-6;
(E) Colonic IL-8; (F) Colonic TNF-a; (G) Colonic IL-17A; (H) Colonic IL-10. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, data are
represented as mean ± SEM.
A B G

C D

EF F

FIGURE 2

WIMT and FMT alleviated DSS-induced colitis to different extents. (A) Body weight change; (B) Body weight change on the final day; (C) DAI score;
(D) DAI score on the final day; (E) Ratio of spleen weight to body weight; (F) Histological score; (G) H&E staining of colon tissue (100×). * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001, data are represented as mean ± SEM.
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Interventions using WIMT and FMT prevent
the deterioration of gut barrier function
brought on by DSS

Since dysfunction of the intestinal epithelial barrier is associated

with IBD, we hypothesized that both donor group would alleviate

DSS-induced damage by protecting the intestinal barrier. We

analyzed the average optical density (AOD) of tight junction

proteins ZO-1 and occludin in four groups of mouse colonic

tissues using IHC. As shown in Figures 4A-D, the AOD of

colonic ZO-1 was significantly higher in the WIMT group than in

the DSS group (p = 0.008), while there was no significant difference

between the FMT and DSS groups. In addition, the AOD of

occludin was significantly higher in both the WIMT and FMT

groups than that in the DSS group (WIMT vs. DSS, p = 0.0029;

FMT vs. DSS, p = 0.0031). To investigate the barrier mechanism

underlying the difference in anti-colitis efficacy between the WIMT

and FMT groups, we also evaluated serum DAO and D-LA levels

linked with intestinal permeability, and there was no statistically

significant difference between the two groups (Figures 4E, F). In

summary, both donor group alleviated DSS-induced damage by

maintaining intestinal barrier integrity.
Analysis of microbial diversity in the WIMT
and FMT groups

Considering the relationship between microbiota and IBD, we

analyzed the microbial diversity in the small intestine (jejunal and
Frontiers in Immunology 07
ileal contents), large intestine (cecum and colon contents), and feces

in the WIMT and FMT groups using 16S rDNA. To assess the beta

diversity of the community, we employed the Jaccard index. There

was no significant difference between the small intestinal community

structure of theWIMT (WSI) and the FMT groups (FSI) (Figure 5A).

The large intestinal community structure of the WIMT group (WLI)

was not significantly different from that of the FMT group (FLI)

(Figure 5B). Furthermore, the fecal community structure of the

WIMT group was not significantly different from that of the FMT

group (Figure 5C). The Pielou, Shannon indices, and Simpson were

used to evaluate alpha diversity (Figures 5D-F), and there was no

significant difference between the two groups. These findings showed

that differences in efficacy may not be related to the indices.
Common and different microorganisms
between the WIMT and FMT groups

By examining the shared genera, we were able to explain the

anti-inflammatory effects in both groups. A Venn diagram was

plotted showing a total of 129 genera of small intestinal flora

(Figure 6A, Supplement Table 1), 76 genera of large intestinal

flora (Figure 6B, Supplement Table 2), and 60 genera of fecal flora

(Figure 6C, Supplement Table 3) in the two groups of mice. The

differences in microorganisms between the two groups were

analyzed using LEfSe (LDA > 2) to explain the superior efficacy

o f t h e W IMT g r o u p . T h e r e s u l t s s h o w e d t h a t

Lachnospiraceae_NK4A136_group and Alloprevotella (enriched in

feces, Figure 6D), Ochrobactrum (enriched in the small intestine,
A B C D

E F

FIGURE 4

Effect of WIMT and FMT on the intestinal barrier in DSS-induced colitis. Immunohistochemistry for ZO-1 (A) and occludin (B) in each group (100mm,
n = 3); (C, D) Average optical density. The changes of levels of serum DAO (E) and D-lactate (F). ** p ≤ 0.01, *** p ≤ 0.001, data are represented as
mean ± SEM. ns, no significance difference.
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Figure 6E), and Lactobacillus (enriched in the large intestine,

Figure 6F) were significantly enriched in the FMT group, while

Bifidobacterium and Corynebacterium (enriched in feces,

Figure 6D) were significantly enriched in the WIMT group. The

correlation between various bacteria and cytokines is displayed on a

heat map (Figure 6G). Bacteria Bifidobacterium enriched in the

WIMT group was negatively correlated with pro-inflammatory

factors TNF-a (p = 0.04264557), and Bacteria Ochrobactrum

enriched in the FMT group was positively correlated with

inflammatory biomarkers MPO (p = 0.011331713) and negatively

correlated with anti-inflammatory factors and IL-10 (p = 0.041346).

In conclusion, there were significant differences in the microbiota

between the WIMT and FMT groups, and these differences were

associated with the effectiveness of the intervention.
Functional differences in the WIMT and
FMT groups

To further clarify the mechanism of superior efficacy in the

WIMT group at the functional level, we used PICRUSt2 to predict
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variations in microbially engaged metabolic pathways (MetaCyc

database) in the small intestine, large intestine, and feces between

the WIMT and FMT groups. The metabolic pathways, such as

peptidoglycan biosynthesis II (staphylococci) (PWY-5265), L-

arginine biosynthesis I (ARGSYN-PWY), and L-arginine

biosynthesis IV (PWY-7400), were significantly enriched in the

FMT group (Figures 7A, B, Supplement Table 4). In contrast,

metabolic pathways, such as L-lysine fermentation to acetate and

butanoate (P163-PWY), glycolysis V (P341-PWY), propylene

glycol degradation (PWY-7013), and L-histidine degradation I

(HISDEG-PWY), were significantly enriched in the WIMT group

(Figures 7A, B, Supplement Table 4). The results indicated that the

differences in efficacy between the WIMT and FMT groups were

related to different metabolic pathways.
Discussion

IBD is a widespread condition that deteriorates the quality of

life of many people (4). Several studies have reported alterations in

the community and structure of the gut microbiota in patients (5–
A

B

C

D

E

F

FIGURE 5

Effect of WIMT and FMT on the microbiota diversity in DSS-induced colitis. (A) PCoA analysis for FSI vs WSI groups; (B) PCoA analysis for FLI vs WLI
groups;(C) PCoA analysis for FMT vs WMIT groups; (D) Alpha diversity of FSI and WSI groups; (E) Alpha diversity of FLI and WLI groups;(F) Alpha
diversity of FMT and WIMT groups.
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8). FMT has been utilized as an innovative and successful therapy to

treat IBD by restoring the diversity and composition of gut

microbiota (9). Previous research has shown that WIMT, as

opposed to FMT, can more accurately reproduce the community

structure and suppress the host’s inflammatory response (18).

However, it is not clear whether WIMT is more effective in the

intervention of IBD. In this study, the effects of WIMT and FMT on

the susceptibility of DSS-induced colitis were examined. The trial

findings demonstrated that by preventing weight loss and lowering

the DAI and histological scores, both WIMT and FMT reduced the

symptoms of colitis. Both groups of donors showed downregulated
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levels of inflammatory biomarkers MPO (28, 29) and EPO (30) and

regulated homeostasis of colonic inflammatory factors. It was

demonstrated that both groups of GF mice had decreased

susceptibility to DSS and that the WIMT intervention efficacy was

superior to that of the FMT group.

As with many other tissue injuries, IBD is characterized by

distorted expression of inflammatory cytokines. Intestinal

inflammation is regulated by cytokines IL-1b, IL-6, IL-8, TNF-a,
and IL-10 (31–33). Increased levels of TNF-a, IL-1b, and IL-6 have

been linked to intestinal dysfunction (34). By recruiting

granulocytes and activating CD4+ T cells in IBD, IL-1b stimulates
A B C D

G

E F

FIGURE 6

Differences in microbes of the WIMT and FMT groups. (A) Venn diagram for FSI and WSI groups; (B) Venn diagram for FLI and WLI groups;(C) Venn
diagram for FMT and WMIT groups; (D) LEfSe analysis of WIMT and FMT groups; (E) LEfSe analysis of FSI and WSI groups; (F) LEfSe analysis of FLI and
WLI groups; (G) Correlation analysis of differential bacteria with cytokines. * p ≤ 0.05.
A B

FIGURE 7

Effect of WIMT and FMT on the microbial functional in DSS-induced colitis. (A) Differential metabolic pathways between the FLI and WLI groups; (B)
Differential metabolic pathways between FSI and WSI groups. * p ≤ 0.05.
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the production of pro-inflammatory molecules, such as IL-17A, IL-

12, and IFN-g, aggravating intestinal inflammation (35, 36).

Secretion of the anti-inflammatory factor IL-10 ameliorates

mucosal damage in IBD and protects lymphocytes, which inhibits

IBD by suppressing the host autoimmune response (37, 38). In the

present study, both WIMT and FMT significantly inhibited the

expression of DSS-induced pro-inflammatory factors. The levels of

IL-1b were significantly lower in the WIMT group than in the FMT

group, and the levels of IL-10 were significantly higher in theWIMT

group than in the FMT group, indicating that the WIMT group had

better control over cytokine homeostasis. Intestinal epithelial

barrier dysfunction is associated with IBD (39), and the epithelial

cytoskeleton, which is composed of tight junction proteins such as

ZO-1 and occludin, plays an important role in maintaining

intestinal mucosal barrier function and regulating intestinal

permeability (40–42). D-LA and DAO levels, which represent

intestinal permeability, are significantly higher in patients with

IBD (43). In this study, WIMT intervention significantly elevated

ZO-1 and occludin expression levels in colonic tissues, and FMT

intervention significantly elevated occludin expression levels in

colonic tissues, and there was no significant difference in

intestinal permeability between the WIMT and FMT groups. In

conclusion, both WIMT and FMT could protect the intestinal

barrier by regulating inflammatory factor homeostasis to lessen

the damage caused by DSS.

It has been demonstrated that intestinal flora is essential for the

development or remission of IBD (44). The microbiota

sequencing data from this investigation revealed the presence of

numerous shared genera in both groups of mice, such as

Eubacterium_hallii_group in the small intestinal tract,

Bifidobacterium in the large intestinal tract, and Parabacteroides in

the feces. It has been reported that genera Eubacterium_hallii_group,

Bifidobacterium, and Parabacteroides possess anti-inflammatory

efficacy (45–47), and in the present study, these shared genera were

associated with anti-inflammatory efficacy in both groups.

Bifidobacterium, which improves the intestinal community

structure and resists gastrointestinal inflammation (45), was

considerably enriched in the WIMT group. The expression of tight

junction proteins and the mucin family was upregulated by

Bifidobacterium adolescentis, which belongs to the genus

Bifidobacterium and regulates intestinal inflammation by reducing

pro-inflammatory cytokines such as IL-6 and IL-1b, increasing the

level of IL-10, and increasing Treg and Th2 cells in the lamina propria

of the colon to inhibit the overgrowth of harmful bacteria (44).

Bifidobacterium bifidum targets the Toll-like receptor 2 pathway in an

NF-kB non-dependent manner, which enhances the intestinal

epithelial tight junction barrier and prevents intestinal

inflammation (48). Clinical research and animal experiments have

demonstrated that Bifidobacterium longum can reduce the signs of

chronic inflammation and colitis (49, 50). In the current study, the

enrichment of Bifidobacterium in the WIMT group was significantly

negatively correlated with the pro-inflammatory factor TNF-a, and
the WIMT group in this study had superior efficacy compared to the

FMT group as a result of Bifidobacterium enrichment.

Ochrobactrum, Lactobacillus, Alloprevotella, and Lachnospiraceae

NK4A136_group were significantly enriched in the FMT group.
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Lactobacillus is a potential catalyst for the development of the

human immune system (51). Together, prebiotics and Lactobacillus

dramatically reduced the symptoms of UC in clinical investigations

(52). Members of the genus Lactobacillus also function as probiotics.

By controlling oxidative stress and immunological responses,

Lactobacillus plantarum effectively protects against DSS-induced

IBD in mice (53). Widespread in the intestines of healthy

individuals, Lactobacillus reuteri regulates the intestinal immune

system and can reduce inflammation via a number of processes

(54). Butyrate can be produced by members of Lachnospiraceae (55),

and it is not only a major source of energy for intestinal epithelial cells

but also inhibits pro-inflammatory cytokine signaling pathways (56).

Lactobacillus and Lachnospiraceae NK4A136, which were enriched in

the FMT group, contributed to the anti-inflammatory efficacy of

FMT. The abundance of Alloprevotella was found to be higher in the

AOM/DSS-treated group than in the control group in a study by

Wang et al. (57), raising the possibility that it may be related to the

severity of colitis. According to a study by Walujkar et al.,

Ochrobactrum was substantially more abundant in the microbiota

during the aggravated phase of UC than it in the remission phase,

which helps identify the particular genera that dominate the

microbiota during the disease (58). In the current study, the

enriched Ochrobactrum in the FMT group was significantly

positively correlated with the inflammatory marker MPO and

significantly negatively correlated with the anti-inflammatory factor

IL-10, which led to its poorer efficacy than that of WIMT.

Short-chain fatty acids (SCFAs; mainly acetate, propionate, and

butyrate) produced by intestinal bacteria can modulate protective

immunity and reduce tissue inflammation (59, 60). In this study,

functional prediction analysis based on the MetaCyc database using

PICRUSt2 revealed that glycolysis V (Pyrococcus, P341-PWY),

propylene glycol degradation (PWY-7013), and lysine degradation

to acetate and propionate (P163-PWY) pathways were significantly

enriched in the WIMT group. The glycolytic V pathway produces

pyruvate, which can be further converted to acetate in this metabolic

pathway (61–63). Propylene glycol can be degraded by bacteria to

produce propionate (64). Bacteria involved in lysine metabolism

produce acetate and propionate in L-lysine fermentation through

the acetate and butanoate pathways (65), and all three metabolic

pathways enriched in the WIMT group may be involved in the

production of SCFAs, which is related to its anti-inflammatory

efficacy. Amino acids play a role in the prevention and treatment

of IBD by regulating the physiological activity of intestinal epithelial

cells and by protecting the intestinal barrier (66). The addition of

arginine prevents LPS-induced oxidative damage and apoptosis (67).

In this study, L-arginine biosynthesis I (ARGSYN-PWY) and L-

arginine biosynthesis IV (PWY-7400) were significantly enriched in

the FMT group, which could be associated with the FMT group’s

ability to prevent inflammation and preserve the intestinal barrier.

There are some limitations of our study. Both WIMT and FMT

were pre-colonized into mice and intervened continuously, thus

reducing susceptibility to colitis. Further studies are needed to

explore the differences in therapeutic efficacy between the two

groups. In addition, the causal relationship between specific

bacteria and IBD in animals or in in vitro experiments and the

underlying molecular mechanisms need to be further investigated.
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In conclusion, both WIMT and FMT could significantly reduce

the susceptibility of mice to DSS-induced colitis by providing

probiotics, protecting the intestinal mucosal barrier, and

regulating the dynamic balance of cytokines. Notably, the mice in

the WIMT group responded better to the intervention than those in

the FMT group, which may be attributable to the enrichment of

metabolic pathways involving SCFAs and Bifidobacterium in the

WIMT group. This study provides new insights into

microecological interventions for IBD.
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