
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Qun Zhao,
Fourth Hospital of Hebei Medical
University, China

REVIEWED BY

Suxue Tan,
Chongqing Medical University, China
Taohua Yue,
First Hospital, Peking University, China
Hui Li,
Capital Medical University, China

*CORRESPONDENCE

Sujie Zhu

zhusujie@bjmu.edu.cn

Weikaixin Kong

kong.weikaixin@helsinki.fi

Xuelong Jiao

jiaoxuelong@163.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 11 January 2023

ACCEPTED 27 February 2023
PUBLISHED 20 March 2023

CITATION

Zhu J, Kong W, Huang L, Bi S, Jiao X and
Zhu S (2023) Identification of
immunotherapy and chemotherapy-related
molecular subtypes in colon cancer by
integrated multi-omics data analysis.
Front. Immunol. 14:1142609.
doi: 10.3389/fimmu.2023.1142609

COPYRIGHT

© 2023 Zhu, Kong, Huang, Bi, Jiao and Zhu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 March 2023

DOI 10.3389/fimmu.2023.1142609
Identification of immunotherapy
and chemotherapy-related
molecular subtypes in colon
cancer by integrated multi-
omics data analysis

Jie Zhu1,2,3,4†, Weikaixin Kong3,4,5*†, Liting Huang2, Suzhen Bi2,
Xuelong Jiao5* and Sujie Zhu1,2*

1Key Laboratory of Birth Regulation and Control Technology of National Health Commission of
China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University,
Jinan, Shandong, China, 2Institute of Translational Medicine, The Affiliated Hospital of Qingdao
University, College of Medicine, Qingdao University, Qingdao, China, 3Institute for Molecular
Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland, 4Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science
Center, Beijing, China, 5Gastrointestinal Surgery Department, The Affiliated Hospital of Qingdao
University, College of Medicine, Qingdao University, Qingdao, China
Background: Colon cancer is a highly heterogeneous disease, and identifying

molecular subtypes can provide insights into deregulated pathways within tumor

subsets, which may lead to personalized treatment options. However, most

prognostic models are based on single-pathway genes.

Methods: In this study, we aimed to identify three clinically relevant subtypes of

colon cancer based on multiple signaling pathways-related genes. Integrative

multi-omics analysis was used to explain the biological processes contributing to

colon cancer aggressiveness, recurrence, and progression. Machine learning

methods were employed to identify the subtypes and provide medication

guidance for distinct subtypes using the L1000 platform. We developed a

robust prognostic model (MKPC score) based on gene pairs and validated it in

one internal test set and three external test sets. Risk-related genes were

extracted and verified by qPCR.

Results: Three clinically relevant subtypes of colon cancer were identified based

on multiple signaling pathways-related genes, which had significantly different

survival state (Log-Rank test, p<0.05). Integrative multi-omics analysis revealed

biological processes contributing to colon cancer aggressiveness, recurrence,

and progression. The developed MKPC score, based on gene pairs, was robust in

predicting prognosis state (Log-Rank test, p<0.05), and risk-related genes were

successfully verified by qPCR (t test, p<0.05). An easy-to-use web tool was

created for risk scoring and therapy stratification in colon cancer patients, and

the practical nomogram can be extended to other cancer types.
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Conclusion: In conclusion, our study identified three clinically relevant subtypes

of colon cancer and developed a robust prognostic model based on gene pairs.

The developed web tool is a valuable resource for researchers and clinicians in

risk scoring and therapy stratification in colon cancer patients, and the practical

nomogram can be extended to other cancer types.
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1 Introduction

Colon cancer is a disease with extensive interpatient

heterogeneity, both molecularly and histopathologically, which

cannot be resolved by current clinical methods. Despite a

continuous refinement to the UICC tumor, node, metastasis

(TNM) staging system to measure disease extent and define

prognosis, disease outcome still varies considerably even among

patients with the same tumor stage. Therefore, new factors that can

more precisely stratify patients into different risk categories are

clearly warranted (1, 2).

In this age of advanced molecular-profiling technologies, cancer

molecular subtype discovery has become one of the more common

exercises utilizing transcriptomic data on human tumors. Molecular

subtypes can deepen our understanding of cancer as a collection of

diseases rather than a single disease. Molecular subtypes can

provide insights into the pathways that appear deregulated within

tumor subsets, which may suggest therapeutic opportunities, as well

as being indicative of which pathways, as characterized in the

experimental setting, would appear particularly relevant in the

human disease setting (3).

As a highly heterogeneous disease, colon cancer involves DNA

repair defects (4, 5), DNA methylation (6, 7), chromosome

instability (8), and other molecular pathogeneses during disease

development. Biomarkers have been used as common tools for

disease detection and prognosis management in colon cancer

patients. Therefore, the determination of molecular changes in

colon cancer patients has become a hotspot in colon cancer

research (9).

Recent attempts to resolve colorectal cancer (CRC)

heterogeneity and improve prognosis include molecular

subclassification and characterization based on transcriptional

profiling (10, 11). The consensus molecular subtype (CMS)

classification stratifies CRC into four subtypes CMS 1–4, each

with distinct biological and histopathological features. Colorectal

cancer is a molecularly heterogeneous disease. Responses to

genotoxic chemotherapy in the adjuvant or palliative setting vary

greatly between patients, and colorectal cancer cells often resist

chemotherapy by evading apoptosis (12, 13). The development of

cancer was related to multiple signaling pathways, including the cell

cycle, immunity, aging, metabolism, autophagy, and so on. Until

recently, most constructed prognostic models were based on single-
02
pathway genes. Herein, we identified three clinically relevant

subtypes of colon cancer based on multiple prognostic cancer

signaling pathway-related genes. Integrative multi-omics analysis

is used to explain the biological processes contributing to colon

cancer aggressiveness, recurrence, and progression. We developed a

classifier to identify the subtypes of patients and predicted

medication guidance for each subtypes using the L1000 platform

(14). Finally, we established a prognostic model system based on

gene pairs using expression data and further validated it in one

internal test set and three external test sets.
2 Methods

2.1 Colon cancer dataset source
and preprocessing

The workflow of our study is shown in Supplementary Figure

S1A. Public gene-expression data and full clinical annotation were

obtained from the Gene-Expression Omnibus (GEO) and The

Cancer Genome Atlas (TCGA) databases. Patients without

survival information were removed. In total, three colon cancer

cohorts (TCGA-COAD, GSE39582, and GSE38832; the data

information is in Supplementary Table S1) were gathered in this

study for further analysis. TCGA-COAD was downloaded from the

Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/).

The somatic mutation data were acquired from TCGA database.

The genomic instability (GI) and somatic copy-number alterations

(SCNAs) of TCGA were downloaded from a previous study (15)

(Supplementary Table S3).
2.2 Unsupervised clustering for 66
prognostic genes

Firstly, we searched the articles using the keywords “colon

cancer” and “prognosis” to obtain the genes related to the

prognosis of colon cancer and then identified 66 prognostic genes

using univariate Cox regression. Unsupervised clustering was then

used to identify three subtypes of colon cancer patients based on the

expression of these 66 prognostic genes. We used the

ConsensuClusterPlus package to perform the above steps, and
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1,000 repetitions were conducted to guarantee the stability of

clustering. Partitioning around medoid (PAM) method and

Euclidean distance were used to quantify the similarity of gene

expression profiles between the patients, and the area under the

curves of the cumulative distribution function (CDF) was used to

find the optimal number k of clusters.
2.3 PD1/CTLA4 response prediction

To predict the immunotherapy response of patients with

distinct subtypes of breast cancer, we downloaded the

immunotherapy prediction information from the TCIA database

(https://tcia.at/home), which provides results of comprehensive

immunogenomic analyses of next-generation sequencing data

(NGS) for 20 solid cancers from TCGA and other data sources.

The immunophenoscore (IPS) can be used to predict the response

to the immunotherapy agents PD1 and CTLA4 (Supplementary

Table S6).
2.4 Gene-set variation analysis and
functional annotation

To investigate the differences in biological processes between

three subtypes of colon cancer, we performed gene-set variation

analysis (GSVA) using “GSVA” R packages. GSVA, a non-

parametric and unsupervised method, is commonly used to

estimate variation in pathway and biological process activity in

expression data. The gene sets of “c2.cp.kegg.v6.2.symbols” were

downloaded from the MsigDB database for running GSVA analysis.
2.5 Estimation of TME cell infiltration

We used the single-sample gene-set enrichment analysis

(ssGSEA) algorithm to quantify the relative abundance of each

cell infiltration in colon cancer tumor microenvironment (TME).

The gene set for marking each TME infiltration immune cell type

was obtained from the study of Charoentong (15), which stored

various human immune cell subtypes including activated CD8 T

cell, activated dendritic cell, macrophage, nature killer T cell,

regulatory T cell, and so on. The enrichment scores calculated by

ssGSEA analysis were utilized to represent the relative abundance of

each TME infiltration cell in each sample. We used the limma,

GSEABase, ggpubr, and reshape2 packages in R in this step.
2.6 Feature selection of each subtype of
colon cancer compared with normal colon
and drug analysis

To identify the marker genes for each subtype of colon cancer

patients, the empirical Bayesian approach of the limma R package

was applied to determine differentially expressed genes (DEGs)

between cluster A/B/C and normal colon, respectively. The criteria
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for determining DEGs were set at an adjusted p-value of< 0.01. At

the same time, weighted gene co-expression network analysis

(WGCNA) was used to identify the related genes of subtypes of

cancer (RG). Next, the protein–protein interaction (PPI) network

was further used to screen the hub genes of the intersection of DEGs

and RGs using String and Cytoscape software. Maximal Clique

Centrality (MCC) was used to screen hub genes (the most

connected genes). After obtaining the most connected genes, they

were used to perform L1000 to screen drugs for each subtype. The

final drug screening criteria of L1000 were set as score< −0.90.
2.7 Prognostic model building

Firstly, TCGA dataset was divided into a training set and an

internal test set. Among the 66 prognostic genes, we paired these

genes to address the batch effect in the training set. If the expression

of gene A > the expression of gene B, then the feature “A|B” is

marked as 1, otherwise, it is marked as 0, as shown in Eq. (1).

Feature :  }Gene A│Gene B}

=
1,   Expression(A) > Expression(B)

0,   Expression(A) ≤ Expression(B)

(
(1)

In addition, if the expression level of gene A in all the samples is

higher than the expression of gene B, then Gene A|Gene B is

marked as 1 in all the samples. Such features do not contain

classification information, and therefore we delete the gene pairs

whose frequency of the “1” label in the training set is less than 0.2 or

greater than 0.8. Next, univariate Cox regression and LASSO

regression were used to reduce the number of these paired gene

features in the training set. Finally, multivariate Cox regression was

used to construct the multiple key cancer processes related to gene-

pair score (MKPC). The “glmnet,” “survival,” and “survminer”

packages in R were used in the above analysis process.
2.8 Classifier constructing

To make genotyping available to other researchers, we

compared two methods based on the expression of the 66

prognostic genes. (1) We used the center points of the three

subtypes in the training set (TCGA-COAD) (partitioning around

medoid clustering method) to classify the new samples. The label of

each new sample depends on the nearest center point of the sample.

(2) We use the training set (TCGA-COAD) to build a multi-layer

perceptron model (MLP) to label new samples. This MLP model

contains three layers, which have 16, 64, and 64 neurons,

respectively. We first used 10-fold cross-validation (CV) on the

training set to perform a grid search to find the optimal model

parameters for accuracy. The parameters in grid search are:

“activation” is one of “identity,” “logistic,” “tanh,” or “relu”;

“alpha” is one of 0.00001, 0.0001, 0.001, 0.01, and 0.1; “solver” is

one of “lbfgs,” “sgd,” or “adam.” The MLP model with the highest

accuracy in CV is used to predict the test set.
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Accuracy = N(patients predicted correctlty)=N(all patients)

The above methods (1) and (2) were used to make predictions

in the test set. We conducted a survival analysis (log-rank test)

based on the prediction results. The method with a smaller p-value

was used to build a website (https://sujiezhulab.shinyapps.io/coad/)

by using the shiny package in R, which can be used by

other researchers.
2.9 Prognostic model validation

To investigate the prognostic performance of the MKPC score,

we tested it in four colon cancer patient cohorts (three external sets

and one internal set). We then calculated the area under the curve

(AUC) of the receiver operating characteristic (ROC) for overall

survival (OS) time prediction. The models were evealuated using

their 1-, 3-, and 5-year AUC values.
2.10 Tumor mutation burden analysis

The mutation data were downloaded from the GDC Data Portal

(https://portal.gdc.cancer.gov/) and intersected with the samples

with expression data. After that, we obtained 397 patient samples

containing both expression data and mutation data. For these

patients, we used the “maftools” package in R to plot a waterfall

chart and mutation gene cloud chart, obtain differential mutated

genes (DMGs) between different subtypes of colon cancer, and

calculate the tumor mutation burden (TMB) value by finding out

the number of gene mutations per million bases. The Wilcoxon test

was used to compare the TMB values of the MKPC high- and low-

risk groups.
3 Results

3.1 Construction of three molecular
subgroups of colon cancer using
prognostic genes

Cancer is a systemic, complex disease related to abnormalities

in multiple signaling pathways. In this study, we searched PubMed

for studies related to the prognosis of colon cancer and obtained 183

genes from different signaling pathways (Supplementary Table S2).

Next, we identified 66 prognostic genes (p< 0.05; Supplementary

Table S3) using univariate Cox regression in the training set for

further analysis.

Based on these 66 prognostic genes, we attempted to classify

COAD patients into different subtypes. The R package,

ConsensusClusterPlus, was used to classify patients using

unsupervised clustering, resulting in 217 cases in cluster A, 188 cases

in cluster B, and 43 cases in cluster C (Figures 1A, B). Next, prognostic

analysis for the three subtypes revealed a particularly prominent

survival advantage in cluster B (Figure 1B). To examine the three

subtypes, we also used the GEO dataset (GSE39582) to do clustering.
Frontiers in Immunology 04
As shown in Figures 1C, D, we could also get similar results based on

the 66 prognostic genes. Interestingly, we found that the prognosis of

the three subtypes follows the same trend, with cluster B having better

survival than the others (Figures 1B, D). This demonstrated that three

distinct subtypes did exist in colon cancer.

To explore the survival characteristics of colon cancer, we

further examined the characteristics of 66 prognostic genes in

different subtypes and found that cluster B was characterized by

increased expression of prognostic favorable genes and low

expression of adverse prognostic genes. On the contrary, cluster C

was characterized by the opposite results of cluster B (Figure 1E,

yellow box).

Dysfunction of genes in the DNA mismatch repair pathway

reduces the ability of cells to repair DNA replication errors and

thereby leads to microsatellite-instable (MSI) subtypes of colon

cancer (16). The patients with MSI have a higher somatic mutation

burden and immune infiltration in the TME compared to their

microsatellite-stable (MSS) counterparts (17). Immune checkpoint

genes such as CTLA4 and CD274 are more highly expressed in MSI

than in MSS patients (18–20). Apart from high sensitivity to

immunotherapy, MSI status itself is a good prognostic marker for

CRC patients subject to conventional treatment. MSI patients

exhibit less clinical aggressiveness and a longer survival time than

MSS patients. Further research showed that tumors with MSI

subtype were mainly characterized by clusters B and C, while

tumors with the MSS subtype were characterized by cluster A,

and that also indicated cluster B/C patients may be suitable for

receiving immunotherapy (Figure 1F).

The subtypes based on the 66 prognosis genes were significantly

sociated with various clinicopathological parameters; cluster C was

enriched for T3 tumors and high-grade tumors (Figure 2A). Analysis of

the biological processes associated with distinct subtypes revealed

important patterns. Cluster B was associated with cell cycle, DNA

replication, mismatch repair, P53 signaling pathway, and apoptosis.

Post-translational modifications of the p53 signaling pathway play an

important role in cell cycle progression and stress-induced apoptosis

(21). P53-mediated apoptosis may account for the favorable prognosis

of cluster B (Figure 2A, blue box). By contrast, cluster C tumors were

mostly associated with Mapk, Erbb, Wnt, Notch, and Vegf signaling

pathways (Figure 2A), and this signaling pathway may play an

important role in drug resistance (22–24), which may cause a worse

prognosis for cluster C. Additionally, cluster A was intermediate

between clusters C and B, which is consistent with the prognosis.

We estimated the presence of immune cells by deconvolution of

RNA-Seq data (25). To our surprise, cluster C was prominently

related to the immune biological process (Figure 2A, yellow box).

The results from GSVA analysis revealed that cluster C was

remarkedly enriched in stromal and carcinogenic activation

pathways such as ECM receptor interaction and TGF beta

signaling pathway, and it was also remarkedly rich in immune

cell function activation, such as CD8+ T cell, antigen processing and

presentation, inflammation-promoting, and IFN response. Previous

studies demonstrated that tumors with immune-excluded

phenotypes also showed the presence of abundant immune cells,

while these immune cells were retained in the stroma surrounding

tumor cell nests rather than penetrating their parenchyma (26).
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Genomic instability (GI) and somatic copy-number alterations

(SCNAs) are important in increasing the adaptive potential of the

tumor and have been linked with a poor prognosis (27). The SCNA

score is a representation of the level of SCNAs occurring in a tumor.

For each tumor, the SCNA score was calculated at three different

levels: focal, arm, and chromosome level, and the overall score was
Frontiers in Immunology 05
calculated from the sum of all three levels (15). We found that

cluster A tumors were remarkedly enriched with high SCNA and

high GI (Figure 2A, red box; Supplementary Table S4).

We then used the CIBERSORT method, a deconvolution

algorithm using support vector regression for determining the

immune cell type in tumors, to compare the component
A B

D E

F

C

FIGURE 1

Three prognostic molecular subtypes of colon cancer. (A) Clustering heat map based on 66 prognosis-related genes in TCGA-COAD cohort. (B)
Survival curve of TCGA-COAD patients in different clusters. Survival differences were assessed with a log-rank test. (C) Clustering heat map based on
66 prognosis-related genes in the GSE39582 cohort. (D) Survival curve of GSE39582 patients in different clusters. Survival differences were assessed
with a log-rank test. (E) Heat map of 66 prognosis-related genes in TCGA-COAD cohort. (F) The proportion of microsatellite instable subtypes in A–
C subtypes of TCGA-COAD cohort.
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differences of immune cells among the three subtypes of colon

cancer. We found that there are significant differences in the

composition of TME cell types between the three subtypes of

colon cancer (Figure 2B), which suggested that the three subtypes

have distinct TME infiltrating-cell types of tumors. Based on the

above analyses, we were surprised to find that three subtypes of

colon cancer had significantly distinct TME cell infiltration

characterization. Cluster A was classified as an immune-desert
Frontiers in Immunology 06
phenotype, characterized by the suppression of immunity. Cluster

B was classified as an immune-inflamed phenotype, characterized

by adaptive immune cell infiltration and immune activation. Cluster

C was classified as an immune-excluded phenotype, characterized

by innate immune cell infiltration and stromal activation

(Figure 2B). Interestingly, we found that an immune-excluded

state prejudices the survival of colon cancer patients, while

immune-inflamed state is a particularly prominent survival
A

B

D

E

F

C

FIGURE 2

TME cell infiltration characteristics and immunotherapy prediction in distinct three subtypes of colon cancer. (A) Heat map of molecular
characteristics in three clusters in TCGA-COAD cohort. The four regions (rows) of the heat map respectively represent key tumor processes, tumor-
related pathways, immune-related processes, chromosome stability, and somatic cell copy number. (B) Analysis of immune cell content in TCGA
COAD cohort. The one-way ANOVA test was used for comparison between different groups. ***p < 0.001, ns p > 0.05. (C) Heat map of hot or cold
tumor marker genes in TCGA-COAD cohort. (D–F) The relationship between immunotherapy-related scores and patient subtypes in TCGA-COAD
cohort. The Wilcoxon test was used for comparison between different subtypes.
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advantage in cluster B. To verify the result in TCGA cohort, we next

analyzed the TME cell infiltration in GSE39582 (Supplementary

Figures S2A, B). Again, consistent with the result in TCGA cohort,

the immune-inflamed phenotype (cluster B) is preferred for

survival (Figure 1D).

The above results showed again that three subtypes of colon cancer

have distinct TME landscapes. Predicting the response to

immunotherapy based on the characterization of TME cell

infiltration is a key procedure for increasing the success of existing

immunotherapy and exploiting novel immunotherapeutic strategies

(28, 29). Therefore, we further predicted the immunotherapy of three

subtypes of colon cancer. We found that cluster B had a lower TIDE

score and more response to PD1/CTLA4, which indicated that cluster

B was more likely to benefit from the immunotherapy. These results

indicated that cluster B is suitable for immunotherapy (Figures 2C–F;

Supplementary Tables S5, S6).
3.2 Characteristics of three subtypes of
colon cancer in tumor somatic mutation

Clinical trials as well as preclinical studies have revealed that

patients with high somatic TMB have an enhanced response, long-

term survival, and durable clinical benefit when treated with

immune checkpoint blockade therapy. We then analyzed the

distribution differences of somatic mutation between three

subtypes of colon cancer in TCGA-COAD cohort using the

maftools package. The TMB quantification analyses confirmed

that cluster B was markedly correlated with higher TMB

(Figure 3A), which confirmed again that cluster B may be more

easily responsive to immune checkpoint blockade therapy.

As shown in Supplementary Figures S3A, B, cluster A presented

a lower tumor mutation burden than clusters B and C, with the

average rate of the top 15 mutated genes being 28.3% versus 34.6%

and 32.9%, respectively. We also found that cluster A was

characterized by a high TP53 mutation, cluster B by TTN

mutation, and cluster C by APC mutation (Supplementary

Figures S3D–F). To further investigate the mutation genes of each

subtype of colon cancer, we determined three subtype-related

mutations using the maftools package. Given that gene mutation

is often related to survival, we analyzed the connection between

these mutation genes and survival using the TIMER database

(Supplementary Tables S7-S10). Furthermore, seven genes were

found to be related to survival (ATXN2L, IGSF3, MYO5B,

PTCHD2, SLFN5, ENPEP, and MAP3K2, p< 0.05, Figures 3B–H;

Supplementary Table S7), and all of these seven genes had a high

mutation rate in cluster C. These findings indicated that these

adverse prognostic gene mutations may also contribute to cluster

C’s worse prognosis. Considering that cluster C was characterized

by immune activation, we further explore the connection between

survival-related gene mutation and CD8+ T-cell infiltration. We

found that MAP3K2, ATXN2L, BAZ1B, and PARP14 mutations

resulted in high CD8+ T-cell infiltration in tumors (Supplementary

Figures S3G–J). Our observation above supported our hypothesis

that greater TME cell infiltration may result in the worst prognosis

for cluster C patients.
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Mutational patterns in DNA are derived from mutational

processes that result in distinct biological changes occurring during

tumorigenesis. Therefore, we examined the pathways in which the

mutation gene was enriched in distinct subtypes. We chose a mutation

gene that ranks in the top 200 in each of the subtypes, and then ran a

KEGG enrichment analysis on these genes. To our surprise, the

mutation genes in cluster C were enriched in signaling pathways

related to lipid metabolism compared with clusters A and B, such as

ABC transporters and cholesterol metabolism (Figures 3I–K). Based on

studies that show that limiting fatty acid availability can control cancer

cell proliferation (30), cluster C patients may have lipid disorders,

which may result in a poor survival rate.
3.3 Classifier for predicting patient
subtypes and drug screening

The above results showed that there are three subtypes of colon

cancer patients based on the 66 prognostic genes, and cluster B has a

prominent survival advantage over cluster A/C, while cluster C has

more TME cell infiltration, indicating that these three subtypes have

different transcriptome features. Therefore, we hypothesized that

patients of different subtypes should be treated differently. Pursuing

this, based on the expression of 66 prognostic genes, we compared

two different methods, as described in the Methods section. Method

(1) was based on unsupervised learning, and method (2), which is

an MLP classifier, was based on supervised learning (Figure 4A). In

cross-validation, the MLP model achieves the highest accuracy

(0.919; Supplementary Table S11) in the training set when

“identity” = “logistic,” “alpha” = 0.01, and “solver” = “lbfgs.” As a

result, we used these parameters to set up the MLP model using the

whole training set. In the survival curves of the test set (GSE39582),

the labels in method (1) cannot distinguish survival states (p =

0.071, log-rank test, Figure 4B), but the MLP model can distinguish

the survival states significantly (p = 0.016, log-rank test, Figure 4C),

which is consistent with the result in the training set (Figure 1D).

Therefore, this MLP model is used to establish a web app (https://

sujiezhulab.shinyapps.io/coad/) that can be used easily by

other researchers.

Next, we compared each subtype of colon cancer to normal

colon samples and obtained DEGs. We used the WGCNA and PPI

to further select hub genes related to each subtype based on these

DEGs (Supplementary Figures S4-S6; Supplementary Table S12-

S14), and these hub genes were used as L1000 input data (https://

clue.io/), a tool used to screen drugs that can reverse gene

expression from a disease state to a healthy state. In addition,

these drugs were regarded as effective drugs for the special disease.

In our research, drugs with CMap connectivity (tau) score of<−0.9

were selected and included in our recommendation list (Figure 4D).

Herein, we used up/down gene signatures to obtain a drug list as

adjuvant therapy. Furthermore, we observed that there are some

drugs with anti-inflammation effects for cluster B/C, which is

consistent with the fact that cluster B/C contain more

macrophages (Supplementary Tables S15-S17).

To further explore the signaling pathways of the DEGs in

cluster A/B/C, we performed KEGG enrichment analysis
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(Figure 4E) and found that cluster A/B/C was enriched in some

similar signaling pathways, such as the IL-17 signaling pathway and

the PPAR signaling pathway. There are also some cluster-specific

enriched signaling pathways related to immune and lipid

metabolism. Cluster A was associated with the Wnt signaling

pathway; cluster B was enriched in tyrosine metabolism; and

cluster C was characterized by inflammation signaling pathways

such as cell adhesion and ECM–receptor interaction, which

supports the results that the drugs for cluster C were anti-

inflammatory. Notably, cluster C was also enriched in the Wnt

signaling pathway, which indicated that cluster C has a double

poorer prognosis feature (Figure 4E). Recalling our observations of
Frontiers in Immunology 08
drugs for the distinct cluster, drugs related to lipid metabolism all

existed in three subtypes, which is consistent with our results that

the PPAR signaling pathway was enriched in all subtypes.
3.4 Construction of MKPC score for
prognostic classification of colon
cancer patients

Given our observation of distinct prognosis of three subtypes

based on 66 prognostic genes, it was notable that the expression of

66 prognostic genes differed significantly among the three subtypes.
A B D

E F G

I

H

J K

C

FIGURE 3

Characteristics of three subtypes of colon cancer in tumor somatic mutation. (A) TMB analysis (Wilcoxon test) of patient subtypes in TCGA-COAD
cohort. (B–H) Survival analysis of key gene mutations (log-rank test). (I–K) The signaling pathway of the top 200 mutation genes enriched in three
distinct subtypes.
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Therefore, we explored the ability to distinguish prognosis based on

66 prognostic genes in Pan-cancer. To our surprise, when the

cancers were divided into three subtypes, there were 15 kinds of

cancer showing distinct prognoses, which indicated that these genes

were important for cancer patients’ survival (p< 0.05, Wilcoxon test,

Supplementary Figures S7A–O).

To establish a robust prognostic model and avoid the batch

effect, the 66 prognostic genes were used for gene pairing, yielding a

total of 2,145 (66 * 65/2) gene pairs, 357 of which have a frequency

of “gene A > gene B expression” between 20% and 80% in the

training set and are considered to have sufficient information to

predict survival state. We then obtained 22 gene pairs using

univariate Cox regression (Supplementary Table S18). In
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multivariate penalized LASSO regression, 13 gene pairs were

selected for survival prediction in the training set. Finally, using

multivariate Cox regression, eight gene pairs were identified as

being associated with survival difference (Supplementary Table

S16), and these formed the MKPC score; these eight gene pairs

included six risk factors (HR >1) and two protective factors (HR< 1)

(Supplementary Figure S8; Supplementary Table S19). Therefore,

the MKPC score is calculated as follows:

Sum = 1.028064 * MPP2|CPT1C − 1.09876 * PPARGC1A|

CD36 + 0.573201 * NOG|CD1B + 0.661607 * GAMT|CCL22 −

0.57286 * GSR|MAGEF1 + 0.593767 * NGF|CD1B + 0.927301 *

CRIP2|ACTR8

MKPCscore = esum
A B

D

E

C

FIGURE 4

Classification-drug-prediction system. (A) Flow chart of the COAD subtype prediction. (B) For the GSE39582 cohort, if the distance from the centers
of the three subtypes in TCGA-COAD was used as a classification standard, then the result of the survival analysis is not significant (log-rank test). (C)
For the GSE39582 cohort, the MLP model was used to do classification, and the result of the survival analysis is significant (log-rank test). (D) Flow
chart of drug screening for different molecular subtypes. (E) GO analysis of the intersection genes in the WGCNA and DEGs (patients vs. controls) of
TCGA-COAD clusters A–C, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2023.1142609
To investigate the prognostic performance of the MKPC score,

we tested it in four colon cancer patient cohorts (three external test

sets and one internal test set). We used the median value of the

MKPC score in the training set (1.0544) as the cutoff to separate the

high- and low-risk groups in these test cohorts. Notably, the MKPC

score showed a wide prognostic value in distinguishing the survival

status of colon cancer patients across all cohorts (Figures 5A–H),

despite differences in patient characteristics and transcriptomic

platforms. Consistently, the high-risk group had a worse

prognosis in all cohorts (Figures 5A–D). These results suggest

that the paired MKPC score is a robust prognostic factor in colon

cancer. Interestingly, we tested the model in Pan-cancer and

observed that the MKPC score has a good performance in

distinguishing the survival status of the READ (Supplementary

Figures S8D, E), which indicated that the MKPC score was related

to bowel cancer.

To make the MKPC score more easily usable by other researchers,

we built an easy-to-use nomogram based on the MKPC score

(Supplementary Figure S9). We used the GSE39582 dataset for

nomogram construction and validation, which contains various types

of clinical information. The GSE39582 cohort was divided into two

parts: training set (n = 258) and test set (n = 137). The training set was

used for independent prognostic analysis. We further used the training

set to establish the nomogram among the independent risk factors and

used AUC-ROCs to verify its performance in the test set. To make this

nomogram available to other researchers, including those without

programming skills, it was deployed on the server using the “shiny”

package in R (https://sujiezhulab.shinyapps.io/coad/).
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3.5 The clinical and transcriptome
characteristics of high- and
low-risk patients

An alluvial diagram was used to visualize the connection

between the MKPC score and the three subtypes of colon cancer

based on the 66 prognostic genes. We found that most cluster C

patients are high-risk, whereas most cluster B patients are low-risk

(Figure 6A). In clinical practice, patient clinical features, such as

age, gender, TNM status, and stage serve as a guide for treating

colon cancer. So we looked at how these clinical characteristics

differed between the high- and low-risk groups. The higher the

grade of the patient, the higher the risk and the lower the chance of

survival (Figure 6B). Given our results that three subtypes have

distinct TME cell infiltration, we observed that the low-risk group

had more immune-activated cells and the high-risk group had more

immunosuppressive cells (Figure 6C). To investigate the potential

biological behavior of different risk groups, we performed a GSEA

analysis. The high-risk group was markedly enriched in stromal and

carcinogenic activation pathways such as ECM receptor interaction,

cell adhesion, and MAPK signaling pathways, which is consistent

with cluster C, whereas the low-risk group presented enrichment in

immune activation pathways such as Natural killer cell-mediated

cytotoxicity, JAK-STAT signaling pathway, and Toll-like receptor

signaling pathway (Supplementary Figure S10).

To obtain risk-related genes, we used the limma packages to

obtain DEGs between high- and low-risk groups, and these genes

were further selected for risk-related genes (RRGs) using Lasso
A B D

E F G H

C

FIGURE 5

Construction of the MKPC score. Survival curves (log-rank test) of MKPC score in (A) TCGA training set, (B) TCGA test set, (C) GSE39582, (D)
GSE38832, (E–H) ROC curves of MKPC score in (E) TCGA training set, (F) TCGA test set, (G) GSE39582, and (H) GSE38832.
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regression and random forest (Figures 6D–F; Supplementary Table

S20). In addition, the intersected genes between LASSO regression

and random forest were regarded as final risk-related genes, yielding

11 genes (Supplementary Table S20).
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3.6 The experiment of risk-related genes

To explore potential colon cancer risk-related genes, we

compared the expression of 11 RRGs in normal and tumor
A B

D

EC

F

FIGURE 6

Characteristics of low- or high-risk colon cancer patients. (A) The relationship among cluster label, MKPC score, and survival state in TCGA-COAD
cohort. (B) The difference of clinical features in TCGA-COAD cohort in the MKPC risk group by Chi-square test. *p < 0.05; **p < 0.01; ***p < 0.001.
(C) ssGSEA of immune cell content between different MKPC risk groups in TCGA-COAD cohort (Wilcoxon test). (D) Prognosis-related key target
analysis process. (E) Feature screening based on LASSO regression. (F) Feature screening based on Random Forest regression. The blue point
corresponds to the smallest RMSE value.
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tissues (Supplementary Figures S11A–K) and found that PANX2

and GABRD are highly expressed in tumors, while PPARGC1A is

less expressed in tumors. This difference was consistent with the

difference between the low- and high-risk groups. To verify whether

these three genes were related to the progression of colon cancer, we

used qPCR to examine the expression of those genes in one normal

colon cell line and four colon cancer cell lines (Figures 7A–C).

Among them, PPARGC1A was expressed at a lower level in colon

cancer, which is consistent with our previous result that

PPARGC1A was expressed at a lower level in a high-risk group,

whereas GABRD showed the opposite trend of expression to

PPARGC1A in these cell lines, and PANX2 exhibited large

expression differences between cell lines. Considering the

PPARGC1A and GARBD were consistent in the “tumor vs.

normal” and “high-risk and low-risk group,” we further explored

the expression of these two genes in colon cancer patients. There

was a lower expression of PPARGC1A and a high expression of

GARBD in colon cancer patients (Figures 7D–G). Previous study

showed that PGC1-a (PPARGC1A) suppressed melanoma

metastasis, and that high PGC1a expression is associated with

worse prognosis in metastatic melanomas (31, 32), and that high
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GARBD expression is associated with poor survival (33). These

results indicated that PPARGC1A and GARBD could be potential

targets for colon cancer.
4 Discussion

An analysis of the molecular basis of inter-patient heterogeneity

is a critical first step in understanding why some patients benefit

from specific treatments while others fail to benefit. The molecular

subtypes of colon cancer can help guide us with individualized

treatment. In this study, our results suggest that three distinct three

subtypes are based on the expression of 66 prognostic genes from

multiple signaling pathways characterized by diverse prognoses,

enabling validation in independent cohorts. Integrating RNA

subtype classification, pathway information, clinical signatures,

immune infiltrate analyses, and TMB status leads us to find that

the model of mRNA-based expression subtypes may be associated

with a unique response to therapies. Interestingly, cluster B/C

patients were characterized by higher immune infiltration and

MSI status, especially cluster B with a lower TIDE score, which is
A B

D E F G

C

FIGURE 7

The expression of RRGs in colon cancer. (A–C) The expression of PPARGC1A, GABRD, and PANX2 in normal colon cell lines and differential colon
cancer cell lines. (D–G) The expression of PPARGC1A and GABRD in normal colon tissue and tumor colon tissue of patients. t-test was used to
compare the expression of genes between normal and tumor. *p < 0.05.
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the candidate for immunotherapy, while cluster A patients were

characterized by the suppression of immunity and higher MSS

status, indicating cluster A is not suitable for immunotherapy.

We also observed that the three subtypes of colon cancer had

distinct TMB statuses and transcriptome expressions, implying that

each subtype of patient should be treated in a unique way.

Therefore, we used the L1000 platform to predict the drug for

these patients. To better assist clinicians with medication, we

developed a classifier that can identify which subtypes of colon

cancer a patient has. As a result, patients can be treated based on the

expression of their unique genes.

Furthermore, using the novel gene pairing approach, we

established a new MKPC score. To the best of our knowledge,

this is the first COAD prognostic model that considers multiple

signaling pathways at the same time. Using three independent

COAD cohorts, we have demonstrated that our MKPC score

leads to robust and accurate performance, and that the MKCP

score is particularly effective in READ. Our web-tool

implementation of the MKPC score and nomogram promotes an

easy use of the risk score for COAD.

In short, we summarized the differences between the distinct

three subtypes of colon cancer from a comprehensive and multi-

omics perspective. At the same time, we developed a classification-

drug-prognosis-prediction system that can be used to help

clinicians in identifying the best drug for a colon cancer patient.

The web tool for predicting patient survival also had a great

performance in assisting clinicians. However, the current work

has some limitations and areas that could be improved in the

future. Cancer, for example, is a molecularly heterogeneous disease

whose development has been linked to multiple signaling pathways

rather than single pathway genes. Our findings provided novel ideas

for identifying the subtypes of colon cancer, which can also be used

to distinguish subtypes of other cancers; however, the role of these

genes in Pan-cancer needs to be further explored to find a new

cancer target. Additionally, the drug lists for cluster A/B/C obtained

by L1000 need to be verified with more experiments, although the

drugs for cluster A/B/C were consistent with the enriched signaling

pathway that the gene features of these three clusters share to

some degree.
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SUPPLEMENTARY FIGURE 1

Flow chart of this study.

SUPPLEMENTARY FIGURE 2

The characteristics of three subtypes of colon cancer in GSE39582. (A) Heat
map of 66 prognostic-related genes in GSE39582. (B) Immune cell infiltration

among three subtypes of colon cancer in GSE39582. One-way ANOVA was

used to analysis the difference of immune cell infiltration among three cluster.
“*” means p<0.05; “**” means p<0.01; “***” means p<0.001.

SUPPLEMENTARY FIGURE 3

Mutation analysis of different subtypes in TCGA-COAD cohort. (A) Waterfall
chart of mutations in Cluster A. (B) Word Cloud Analysis of mutations in

Cluster A. The character size reflects the number of mutations. (C) Waterfall
chart of mutations in Cluster B. (D) Word Cloud Analysis of mutations in

Cluster B. (E) Waterfall chart of mutations in Cluster C. (F) Word Cloud

Analysis of mutations in Cluster C. (G–J) The relationship between CD8+ T
cell content and gene mutation (Wilcoxon test).

SUPPLEMENTARY FIGURE 4

The gene signature of cluster A. (A) The intersection of DEGs (patients vs
controls) and WGCNA genes in TCGA-COAD Cluster A patients. (B) PPI

network of intersection genes.
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SUPPLEMENTARY FIGURE 5

The gene signature of cluster B. (A) The intersection of DEGs (patients vs
controls) and WGCNA genes in TCGA-COAD Cluster B patients. (B) PPI

network of intersection genes.

SUPPLEMENTARY FIGURE 6

The gene signature of cluster C. (A) The intersection of DEGs (patients vs
controls) and WGCNA genes in TCGA-COAD Cluster C patients. (B) PPI

network of intersection genes.

SUPPLEMENTARY FIGURE 7

Prognostic molecular subtypes of Pan cancer landscape based on the
expression of 66 genes. In pan-cancer, the survival curves of 15 cancers

whose survival status can be distinguished by 66 prognostic-related genes
significantly. Log Rank test is used in this process. ACC, Adrenocortical

Carcinoma; BRCA, Breast Invasive Carcinoma; CESC, Cervical Squamous
Cell carcinoma and Endocervical Adenocarcinoma; KIRC, Kidney Renal

Clear Cell Carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver

Hepatocellular Carcinoma; LUSC, Lung Squamous Cell Carcinoma; MESO,
Mesothelioma; OV, Ovarian Serous Cystadenocarcinoma; READ, Rectum

Adenocarcinoma; SARC, Sarcomav; SKCM, Skin Cutaneous Melanoma;
THYM, Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UVM,

Uveal Melanoma.

SUPPLEMENTARY FIGURE 8

Construction MKPC score. (A) The partial likelihood deviance in cross-
validation (CV) as a function of the penalty coefficient lambda. The dotted

line shows the lambda value of 0.03 at the minimum partial likelihood
deviance level, suggesting 13 genes as optimal predictive features. Standard

errors are calculated over 1000 CV rounds. (B) The coefficients of the 13
genes as a function of the penalty coefficient (lambda). (C) The hazard ratios

of the MKPC signature genes based on multivariate Cox regression in the

training set. The asterisks indicate the statistical significance: *p<0.05,
**p<0.01, ***p<0.001 (Wald’s test). (D) Survival curves (Log Rank test) of

MKPC score in READ. (E) ROC curves (Log Rank test) of MKPC score in READ.

SUPPLEMENTARY FIGURE 9

(A)The idea of web. (B)The nomogram based on MKPC score.

SUPPLEMENTARY FIGURE 10

GSEA analysis for TCGA-COAD cohort. (A) Enriched KEGG pathways in high

risk group. (B) Enriched KEGG pathways in low risk group.

SUPPLEMENTARY FIGURE 11

The expression of RRGs in normal colon tissue and colon cancer tissue. (A–K)
The expression of CCDC151, GAMT, LRFN1, MPP2, NGF, NOG, NXPE1, PANX2,

PCOLCE2, PPARGC1A and GABRD in normal colon tissue and colon
cancer tissue.
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