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Introduction: Chronic alcohol use poses significant negative consequences to

public health and, among its many biologic effects, is associated with significant T

cell dysregulation within the adaptive immune system that has yet to be fully

characterized. Novel, automated strategies for high dimensional flow cytometric

analysis of the immune system are rapidly improving researchers’ ability to detect

and characterize rare cell types.

Methods: Using a murine model of chronic alcohol ingestion in conjunction with

viSNE and CITRUS analysis tools, we performed a machine-driven, exploratory

analysis comparing rare splenic subpopulations within the conventional CD4+,

regulatory CD4+ and CD8+ T cell compartments between alcohol- and water-

fed animals.

Results:While there were no differences in the absolute numbers of bulk CD3+ T

cells, bulk CD4+ T cells, bulk CD8+ T cells, Foxp3- CD4+ conventional T cells

(Tconv) or Foxp3
+ CD4+ regulatory T cells (Treg), we identified populations of naïve

Helios+ CD4+Tconv and naïve CD103+ CD8+ splenic T cells that were decreased

in chronically alcohol exposed mice versus water-fed controls. In addition, we

identified increased CD69+ Treg and decreased CD103+ effector regulatory T

cell (eTreg) subsets in conjunction with increased frequency of a population that

may represent a transitional phenotype between central regulatory T cell (cTreg)

and eTreg.

Discussion: These data provide further resolution into the character of decreased

naïve T cell populations known to be present in alcohol exposed mice, as well as

describe alterations in effector regulatory T cell phenotypes associated with the

pathogenesis of chronic alcohol-induced immune dysfunction.
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Introduction

Alcohol use disorder (AUD) affects approximately 33 million

individuals in the United States (1) and excessive alcohol

consumption is a leading cause of premature mortality

accounting for 1-in-10 deaths among working-age adults (2).

Among its numerous effects, chronic alcohol exposure is

associated with a variety of inflammatory, infectious and

malignant pathologies that reflect both pro- and anti-

inflammatory immune dysregulation (3). Our laboratory has

investigated adaptive immune responses in murine models of

chronic alcohol exposure followed by sepsis, and reported that

alcohol-drinking mice exhibit increased sepsis mortality as

compared to water-drinking mice (4). Specifically, we reported a

number of T cell-specific perturbations, including altered subset

frequencies (4), impaired activation (5), and enhanced

proinflammatory cytokine release (5, 6). Other investigators have

also noted T cell alterations in response to chronic alcohol exposure

alone (7), including significant leukopenia in both humans (8) and

rodents (9, 10) resulting in T cell homeostatic proliferation and,

secondarily, an increase in peripheral memory T cells and a

decrease in naïve T cells (11–14). Similarly, T cells of alcohol

drinking humans (12, 15, 16) and mice (13, 14) show increased

activation and inflammatory cytokine release consistent with a host

phenotype marked by chronic inflammation (7). T cell subsets show

differential responses to chronic alcohol exposure, with studies

demonstrating loss of CD4+ T cells (17, 18) and overactivation of

CD8+ T cells (18), as well as decreased numbers of regulatory T cells

(Treg) in the dermis (19). Investigators have also reported that

alcohol exposure impairs murine T cell tissue extravasation in

response to inflammatory stimuli (10, 20), while in vivo (21) and

in vitro (21, 22) human studies have shown alcohol-exposed T cells

to undergo enhanced activation-induced cell death (23). Alcohol

has additionally been shown to interfere with thymocyte

development (7) and to predispose CD4+ T cells to Th2

polarization and suppress Th1 and Th17 responses (24). T cell-

to-antigen presenting cell (APC) signaling is also impaired as a

result of co-stimulatory molecule downregulation following alcohol

exposure (13, 24, 25).

Flow cytometry is an indispensable tool for characterizing

immune cells (26) that traditionally relies on biaxial plots to

visualize expression of up to two parameters simultaneously, on

which gates can be drawn to delineate specific subpopulations (26).

However, this approach has critical limitations including logistical

barriers to manual analysis of all possible comparison permutations,

particularly as new generations of cytometers facilitate

measurement of over twenty parameters simultaneously (26).

Additionally, user-driven gating approaches rely on prior

knowledge of anticipated subpopulations is itself inherently biased

(26). Recent advances in cytometry, however, have introduced a

series of computational analysis approaches that bypass manual

gating and allow for unbiased, high dimensional analysis of single-

cell cytometry data (26). These approaches can be categorized by

their degree of supervision (supervised vs. unsupervised) and use of
Frontiers in Immunology 02
a clustering versus dimensionality-reduction strategy, which can be

further classified as linear or nonlinear (27). T-stochastic neighbor

embedding (t-SNE) (28) and its derivative used for data

visualization-viSNE (29)-is a popular nonlinear algorithm that

analyzes the similarity of cells in high-dimension before reducing

them into an easily visualized two-dimensional scatter plot where

their spatial proximity is reflective of their high dimensional

relationship and allows for visualization of subpopulations as

small as 0.25% (26). Cluster identification, characterization, and

regression (CITRUS) (30) is an unsupervised clustering-based

algorithm (26, 27, 31) that hierarchically groups phenotypically

similar cells together into clusters with a minimum frequency

threshold set by the user followed by calculation of cluster

characteristics and, finally, a regularized classification model to

identify stratifying clusters that predict a user-defined experimental

endpoint (26).

Our laboratory has previously used a predecessor to CITRUS -

spanning-tree progression analysis of density-normalized events

(SPADE)- that follows similar principles but lacks the ability to

compare experimental endpoints (27) in order perform high

dimensional characterization of CD4+ T cells in tumor-bearing

mice subject to sepsis (32). Similarly, other groups have effectively

utilized CITRUS in a variety of disease-specific applications for T

cell analysis (33–36). Here, we sought to apply high dimensional

analysis techniques to characterize T cell alterations resulting from

chronic alcohol exposure and explore the effect of chronic alcohol

exposure on both effector and regulatory T cell subsets using this

machine-based analysis strategy. We aimed to characterize rare T

cell subpopulations in the CD8+, conventional CD4+ (CD4+ Tconv)

and regulatory CD4+ (CD4+ Treg) compartments in a murine

model of chronic alcohol exposure using an iterative series of

viSNE and CITRUS analyses and multimodal data visualization

strategies similar to those described by Polikowsky et al. (33). To

accomplish this, we employed an exploratory panel of T cell

markers, including those delineating lineage (CD3, CD4, CD8,

Foxp3), trafficking behavior (CCR4, CD103, CD62L), activation

(CD25, CD69, Helios), co-stimulation (CD28, GITR, ICOS), co-

inhibition (CTLA-4, KLRG1) immunologic memory (CD44, Ly6C),

and proliferation (Ki67).
Materials and methods

Animals

Male and female 6-week-old B6 mice were purchased from

Charles River Laboratories. This study was approved by the Emory

University Institutional Animal Care and Use Committee (IACUC)

[Protocol: PROTO201800161] and animal care was performed in

accordance with all relevant IACUC and federal rules and

guidelines. Animals randomized to either water (H2O) or alcohol

(EtOH) drinking groups. Animals were sacrificed by isofluorane

inhalation plus cervical dislocation at the conclusion of the 12-week

drinking period for splenocyte analysis.
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Chronic alcohol ingestion model

Animals were equally randomized to receive either a water or

alcohol diet. Animals in the alcohol arm received increasing

concentrations of alcohol-in-water from 0% to 20% (by volume)

over a two-week period (5% for 5 days, 10% for 5 days, 15% for 5

days), followed by 20% alcohol in water for ten additional weeks

with weekly replacement of the alcohol solution. Water drinking

animals received standard drinking water for an equivalent

duration of time. Previous work from our lab has demonstrated

that this protocol does not alter liver histology, renal function (6,

37), or body weight (4), and achieves a blood alcohol concentration

(BAC) of 28mg/dl (4), which is approximately the BAC achieved in

a 150 lb. person after one alcoholic drink.
Flow cytometry

Animals were sacrificed and their spleens harvested at the

conclusion of the 12-week drinking protocol. Splenocytes were first

treated with Fc blocking agent (TruStain FcX, Biolegend). Surface

staining was performed using anti-CD4-BUV395 (GK1.5, BD), anti-

CD3-BUV496 (145-2c11, BD), anti-CD8-BUV737 (53-67, BD), anti-

CD44-BUV805 (IM7, BD), anti-CCR4-eFluor450 (2G12, Biolegend),

anti-Ly6C-BV510 (HK1.4, Biolegend), anti-CD103-BV605 (2E7,

Biolegend), anti-CD69-BV650 (H1.2F3, Biolegend), anti-ICOS-

BV711 (C398.4A, Biolegend), anti-GITR-BV786 (DTA-1, BD),

anti-KLRG1-FITC (2F1/KLRG1, Biolegend), anti-CD62L-PE-

Dazzle (MEL-14, Biolegend), anti-CD28-PE-Cy7 (E18, Biolegend),

and anti-CD25-APC-Cy7 (PC61, Biolegend). Cells were then fixed

and permeabilized (Foxp3/Transcription Factor Fixation/

Permeabilization Concentrate and Diluent, eBioscience).

Intracellular/intranuclear staining was performed using the BD

Foxp3 Kit per manufacturer’s instruction and anti-Helios-PerCP-

Cy5.5 (22F6, Biolegend), anti-CTLA-4-PE (UC10-4B9, Biolegend),

anti-Foxp3-APC (FJK-16s, eBioscience), and anti-Ki67-Alexa700

(16A8, Biolegend). CTLA-4 was measured as an intracellular stain

because it is rapidly internalized/recycled on the plasma membrane,

making detection of the surface protein difficult (38–40). Accucheck

Counting Beads (Thermo Fisher Scientific) were added to calculate

absolute T cell numbers per spleen. An LSRFortessa flow cytometer

(BD Biosciences) was used to collect all samples. Data was analyzed

using FlowJo v10.6 software (FlowJo, LLC) prior to transfer to the

Cytobank platform (Cytobank.org).
Cytobank analysis

Traditional flow cytometry gating techniques were applied to

isolate lymphocytes, followed by single cells and CD3+ T cells using

FlowJo v10.6 (FlowJo, LLC). CD3+ T cells were then exported as

new FCS files with applied internal compensation and uploaded to

the Cytobank (Cytobank.org) platform (31). Within Cytobank, the

following protocol was followed using strategies adapted from

Polikowsky et al. (33).
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Data preparation
Samples were examined for data tidying and quality control.

Arcsinh transformations were applied and scaling adjusted to achieve

appropriate marker display on each channel. Staining was examined

to confirm presence of a positive signal for each channel. Pre-gating.

Within Cytobank, CD3+ cells were further manually gated to

facilitate downstream analysis of three distinct T cell populations:

1. CD8+CD4- (CD8+ T cells), 2. CD8-CD4+Foxp3- (CD4+ TConv), and

3. CD8-CD4+Foxp3+ (CD4+ Treg) (as shown in Figure 1).

Data visualization using viSNE
viSNE analysis was performed for each of the three T cell

populations. For analysis of CD8+ T cells and CD4+ TConv,

downsampling was performed to 20,000 events per sample to allow

detection of subpopulations as small as 2% with a 5% coefficient of

variation (CV) (33, 41). CD4+ Treg were downsampled to 4000 events

to allow detection of 10% subpopulations at a CV of 5%. Samples

lacking an adequate number of respective events were excluded. All

available markers were selected for clustering, with the exception of

CD3/CD8/CD4 (for CD8+ T cells) and CD3/CD8/CD4/Foxp3 (for

CD4+ TConv and CD4
+ Treg). Perplexity was set to 70, theta to 0.5, and

iterations set to 7500 for CD8+ T cells and CD4+ TConv and 2000 for

CD4+ TReg. Individual sample files from the viSNE analysis for each T

cell population were downloaded from Cytobank as FCS files and

concatenated into a single viSNE file using the R script (R-project.org)

made available on the Cytobank platform and these files were then

loaded into Cytobank for further analysis and visualization.

Clustering and predictive biomarker model
development using CITRUS

To identify cell clusters predictive of water versus alcohol

drinking animals, we utilized the CITRUS algorithm available

within Cytobank. The same downsampled events used to generate

each viSNE analysis for a respective T cell population were also used

to perform the CITRUS modeling. Samples were assigned into

water or alcohol-fed groups as appropriate and equal event

sampling was selected for the analyses (i.e. 20,000 events/sample

for CD8+ T cells and CD4+ TConv and 4,000 events/sample for CD4+

TReg). The same channels used for each respective viSNE analyses

were selected for clustering and cluster characterization was

performed by abundance. Minimum cluster size was again set to

2% for CD8+ T cells and CD4+ TConv, and 10% for TReg. Cross

validation folds were set to 10 and scales were selected for

normalization. L1-Penalized Regression (LASSO) was selected as

the association model for biomarker prediction (note: false

discovery rate settings do not influence the analysis when using

the LASSO model). This process was repeated 3 times for both

viSNE maps of each respective T cell subset, yielding a total of 6

CITRUS runs each for CD8+ T cells, CD4+TConv and CD4+TReg.

Selecting reproducible clusters of interest

For each T cell population, model error rate plots from the six

CITRUS runs were examined to ensure an acceptable number of

features and low cross validation error rate were generated. For each

run the “CV.MIN” model was selected for analysis. Histograms
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from the “clusters” CITRUS output file were visually compared and

clusters with similar phenotypes identified consistently across runs

were selected for downstream analysis. If two or more of the

selected clusters were identified as having “parent-child”

relationships on the CITRUS feature plots, then only the parent

cluster was used for downstream analysis unless the parent cluster

split into more than one distinct branch, in which case only the

child clusters were used for downstream analysis. The files for the

selected clusters of interest for each T cell population were

concatenated and their spatial locations visualized on their

respective viSNE plots.
Phenotyping clusters of interest

Four multimodal data visualization strategies were employed to

characterize clusters of interest that had high (hi) or low (lo)

expression of a given marker. 1) observing the marker expression

on the corresponding region of the cluster’s viSNE plot, 2)

observing the marker expression on the corresponding region of

the CITRUS marker plot, 3) observing histograms of marker

expression produced by the CITRUS run, 4) observing Cytobank-

generated heatmaps of concatenated median marker expression for

each cluster (arcsinh transform) relative to the concatenated sample

control. Clusters were assigned (hi) or (lo) expression of a given
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marker only if there was phenotypic agreement across 3 or more of

these modalities.

viSNE visualization of validation cohort

Samples from the validation cohort for each T cell population

were used to create new viSNE plots using identical settings as the

original cohort, however only markers involved in characterizing

the phenotype of the clusters of interest were selected for clustering

the viSNE map. The results of the viSNE analysis for each T cell

population were concatenated for the entire cohort as well as for the

water and alcohol drinking experimental arms separately. Manual

gating was performed on the viSNE plot within Cytobank to

identify and isolate cell clusters with phenotypes analogous to the

clusters of interest defined via CITRUS.

Analysis of validation cohort

Median marker expression heatmaps of each manually gated

cluster on the validation cohort viSNE map were utilized to confirm

that the phenotypes of these clusters were similar to those identified

in the modeling cohort (arcsinh transformation using the

concatenated total sample subset as a control). viSNE contour

plots colored by density were utilized to visually compare cluster

population density in the gated regions for water versus alcohol
A

B C

FIGURE 1

Chronic alcohol exposure does not impact absolute numbers of CD4+ or CD8+ T cells. (A), Mice (n=20/group) were subjected to 12-weeks of an
alcohol or water diet as described in Materials and Methods followed by sacrifice and collection of splenocytes for flow cytometry. (B), Gating
strategy to identify conventional CD4+ and CD8+ T cells as well as Foxp3+ Treg. (C), The number of CD3+ T cells, CD8+ T cells, CD4+ T cells,
CD4+Tconv or CD4

+TReg did not differ between water- vs. alcohol-exposed mice. Data were tested for normality and compared with either t test or
Mann-Whitney test.
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samples and confirm that the cluster behavior (increased or

decreased) correlated with the behavior predicted by the CITRUS

algorithm from the Modeling Cohort. Individual sample statistics

(frequency) for each manually gated cluster were then exported

from Cytobank and analyzed using Prism v9.0 software (GraphPad

San Diego, CA) to quantitatively confirm changes to cluster

frequency between alcohol and water drinking groups.
Statistical analysis

For frequency analysis of exported manually gated clusters from

the validation cohort, Prism v9.0 software (GraphPad San Diego,

CA) was utilized. Outliers were identified and excluded using

Grubb’s test with a=0.05. Data was then tested for Gaussian

distribution using the Shapiro-Wilk normality test with a=0.05.
Normally distributed data was compared using a two-tailed

unpaired t test while non-normal data was compared with a two-

tailed Mann-Whitney test. Data are expressed as mean ± SEM. The

significance level was set to a=0.05.
Results

Absolute numbers of CD8+ T cells, CD4+

conventional T cells, and CD4+ Foxp3+

Treg are not different in water vs. alcohol-
exposed mice

To determine the effects of chronic alcohol exposure on the

magnitude and phenotype of CD4+ and CD8+ T cells, B6 mice were

exposed to increasing concentrations of alcohol ad libitum in their

drinking water over a period of 12 weeks as described in Materials

and Methods (Figure 1A). Animals were subsequently euthanized

and splenocytes were enumerated via flow cytometry using the

gating strategy shown in Figure 1B. Results indicated no differences

in the absolute numbers of bulk CD3+ T cells, bulk CD4+ T cells,

bulk CD8+ T cells, Foxp3- CD4+ conventional T cells (Tconv) or

Foxp3+ CD4+ regulatory T cells (Treg) (Figure 1C). These results

indicate that prior to any immunologic or antigenic challenge,

chronic exposure to alcohol does not change the magnitude of

major T cells subsets in the mouse.
Chronic alcohol exposure results in
alterations in three CD4+ Treg
subpopulations

Given the above results demonstrating that chronic alcohol

exposure did not impact the quantity of T cell subsets, we next

asked whether chronic alcohol exposure impacted the quality of T cell

subsets. To identify changes in the CD4+Treg compartment during

chronic exposure to alcohol, CD3+ CD4+ CD8- Foxp3+ Treg were

gated using FlowJo. All samples, both alcohol- and water-drinking,

were downsampled and clustered by all 14 available markers to

generate a viSNE map visualizing subpopulations as small as 10% of
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CD4+Treg (Figure 2A). This process was repeated once to generate a

second viSNE map from randomly sampled events.

In order to identify CD4+Treg subpopulations as small as 10%

that were associated with chronic exposure to alcohol, the LASSO

association model of the CITRUS algorithm was performed with the

same downsampled events and clustering channels used to create

the corresponding viSNE map to allow the results of CITRUS to be

visualized with viSNE. Three CITRUS models were generated in

this manner for both CD4+Treg viSNE plots, yielding six total

models generated for this subset, all of which demonstrated a

sufficient number of features and acceptably low error rate

(Figure 2B). Given that CITRUS models can differ between

replicates when more than one subpopulation is by itself

adequately predictive of an endpoint, we only selected

phenotypically-identical clusters that were present in all six

replicates for downstream use in order to guard against false

positives and restrict our analyses to a manageable number of

subpopulations. This strategy identified three CITRUS clusters with

phenotypes consistently present across all iterations, and these were

then concatenated and overlaid onto their respective regions of the

viSNE map (Figure 2C). Clusters A and B were consistently

increased in alcohol exposed animals, while Cluster C was

decreased (Figure 2D).

We then employed a multimodal visualization strategy in order

to phenotype these clusters First, we assessed marker expression on

the corresponding region (Figure 2C) of a cluster’s viSNE plot

(Figure 3A). In addition, marker expression on the corresponding

region (Figure 3A) of the CITRUS marker plots (Figure 3B) and

histograms of marker expression produced by the CITRUS run

(Figure 3C) were assessed. Cluster A was determined to be CD25lo

CD44h iLy6C l oCD103 l oCD69h iG ITRh i ICOSh iKLRG1 l o

CD62LloHelioshi, Cluster B was determined to be CD44lo

Ly6ChiCD69loICOSloCD28loCTLA-4loCD62LloHelioslo, and

Cluster C was determined to be CD25hiLy6CloCD103hiKLRG1lo

CD62LloHelioshi (Figure 3D).

To confirm the generalizability of our findings, we tested for the

presence of similar differences between in Treg subpopulations

between alcohol and water exposed mice in a separate validation

cohort. Manual gating was then performed within Cytokbank on the

validation cohort viSNE map to locate regions with corresponding

phenotypes to CD4+Treg Clusters A, B and C (Figures 3A, C) (gating

strategy shown in Supplemental Figure 1). Frequencies of these

manually gated regions were exported for each sample and

analyzed using traditional statistical techniques and quantitatively

verified that Clusters A and B were significantly increased, and C

significantly decreased, in alcohol-fed relative to water-fed animals as

predicted by the CITRUS model (Figure 3E).
Chronic alcohol exposure results in
decreased frequency of
Ki67loCD44loCCR4loLy6CloCD69loKLRG1lo

CD28loCD62LhiHelioshi CD4+TConv

Analysis of the CD4+Tconv compartment to identify

subpopulations predictive of chronic alcohol exposure was
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performed in a manner analogous to that of CD4+Treg above. The

CD4+Tconv subset of the modeling cohort underwent viSNE analysis

and mapping to detect subpopulations as small as 2% (Figure 4A).

CITRUS analysis was performed and again generated models with

sufficient numbers of features and acceptably low error rate

(Figure 4B). We identified one CITRUS cluster- Cluster D -

(Figure 4C) with a phenotype consistently present across all

CITRUS iterations and whose frequency was decreased in alcohol

exposed animals (Figure 4D).

The phenotype of cells in CD4+TConv Cluster D was then

interrogated by assessing marker expression on the corresponding

region (Figure 4C) of the cluster’s viSNE plot (Figure 5A),

marker expression on the corresponding region (Figure 5A) of

the CITRUS marker plots (Figure 5B), and histograms of marker

expression produced by the CITRUS run (Figure 5C). Based on

these, Cluster D within the CD4+ T cell compartment was

determined to be Ki67loCD44loCCR4loLy6CloCD69loKLRG1lo

CD28loCD62LhiHelioshi (Figure 5D).
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To confirm the generalizability of our findings, we again

performed manual gating within Cytobank on a validation cohort

to identify a region on the viSNE map with a similar phenotype to

CD4+TConv Cluster D (Supplemental Figure 2). Statistical analysis

demonstrated that the frequency of cells within CD4+TConv Cluster

D was significantly decreased in alcohol exposed mice (Figure 5E).
Chronic alcohol exposure results in
decreased frequency of CD25lo CD44lo

Ly6Clo CD103hi CD8+ T cells

Analysis of the CD8+ T cell compartment to identify

subpopulations predictive of chronic alcohol exposure was

performed in a manner analogous to that of CD4+Treg and

CD4+Tconv above. The CD8
+ T cell subset of the modeling cohort

underwent viSNE analysis and mapping to detect subpopulations as

small as 2% (Figure 6A). CITRUS analysis was performed and again
A

B DC

FIGURE 2

Combined CITRUS and viSNE analysis revealed three CD4+Treg clusters associated with chronic alcohol exposure. (A) CD4+ Treg subset samples from
water- and alcohol-drinking mice were equally downsampled to 4000 events to detect 10% subpopulations with CV=5%. viSNE mapping was
performed using all 14 available markers for clustering (CD3, CD4, CD8 and Foxp3 were excluded). Iterations were set to 2000, perplexity 70 and
theta 0.5. (B) CITRUS analyses were performed on the events comprising each viSNE plot. Samples were grouped by alcohol versus water exposure,
the same 14 channels used for viSNE were selected for clustering by abundance. LASSO modeling was selected, minimum cluster size was set to
10%, false discovery rate 1% (note: this is irrelevant for LASSO), cross validation folds 10, and scales were normalized. The CV.MIN output was
selected from the LASSO analysis. A representative model error rate plot is show. (C) CITRUS replicates were compared using the “clusters-cv_min”
output file histograms. Clusters that were altered in alcohol versus water drinkers were identified Clusters (A–C). Representative clusters from one
CITRUS run were concatenated and individually overlaid onto their corresponding viSNE plot shown in (A). (D) Representative CITRUS feature plot
corresponding to (C) showing differences in cluster frequency between alcohol and water exposed animals. E) The statistical frequencies of Clusters
A (8.7 ± 0.6% vs. 6.8 ± 0.6%, p=0.04) and B (4.6 ± 0.4% vs. 2.8 ± 0.3%, p=0.002) were increased in alcohol exposed mice, while the frequency of
Cluster C (2.4 ± 0.1% vs. 4.5 ± .2%, p <0.0001) was decreased. Data were tested for normality and compared with either t test or Mann-Whitney test.
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generated models with sufficient numbers of features and acceptably

low error rate (Figure 6B). We identified one CITRUS cluster-

Cluster E - (Figure 6C) with a phenotype consistently present across

all CITRUS iterations and the frequency of which was decreased in

alcohol exposed animals (Figure 6D).

The phenotype of cells in Cluster E was then interrogated by

assessing marker expression on the corresponding region

(Figure 6C) of the cluster’s viSNE plot (Figure 7A), assessing

marker expression on the corresponding region of the CITRUS

marker plots (Figure 7B), and histograms of marker expression

produced by the CITRUS run (Figure 7C). Cluster E within the

CD8+ T cell compartment was determined to be CD25loCD44lo

Ly6CloCD103hi (Figure 7D).

To confirm the generalizability of our findings, manual gating

was again performed within Cytobank to identify a region on the
Frontiers in Immunology 07
viSNE map with a similar phenotype to CD8+ T cell Cluster E

(gating strategy shown in Supplemental Figure 3). Statistical

analysis verified that the frequency of Cluster E within the CD8+

T cell compartment was significantly decreased in alcohol exposed

mice, also as predicted by the CITRUS model (Figure 7E).
Discussion

High dimensional, single-cell flow cytometry analysis

techniques continue to evolve and provide increased ability to

characterize rare immune cell populations. Here, we have

presented an application of algorithms available through the

Cytobank platform to perform an exploratory characterization of

rare T cell populations that are present in mice which are
A B

D

E

C

FIGURE 3

Phenotypic analysis of three CD4+ Treg clusters that are significantly different in water- vs. alcohol-exposed mice. Following CITRUS modeling and
identification of three CD4+TReg clusters predictive of alcohol drinking mice, phenotypic cluster characterization was performed by assessing (A),
marker expression on the viSNE map with the overlaid clusters, (B), CITRUS clusters of interest shown in the feature plots in (A) were compared to
expression on corresponding the heatmap marker plots in (B, C) CITRUS marker histogram expression was visualized where blue represents
background expression and red represents expression within the cluster of interest. The final phenotypic characterization profile assigned to the
three clusters of interest is shown in (D, E). Manual gating demonstrated that the statistical frequencies of Clusters (A) (8.7 ± 0.6% vs. 6.8 ± 0.6%,
p=0.04) and (B) (4.6 ± 0.4% vs.2.8 ± .3%, p=0.002) were increased in alcohol exposed mice, while the frequency of Cluster (C) (2.4 ± 0.1% vs. 4.5 ±
0.2%, p <0.0001) was decreased. Data were tested for normality and compared with either t test or Mann-Whitney test. *p<0.05, **p<0.01,
****p<0.0001.
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chronically exposed to alcohol. We used an iterative series of viSNE

and CITRUS analyses to identify subpopulations within the CD8+,

CD4+TConv and CD4+Treg compartments, the frequencies of which

are reproducibly different between alcohol- and non-alcohol-

exposed animals. This was followed by a multimodal approach to

phenotype these clusters and then, finally, validation of these

findings in a testing cohort by identifying analogous

subpopulations with identical frequency differences between

alcohol and water-fed mice. Specifically, we identified

CD25 l oCD44 l oLy6C l oCD103h i CD8+ T ce l l , Ki67 l o

CD44loCCR4loLy6CloCD69loKLRG1loCD28loCD62LhiHelioshi

CD4+Tconv, and CD25hiLy6CloCD103hiKLRG1loCD62LloHelioshi

CD4+Treg populations that were decreased in alcohol exposed

animals. Conversely, two CD4+Treg populations – CD25lo

CD44h iLy6CloCD103 loCD69h iGITRh iICOSh iKLRG1lo

CD62LloHelioshi, and CD44loLy6ChiCD69loICOSloCD28loCTLA-

4loCD62LloHelioslo were both increased in alcohol-exposed relative

to water-fed animals.

Within the CD8+ T cell compartment, the identification of a

population with low expression of both CD44 and Ly6C is strongly
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suggestive of a naïve phenotype, as both these markers are known to

be upregulated in antigen-experienced T cells (42–44), with Ly6C

specifically associated with CD8+ central memory (CD8+TCM) cells

(45). Similarly, CD25, the receptor for IL-2, is recognized as a

general marker of activation and antigen-experience (46) and low

expression of CD25 in this setting is likely further indicative of a

naïve phenotype. CD103 is a well-described marker of tissue

homing that allows cells to bind E-cadherin expressed on

peripheral epithelial tissues (47). In this context, expression of

CD103 on CD8+ T cells is a characteristic feature of the tissue

resident memory phenotype (CD8+TRM) and distinguishes these

cells from effector memory CD8+ T cells (CD8+TEM), both of which

lack expression of CD62L (L-selectin) to facilitate retention in

secondary lymphoid organs. Similar to the CD8+ compartment,

our analysis of the CD4+TConv compartment also revealed loss of a

subpopulation that shared low expression of CD44 and Ly6C in

addition to low expression of proliferative marker Ki67 (48), co-

stimulatory molecule CD28 (49), activation marker CD69 (50) and

terminal differentiation marker KLRG1 (51). CCR4, a chemokine

receptor associated with Th2 polarization and cutaneous T cell
A

B DC

FIGURE 4

Combined CITRUS and viSNE analysis revealed one CD4+TConv cluster associated with alcohol-drinking mice. (A) CD4+TConv subset samples from the
modeling cohort were equally downsampled to 20000 events to detect 2% subpopulations with CV=5%. 1 water drinking sample was excluded due to
insufficient event count. viSNE mapping was performed using all 14 available markers for clustering (CD3, CD4, CD8 and Foxp3 were excluded).
Iterations were set to 7500, perplexity 70 and theta 0.5. This process was repeated to create two total viSNE maps, one of which was concatenated and
displayed above. (B) CITRUS analyses was performed on the events comprising each viSNE plot. Samples were grouped by alcohol versus water
exposure, the same 14 channels used for viSNE were selected for clustering by abundance. LASSO modeling was selected, minimum cluster size was set
to 2%, false discovery rate 1% (note: this is irrelevant for LASSO), cross validation folds 10, and scales were normalized. The CV.MIN output was selected
from the LASSO analysis. This process was repeated 3 times for each of the two viSNE maps yielding 6 total CITRUS replicates. A representative model
error rate plot is show. (C) 6 CITRUS replicates were compared using the “clusters-cv_min” output file histograms. 1 cluster predictive of alcohol versus
water drinkers was present across all replicates Cluster (D) and was selected for downstream analyses. Representative clusters from one CITRUS run
were concatenated and individually overlaid onto their corresponding viSNE plot shown in (A). (D) Representative CITRUS feature plot corresponding to
(C) showing differences in cluster frequency between alcohol and water exposed animals.
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migration (52) as well as cell retention in inflamed tissues (53) was

also decreased in this subpopulation. Conversely, this CD4+TConv

cluster showed high expression of CD62L, rather than CD103, in

addition to high expression of Helios, which has been shown to be

critical for the activation of naïve T cells (54, 55). Together, these

findings suggest that chronic alcohol exposure in mice leads to loss

of naïve subsets of CD8+ T cells and CD4+TConv cells that

specifically possess CD103+ and Helios+ phenotypes, respectively.

Given that loss of naïve T cell subsets is a known consequence of

chronic alcohol exposure (6, 14), the data presented here both

confirm this conclusion as well as provide more detailed phenotypic

characterization of this population that may inform future

mechanistic studies into the sequalae of chronic alcohol exposure

in the adaptive immune system.

In the CD4+Treg compartment, chronic alcohol exposure led to

altered frequencies of Clusters A, B and C, all of which were found

to demonstrate phenotypic characteristics that are largely consistent

with those known to describe eTreg, a highly proliferative TReg

subset that migrates to, and suppresses, end-organ inflammation
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(56). eTreg are defined as CD62L-CD44+ (57) and express increased

ICOS (56) and decreased CD25 (58) given their dependence on

TCR stimulation (59), rather than IL-2 (58), for maintenance. eTreg

generally show increased markers of Treg activation such as GITR

(60), Helios (61), CTLA-4 (56), and KLRG1 (62), as they are

unidirectionally derived from the activation and differentiation of

the quiescent cTreg subset (62). cTreg conversely possess a

CD62L+CD44- phenotype (57), depend on IL-2 signaling via

CD25 (58) and suppress inflammation in secondary lymphoid

organs in addition to serving as an eTreg precursor pool (62). The

transition from cTreg to eTreg characteristically involves loss of

Ly6C, indicative of senescence (62), and gain of CD69 and/or

CD103. As described by Toomer 5 CD69- CD103- eTReg likely

represent a transitional phenotype between cTreg and eTreg, while

CD69+ and CD103+ eTreg are two distinct activated subsets (62).

Collectively, these data suggest that our findings in the CD4+Treg

compartment of alcohol exposed mice may represent increased

frequency of a CD69+ eTreg population (Cluster A), along with

decreased frequency of a CD103+ eTreg population also expressing
A B

D

E

C

FIGURE 5

Phenotypic analysis of one CD4+ TConv cluster that is significantly different in alcohol-exposed mice. Following CITRUS modeling and identification
of three CD4+TConv clusters predictive of alcohol drinking mice, phenotypic cluster characterization was performed by assessing (A) marker
expression on the viSNE map with the overlaid clusters, (B) CITRUS clusters of interest shown in the feature plots in (A) were compared to
expression on corresponding the heatmap marker plots in (B, C) CITRUS marker histogram expression was visualized where blue represents
background expression and red represents expression within the cluster of interest. The final phenotypic characterization profile assigned to the
cluster of interest is shown in (D). (E) Manual gating demonstrated that the frequency of cells within Cluster (D) (1.6 ± 0.3% vs. 2.6 ± 0.3%, p=0.01)
was statistically significantly decreased in alcohol exposed mice relative to water exposed. Data were tested for normality and compared using t test.
*p<0.05.
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increased CD25 (Cluster C). Interestingly, CD4+Treg Cluster B

demonstrated features suggestive of both cTreg (i.e. CD44
loLy6Chi)

and eTreg (i.e. CD62L
lo) and therefore, given its increased frequency

in alcohol exposed animals, may be a manifestation of a transitional

phenotype between the two.

The increased computational power offered to investigators by

automated cytometry analyses is still not without notable

limitations. Both viSNE and CITRUS effectively require

investigators to decide what minimum subpopulation frequency

they wish to target and with what statistical power. We considered

the selection of 10% subpopulations for CD4+TReg and 2%

subpopulations for CD4+TConv and CD8+ T cells reasonable given

our interest in rare events (41), but any cut-off will inherently bias

the results simply by the nature of the algorithms the software

employs. However, our use of a validation cohort to test the

predic t ions of the model ing cohort s trengthens the

generalizability of our findings and guards against the risk of

over-fitting of CITRUS models to the underlying data. In

addition, we employed a conservative approach as to which

CITRUS clusters were selected for downstream analysis,

increasingly the likelihood that our findings are generalizable to
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alcohol exposed mice, but at the cost of decreased sensitivity to

identify all possible subpopulations differing in alcohol exposed

animals. The current study is also limited by the fact that only

splenocytes were analyzed. Because tissue microenvironment is

known to affect T cell phenotype, it is possible that the T cell

phenotypes we identified to be differentially expressed in the spleens

of water- vs.- alcohol drinking animals may not be observed in other

tissues. In prior analyses we have found that phenotypes in the

spleen closely mirror those in the peripheral blood, given the large

amount of blood circulating through the spleen. Follow up studies

are planned to analyze other tissue microenvironments, such as the

peritoneal lymph nodes, peritoneal exudate cells, the bone marrow,

and intestinal lymphocytes.

In sum, using a series of machine-driven, multiparameter flow

cytometry analyses strategies, we have successfully identified rare

populations of naïve Helios+ CD4+Tconv and naïve CD103+ CD8+

splenic T cells that are decreased in chronically alcohol exposed

mice versus water-fed controls, as well as increased CD69+ and

decreased CD103+ eTreg subsets in conjunction with increased

frequency of a population that may represent a transitional

phenotype between cTreg and eTreg. These data provide further
A

B DC

FIGURE 6

Combined CITRUS and viSNE analysis revealed one CD8+ T cell cluster associated with alcohol-drinking mice. (A) CD8+Tcell subset samples from the
modeling cohort were equally downsampled to 20000 events to detect 2% subpopulations with CV=5%. 1 water drinking sample was excluded due
to insufficient event count. viSNE mapping was performed using all 15 available markers for clustering (CD3, CD4 and CD8 were excluded). Iterations
were set to 7500, perplexity 70 and theta 0.5. This process was repeated to create two total viSNE maps, one of which was concatenated and
displayed above. (B) CITRUS analyses was performed on the events comprising each viSNE plot. Samples were grouped by alcohol versus water
exposure, the same 14 channels used for viSNE were selected for clustering by abundance. LASSO modeling was selected, minimum cluster size was
set to 2%, false discovery rate 1% (note: this is irrelevant for LASSO), cross validation folds 10, and scales were normalized. The CV.MIN output was
selected from the LASSO analysis. This process was repeated 3 times for each of the two viSNE maps yielding 6 total CITRUS replicates. A
representative model error rate plot is show. (C) 6 CITRUS replicates were compared using the “clusters-cv_min” output file histograms. 1 cluster
predictive of alcohol versus water drinkers was present across all replicates Cluster (E) and was selected for for downstream analyses. Representative
clusters from one CITRUS run were concatenated and individually overlaid onto their corresponding viSNE plot shown in (A). (D) Representative
CITRUS feature plot corresponding to (C) showing differences in cluster frequency between alcohol and water exposed animals.
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resolution into the character of decreased naïve T cell populations

known to be present in alcohol exposed mice, as well as describe

alterations in effector regulatory T cell phenotypes as consequence

of chronic exposure to alcohol that are worthy of future study.
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