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CrossDome: an interactive
R package to predict
cross-reactivity risk using
immunopeptidomics databases

Andre F. Fonseca and Dinler A. Antunes*

Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and
Biochemistry, University of Houston, Houston, TX, United States
T-cell-based immunotherapies hold tremendous potential in the fight against

cancer, thanks to their capacity to specifically targeting diseased cells.

Nevertheless, this potential has been tempered with safety concerns regarding

the possible recognition of unknown off-targets displayed by healthy cells. In a

notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also

recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells,

inducing lethal damage in melanoma patients. Such off-target toxicity has been

related to T-cell cross-reactivity induced by molecular mimicry. In this context,

there is growing interest in developing the means to avoid off-target toxicity, and

to provide safer immunotherapy products. To this end, we present CrossDome, a

multi-omics suite to predict the off-target toxicity risk of T-cell-based

immunotherapies. Our suite provides two alternative protocols, i) a peptide-

centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we

evaluate our approach using 16 well-known cross-reactivity cases involving

cancer-associated antigens. With CrossDome, the TITIN-derived peptide was

predicted at the 99+ percentile rank among 36,000 scored candidates (p-value <

0.001). In addition, off-targets for all the 16 known cases were predicted within

the top ranges of relatedness score on a Monte Carlo simulation with over 5

million putative peptide pairs, allowing us to determine a cut-off p-value for off-

target toxicity risk. We also implemented a penalty system based on TCR

hotspots, named contact map (CM). This TCR-centered approach improved

upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g.,

from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended

dataset of experimentally-determined cross-reactive peptides to evaluate

alternative CrossDome protocols. The level of enrichment of validated cases

among top 50 best-scored peptides was 63% for the peptide-centered protocol,

and up to 82% for the TCR-centered protocol. Finally, we performed functional

characterization of top ranking candidates, by integrating expression data, HLA

binding, and immunogenicity predictions. CrossDome was designed as an R

package for easy integration with antigen discovery pipelines, and an interactive

web interface for users without coding experience. CrossDome is under active

development, and it is available at https://github.com/AntunesLab/crossdome.
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T-cell cross-reactivity prediction, off-target toxicity, antigen prioritization, T-cell
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1 Introduction

T-cell-based therapies are providing promising approaches for

treating several types of cancer. These therapies leverage the cellular

immunity mechanisms allowing T-cell lymphocytes to surveil,

recognize, and eliminate cells displaying at their surfaces

“foreign” peptides bound to Human Leukocyte Antigen (HLA)

receptors (1, 2). This class of cancer immunotherapy treatments

include i) the use of peptide-based vaccines to trigger the expansion

of tumor-specific T-cells (3–6), and ii) the use of adoptive T-cell

therapy, which involves collecting, expanding, and transferring

tumor-specific T-cells to treat cancer patients (7, 8). In this

context, the therapeutic T-cells can be unaltered tumor

infiltrating lymphocytes, or genetically modified T-cells

engineered to have higher affinity against specific tumor-

associated antigens (4, 9, 10). Recently, more effective control of

cancer progression was achieved with combined use of adoptive T-

cell therapy and immune checkpoint inhibitors (11, 12). There is

also growing interest in the development of chimeric antigen

receptor T-cells (CAR-T), and tumor-specific antibodies that

mimic T-cell receptor (TCR) recognition (13, 14).

However, several limitations are still hindering the broader use

of T-cell therapies for cancer treatment (15). For instance,

engineering a T-cell receptor is a challenging task that involves

potentially conflicting goals, such as enhancing the T-cell response

to the tumor-derived peptide, while avoiding side effects caused by

T-cell cross-reactivity (16–18). T-cell cross-reactivity is the ability of

a single T-cell clonotype to recognize and respond to multiple

heterologous peptide-HLA (pHLA) complexes (19–21). From an

evolutionary perspective, T-cell cross-reactivity is necessary to

maximize the range of unrelated antigens/pathogens that can be

recognized by a limited pool of T-cells (i.e., to mediate heterologous

immunity between pathogens) (22–24). On the other hand, in T-

cell-based therapy, cross-reactivity events have been linked to off-

target toxicity risk, i.e., recognition of self-derived peptide-targets

leading to autoimmune reactions against healthy tissues (21, 25).

To date, multiple clinical trials have been withdrawn due to T-cell

cross-reactivity issues (26, 27). In the most notable example,

MAGEA3-specific engineered T-cells were associated with severe off-

target toxicity in melanoma patients. It was observed that these

therapeutic T-cells were cross-reactive with a TITIN-derived peptide,

causing lethal cardiotoxicity in at least five patients (26). Other cross-

reactivity events have been reported in studies involving different

tumor-associated antigens, such as MART-1, NY-ESO-1, and AFP

(28–30). Additionally, off-target toxicity has also been reported with the

use of CAR-T therapy (31–33). It is also important to note that while

TCR engineering can increase the risk of dangerous T-cell cross-

reactivities (34), this risk exists with any T-cell-based therapy, including

the use of unaltered TILs, the stimulation of the patient’s own T-cells

through peptide-based vaccines (35–37), and the use of TCR-mimic

antibodies (13, 14). Therefore, the capacity to determine or predict the

potential risk for off-target toxicities during the design and

development of T-cell-based therapies is a major bottleneck for the

broader use of these powerful immunotherapy approaches.

Unfortunately, there are no standard experimental methods

that can be routinely applied to determine the risk of T-cell cross-
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reactivity in immunotherapies. Alanine scans, or X-scans, of the

cognate peptide-target are usually performed to provide an initial

assessment of T-cell cross-reactivity potential (38, 39). Such

experiments do not directly provide information on potential off-

targets, but can be used to guide proteomic searches for similar

peptide motifs (40). The more recent development of yeast/phage-

display and other high-throughput methods is starting to enable the

screening of larger libraries of putative peptide-targets, but broader

use of these methods is still limited by the cost and time required for

library construction (41). In addition, these T-cell-based screenings

are not as useful in the case of peptide-based vaccines, since the T-

cell clones responding to the immunization will be different for each

immunized individual (e.g., private specificity) (21, 42).

On the computational side, early work has been done in the

context of heterologous immunity between viruses, mostly focused

on the identification of peptide sequence similarities underlying

cross-reactivity events (23, 43–45). This led to the development of a

few sequence-based methods for cross-reactivity prediction, which

can be further divided into methods based on i) peptide sequence

identity (e.g., alignment based methods such as Expitope and

iCrossR) and ii) peptide biochemical similarity (e.g., “alignment-

free” methods such as dGraph and sCRAP). Expitope and iCrossR

rely on the combined use of i) a Levenshtein distance to recover

proteome-derived cross-reactive candidates with up to 4 amino acid

mismatches to the query (i.e., high sequence identity), and ii) the

subsequent ranking/filtering of these candidates based on a “epitope

presentation score” (e.g., combined score from prediction

algorithms for multiple steps of the class I HLA pathway,

including proteasomal cleavage, TAP transport, and HLA

binding). The output is also annotated with mRNA expression

data to indicate tissue distribution and abundance (46).

An alternative approach for ranking peptides based on

biochemical similarity was implemented in dGraph (47), which

uses physicochemical properties to connect similar peptides into a

network graph. More recently, a hybrid approach named sCRAP

(48) was proposed. It uses a biochemical similarity matrix for

computing a similarity score against the entire human proteome,

and filters the output based on maximum tissue expression and

HLA-binding affinity (e.g., predictions from NetMHC4 (49),

NetMHCpan4.1 (50), and HLAthena (51)). sCRAP also enables

customizing the score to increase the contribution of specific

peptide positions, which could be used to bias the search based

on potential hotspots for TCR recognition. In fact, attention to TCR

hotspots on the pHLA surface is supported by both computational

and experimental research showing that T-cell cross-reactivity can

involve peptides with very diverse sequences, as long as they share a

few key structural/biochemical similarities that are driving T-cell

recognition (21, 52–55). These observations have supported the

development of structure-based methods for T-cell cross-reactivity

prediction (56–60), which have been discussed elsewhere (21, 25).

Although each approach provides interesting contributions to

T-cell cross-reactivity analysis, all these methods have notable

limitations. Expitope, sCRAP and iCrossR rely on sequence-based

HLA-binding prediction algorithms to define the “universe” of

possible off-targets out of the entire proteome. In doing so, they

add a layer of prediction and introduce potential biases to the cross-
frontiersin.org
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reactivity screening. For instance, it is well-known that the accuracy

of HLA-binding algorithms varies widely across HLA alleles, being

less reliable for less prevalent HLAs (61, 62). Furthermore, cases of

T-cell cross-reactivity involving peptides with low sequence

identity, which have also been reported (21, 52, 63), cannot be

predicted by Expitope and iCrossR due to the limited number of

allowed mismatches.

Tools such as dGraph do not limit the number of mismatches

and produce a relationship network for a set of peptides based on

overall biochemical similarity. However, dGraph was developed for

antibody cross-reactivity prediction (e.g., with linear epitopes

involved in allergies), and was not directly evaluated for T-cell

cross-reactivity (47). In addition, it does not include a clear

statistical threshold to determine the level of significant similarity,

hence hampering the interpretability of predictions. The more

recent sCRAP is also not limited to a given number of

mismatches, and introduces the use of position-specific weights to

try and account for the TCR-specific hotspots. However, these

weights were pre-defined for the MAGEA3-specific T-cell, and

there was no rationale for customizing those weights for other

targets of interest (48). Finally, structure-based methods are still

limited by the number of available structures and the computational

cost of large-scale modeling, being generally unsuitable for

proteome-wide screenings (21, 25).

In this context, we developed CrossDome, a tool that performs

peptide screening on multi-omics data from healthy tissues and

predicts the risk for off-target toxicity with unrelated self-derived

peptides. By relying on experimentally determined data from real

pHLA complexes (i.e., immunopeptidomics data from mass-

spectrometry studies), we overcome the potential biases of

sequence-based HLA-binding prediction algorithms. Our

approach leverages a large dataset of amino acid’s biochemical

properties, allowing us to predict peptides that are biochemically

similar to desirable targets, without enforcing any sequence identity

cut-off. In addition, we demonstrate how structural data on

TCRpHLA interactions can be used to tailor CrossDome

predictions in order to account for TCR-specific hotspots. Finally,

we compute a p-value for each putative cross-reactive target,

therefore providing statistical support to estimate the off-target

toxicity risk associated with each prediction. We further improve

the significance of our results by integrating functional data to

evaluate expression level, HLA-binding, and immunogenicity of

putative off-targets, which can help prioritize candidates for

experimental validation. CrossDome is released as an R package

with support for technical and non-technical users, enabling both

lower level control and a user-friendly application for users without

coding experience.
2 Material and methods

2.1 Collecting reference experimental
datasets

Immunopeptidomics data on naturally occurring self-derived

peptides was retrieved from several sources, including HLA Ligand
Frontiers in Immunology 03
Atlas (64), HLAthena (51), SysteMHC (65), IEDB (66), and

two other published datasets (67, 68). The data was filtered

considering only 9-mer peptides presented by Class I HLA alleles

(Supplementary Figure S1A). Next, we combined data sources into

a non-redundant local database, organized by HLA allele

restriction. In turn, each allele produces a single background

database for the CrossDome screening algorithm. In order to

evaluate the false-positive ratio, we also collected published data

on 16 peptides previously identified as T-cell cross-reactivity off-

targets for one of four well-known tumor-associated antigens:

MAGEA3 (27, 41, 69, 70), NY-ESO-1 (69), TMEM161A (71) and

AFP (72) (Supplementary Table 1). Finally, we also obtained a

dataset of 60 synthetic peptides experimentally-determined to be

recognized by the A3A TCR, being therefore cross-reactive with the

cognate peptide from MAGEA3 (Supplementary Figure S1B). This

data was produced by a yeast-display screening experiment

previously reported by Gee et al. (2018) (73), and includes

peptide sequences with up to 6 mismatches in relation to the

cognate peptide (i.e., only 33% sequence identity). We also

complemented this dataset with known off-targets of MAGEA3

(e.g., TITIN and MAGEA6). The full set of MAGEA3 off-targets is

available in the CrossDome repository on Github.
2.2 Implementing a new similarity model
based on biochemical profiles

The biochemical properties of amino acids have been used in

previous work to estimate the similarity between peptides or protein

binding motifs (44, 45, 74, 75). Here, we used a library with over 500

biochemical properties from AAIndex (76), a gold standard

database of amino acids properties. This database has been used

as a source of amino acid features for machine learning (77), and

was used here to implement a new model to measure peptide

similarity. First, the AAIndex data were summarized by using

principal component analysis (PCA). The biochemical properties

were then summarized into 12 principal components, holding 95%

variance in the dataset (Supplementary Figure S2). The resulting

eigenvectors were converted into a matrix of biochemical

properties, spanning the 20 natural amino acids.

Each peptide was represented using this matrix, hereafter

referred to as a biochemical profile (BP). In turn, the biochemical

profiles of two different peptides can be used to compute a distance

between these peptides, named as relatedness score (RdS). In order

to compute this relatedness score, we implemented a weighted

Euclidean distance. The weighted vector can be derived from TCR

hotspots in the peptide sequence, i.e., position-specific weights

related to known bonds/interactions between TCR and peptide

molecules. This implementation penalizes biochemical profiles that

deviate in hotspot positions. The relatedness score was normalized

by peptide length, where low values represent highly similar peptide

pairs (i.e., stronger candidates for cross-reactivity). Note that in its

current implementation, our algorithm is limited to the analysis of

9-mers, which account for most of the peptides displayed by Class I

HLA alleles (51). Finally, we compared the performance of the

biochemical-profile-based approach with evolution-based
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substitution matrices. This revealed the extent to which our BP-

based approach can capture peptide similarities beyond what would

be found with a standard substitution matrix (e.g., BLOSUM (78)),

keeping all other parameters equal (e.g., same query, Page 3positive

control, and universe of peptides). The comparison was performed

using Biostrings, an R Bioconductor package (79).
2.3 Monte Carlo simulation of peptide pairs
and statistical validation

Statistical thresholds are essential to determine confidence levels

in computational analysis, but no reference thresholds have been

provided in previous methods for T-cell cross-reactivity prediction.

To determine confidence levels in CrossDome predictions, we

conducted a Monte Carlo simulation using peptide pairs derived

from our immunopeptidomics database. The analysis was designed to

produce 5 million simulated pairs, covering a wide range of class I

HLA alleles. Next, an individual relatedness score was calculated for

each peptide pair, using the aforementioned methods. The resulting

RdS distribution was tested using the Shapiro-Wilk test (80). Then,

we utilized the “p-norm” function to derive probability values for

each peptide pair. Finally, the statistical threshold was defined based

on the highest p-value associated with any of the experimentally-

validated peptide pairs (Supplementary Table 1). This procedure

allowed us to determine the relatedness score sensitivity to identify

“real” cases within the background noise.
2.4 Uncovering TCR-peptide interactions
from structural data

X-ray crystallography data for the A3A/MAGEA3/HLA-

A*01:01 TCRpHLA complex was retrieved from the Protein Data

Bank (81) to determine the molecular interactions between the

engineered TCR and the cognate MAGEA3-derived peptide (PDB

ID: 5BRZ) (70). The crystal structure was processed and cleaned

using the PDBFixer tool from OpenMM suite (82). Hydrogen atoms

were included assuming neutral pH (pH = 7.0), using the

CHARMM36 force field parameterization protocol (83). The

GetContacts package (84) was used to derive TCR-peptide

interactions from the 3D structure, which we used to create TCR

contact maps (CM). All interactions supported in this package were

included. The hydrogen bond threshold was changed to 4.0 A,

following the parameters used for curated TCR contacts on

IEDB (85).

Two different CMs were produced for the same TCR in this

analysis: CM-crystal and CM-custom. On the one hand, CM-crystal

was obtained by performing a per-peptide-position cumulative sum

of contacts derived from the reference crystal structure with

GetContacts. These per-peptide-position contacts were then

converted into a frequency vector, and pseudo counts (penalty =

0.5) were included in positions without TCR interactions. The

resulting penalty vector for CM-crystal had the following values:

w = (3.0, 0.5, 0.5, 4.0, 2.0, 0.5, 1.0, 1.0, 0.5). CM-custom was

designed with knowledge-based weights informed by both data
Frontiers in Immunology 04
derived from the molecular dynamics simulation, and data

regarding HLA binding requirements. We performed a 100 ns

molecular dynamics simulation using the Gromacs 2021.2

package (86). The resulting data was divided into distinct time

points for analysis, starting with the input structure (i.e., static data

from crystal) and extending in 10 ns increments from the

simulation (i.e., dynamic data). A stride step equal to 50 was

adopted to recover frames from the simulation, which were used

as input for GetContacts in order to obtain both the type and

frequency of TCR-peptide interactions. Since the molecular

dynamics simulation also enables energy calculations that are

not available in GetContacts, we manually accounted for the

occurrence of short-range Coulomb interactions with TCR

residues (Supplementary Figure S3). Finally, we also accounted

for the importance of peptide positions 3 and 9 for binding to HLA-

A*01 alleles, as described in the SYFPHEITHI database (87). The

resulting empirical penalty vector for CM-custom had the following

values: w = (3.0, 0.5, 2.0, 4.0, 2.0, 0.5, 1.0, 1.0, 2.0).
2.5 Integrating functional data and
third-party predictions

The clinical relevance of each candidate predicted by

CrossDome might depend on additional functional properties,

such as off-target expression and immunogenicity (i.e., capacity to

trigger T-cell response) 8 (46, 48, 69). Therefore, to provide

additional support for target prioritization, we incorporated into

CrossDome results data from i) gene expression, ii) HLA binding

affinity, iii) and peptide immunogenicity.

Transcriptomics data was retrieved from Human Protein Atlas

(88), and highlights two essential aspects for the source antigen: i)

abundance, which indirectly affects the number of HLA-displayed

peptides at the cell surface, and ii) localization, which allows

characterizing a candidate profile as tissue-specific or ubiquitous.

We collected 37 healthy tissues spanning mRNA expression for

25,000 coding genes. To mitigate discrepancies from transcript to

protein expression, the expression levels were normalized to

transcripts per million protein-coding genes (pTPM) for healthy

tissue in the database. Next, we classified the gene expression using

the TissueEnrich package (89). The genes were separated into five

groups: tissue-enriched, tissue-enhanced, group-enriched, low-

tissue-specificity, and not-expressed profiles.

Finally, all eluted peptides included in our reference database were

annotated with predicted immunogenicity (e.g., immunogenicity score)

and predicted HLA binding (e.g., predicted IC50 binding affinity), for

each included HLA Class I allele. HLA binding affinities were predicted

with MHFlury 2.0 (90), which also accounts for intracellular peptide

processing. Immunogenicity values were predicted with a recently

published method called DeepImmuno (77). Taken together, these

data can provide additional “clues” regarding T-cell toxicity and

tolerability levels (69, 91). It is worth highlighting that our approach

to off-target prediction differs from previous methods in that we do not

rely on machine learning algorithms to identify “real” HLA-binders.

Instead, we use these methods as additional criteria for prioritizing

high-risk candidates.
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2.6 Software development and
web application

An overview of the CrossDome algorithm is provided in

Supplementary Figure S4. In summary, for a peptide-centered

prediction CrossDome requires as input only a peptide sequence,

and its HLA allele restriction. Currently, CrossDome does not

search across different HLA alleles, so the universe of self-derived

peptides is restricted to the HLA allele of interest. For a TCR-

centered prediction, the user would also provide the TCR

contact map.

After ranking the peptides based on the relatedness score,

CrossDome annotates each predicted off-target with a calculated

p-value, and generates multiple plots with additional information

on gene-expression, HLA binding and peptide immunogenicity. For

software development, we adopted the R language (version 4.4) and

S4 object-oriented pattern. To ensure best practices, we leverage R

development guidelines, including packages for software design,

testing, and documentation, such as devtools (92), usethis (93),

testthat (94), and roxygen2 (95), respectively. Next, we create a

user-friendly application using the Shiny framework (96). The web

application was built upon an interactive interface to produce data

visualization and searchable data tables.
3 Results

3.1 Immunopeptidomics data can be
leveraged for off-target toxicity prediction

Currently, the assessment of T-cell off-target toxicity risk in

clinical and research settings is limited and heavily dependent on

the accuracy of sequence-based HLA binding prediction tools. This
Frontiers in Immunology 05
dependence on additional layers of prediction can significantly

increase the risk of false positives (97, 98). CrossDome, on the

other hand, addresses this issue by screening for potentially cross-

reactive peptides within “real” peptides, experimentally-determined

by immunopeptidomics assays. This approach reduces the number

of spurious candidates, and minimizes potential biases of HLA

binding prediction tools. First, the methodology described in

section 4.2 allowed us to convert peptide sequences into

biochemical profiles (Figure 1A), which were in turn used to

calculate distances between peptides (e.g., RdS). Using the RdS,

we can perform pairwise comparisons between a tumor-associated

query peptide, and a large reference dataset of self-derived peptides

from immunopeptidomics databases. We created a reference

dataset by retrieving over 900,000 eluted peptides from five

different databases, covering 141 HLA Class I alleles (Figure 1B

and Supplementary Figure S1A). In this combined reference

database, HLA-B-restricted peptides are the most prevalent

(40%), followed by HLA-A (38%) and HLA-C (22%) (Figure 1C).

Although some peptides are shared among loci (Figure 1D), the

large majority of the displayed peptides are HLA-exclusive.
3.2 CrossDome’s relatedness score
outperforms alignment-based methods

As a proof of principle for CrossDome, we used the tumor-

associated peptide from MAGEA3 (EVDPIGHLY) as a query, and

evaluated the capacity of our method to recover the known cross-

reactive peptide derived from TITIN (ESDPIVAQY) among the

top-ranked putative off-targets. Using the aforementioned

relatedness score, the TITIN off-target was predicted at the 99+

percentile rank, at position 27 out of 36,000 peptides displayed by

HLA-A*01:01 (Figure 2A). The list of best-scored peptides reported
B C

D

A

FIGURE 1

The rationale behind the biochemical approach implementation. (A) Biochemical properties from AAIndex are summarized using dimensionality
reduction techniques. The eigenvectors are utilized to convert peptide sequences into biochemical profiles. Next, similar peptides are screened in
the immunopeptidomics database. Each pairwise comparison produces a distance-based metric called relatedness score (RdS), which is used for
peptide-centered predictions. The relatedness calculation can optionally utilize a position-specific weighted vector, for TCR-centered predictions.
Higher values are related with strong penalties (e.g., positions in dark blue). (B) A comprehensive immunopeptidomics database was created by
leveraging several public datasets. (C, D) Quantitative description of HLA alleles in the CrossDome database. Image created with BioRender.com.
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by CrossDomealso included MAGEA3 paralogs, other validated off-

targets, and a few other highly similar peptides (Supplementary

Table S3). In addition to the relatedness score, we measured

residue-level correlation among the two peptides. It allowed us

to evaluate the peptide composition and correlation between

biochemically similar residues. In general, the MAGEA3-TITIN

pair shows a strong correlation (Pearson p-value ≤2.2e-16).

Figure 2B diagonal displays the residue-based correlation among

MAGEA3 and TITIN-derived peptides. Note that highly correlated

residues recapitulate expected amino acid biochemical similarities.

For instance, we observe high correlation between polar residues

with the same charge (e.g., glutamic acid and aspartic acid), and

between non-polar residues (e.g., leucine and valine), while we see

low correlation between polar residues with opposite charge (e.g.,

aspartic acid and histidine).

However, our implementation of the relatedness score goes

beyond these obvious associations when determining peptide

similarity. To demonstrate this point, we compared our ranking

based on the relatedness score with alternative rankings based on

traditional alignment-based metrics (e.g., substitution matrices).

Keeping all other factors equal (e.g., same query and same

reference universe of peptides), the highest BLOSUM matrix (i.e.,

BLOSUM100) placed the TITIN off-target at the 40th position.

Higher numbers on BLOSUMmatrices are more accurate for highly

similar sequences, therefore not reasonable to predict cross-

reactivity between unrelated peptides (99). On the other hand,

BLOSUM62 should provide higher sensitivity for low-similarity

peptides, but it displayed an even worse performance in our

experiment, ranking TITIN at the 71st position. Figure 2C shows

a ranking comparison between searches using the relatedness score,

or substitution matrices. In fact, the relatedness score implemented

in CrossDome outperformed alignment-based metrics regarding

both sensitivity, as observed by the ranking of the TITIN-derived

peptide, and computational performance, as the average run-time is
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15 times faster than sequence alignment. Moreover, unlike sequence

alignment methods, our approach does not depend on parameters

such as gap and mismatch penalties.
3.3 A statistical threshold can be used to
estimate off-target toxicity risk

Considering that most documented cases of T-cell off-target

toxicity have been associated with molecular mimicry (20, 21, 52,

70), we expected that validated target/off-target pairs should in

general present low relatedness scores. In this context, the

relatedness distribution obtained in the Monte Carlo simulation

described in section 4.3 can both be used to understand the

dispersion of validated cases, and to identify confidence

boundaries in our predictions (i.e., statistical threshold). As a

result, we obtained a RdS distribution that largely resembles a

Gaussian (u = 32.77, sd = 6.05, Shapiro-Wilk test ≤ 0.05). Next, we

divided the distribution into intervals (i.e., “bins”) encompassing

worse to best-scored peptide pairs (Figure 3A). As expected, the

bins with low relatedness score values (i.e., best-scored cases, Bin ≤

16), were highly populated with experimentally validated cases

(Figure 3B;. Supplemantary Table S1).

For instance, the peptide pair related to the MAGEA3-MAGEA6

cross-reactivity was ranked among the most meaningful values (RdS =

1.35, p-value ≤1.03e-02). MAGEA6 belongs to themelanoma-associated

antigens, a paralog group with high sequence similarity (100). The

MAGEA6-specific peptide deviates from MAGEA3 by a single

conserved residue substitution at position eight (leucine to valine).

Bin 14-16 holds the largest number of validated cases (n = 7), including

the MAGEA3-TITIN pair. Finally, the AFP-EPG5 pair represents the

last detectable cross-reactivity event (RdS = 21.36, p-value ≤2.96e-02).

The standard threshold for CrossDomepredictions was defined as p-

value ≤ 0.01, based on this RdS distribution.
B CA

FIGURE 2

CrossDome performance against traditional approaches. (A) Evaluating CrossDome using MAGEA3-TITIN. Titin-derived peptide was recovered at
position 27th out of 36,000 eluted peptides. (B) Residue-level comparison using Pearson correlation test. (C) Ranking-related heatmap displaying
MAGEA3-TITIN positioning across distinct methods.
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3.4 Contact maps can be inferred from
structure and used to refine predictions

Although peptide similarity can provide us with a baseline

probability for observing T-cell cross-reactivity, different cross-

reactivity patterns can be observed for different T-cell clones (21).

In other words, cross-reactivity is ultimately determined by the

particular T-cell clone that is tested, and by the TCR-specific

interactions with the cognate pHLA complex (52, 53). Here, we

investigated the possibility of refining the CrossDomesearch in

order to provide a TCR-specific off-target toxicity prediction. For

that, we derived the molecular interactions between an engineered

TCR (A3A) and its cognate MAGEA3-derived peptide-target

from the available crystal structure of the TCRpMHC complex

(Figure 4A). The contact map revealed a high preference for peptide
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positions 1, 4, 5, 7, and 8 (Figure 4B). Positions 4 and 5 showed

higher interaction type diversity, including van der Waals,

hydrogen bonds, and hydrophobic interactions.

Our A3A-derived contact map was consistent with curated data

from IEDB-3D (85), and produced promising results when used to

tailor CrossDome predictions for MAGEA3. Therefore, it

supported our idea that the weights for CrossDome predictions

can be derived from a reference TCRpHLA structure (i.e., with the

cognate pHLA). However, we reasoned that significant differences

could appear between contact maps derived from static (e.g., a

single crystal structure) and dynamic sources (e.g., data derived

from NMR experiments or molecular dynamics simulations). To

investigate that, we calculated contacts for distinct time points in a

100 ns long molecular dynamics simulation (Figure 4B). In the

overall profile obtained with the GetContacts package, position-
B CA

FIGURE 4

A3A-TCR contact maps construction. (A) A flowchart representing the contacts/interactions analysis. TCRpMHC interactions are depicted as black lines.
The A3A crystal was submitted to two analyses (2), static, and (3) dynamic (molecular dynamics). (B) Each analysis produces a contact map summarized
by peptide positions. The interaction types and frequency were retrieved using getcontacts. In total, nine interaction types can be detected, including
hydrogen bond-related (hbbb, hbsb, hbss); salt bridge (sb); pi-cation (pc); pi-stacking (ps); t-stacking (ts); hydrophobic (hp); van der Waals (vdw). The
dynamic contact map was summarized into four distinct time points: 0-20, 0-40, 0-60, and 0-80 nanoseconds. The overall profile showed similar
hotspots compared to the static map. (C) Normalized contacts are displayed on the heatmap. Image created with BioRender.com.
BA

FIGURE 3

Establishing a statistical threshold for relatedness distribution. (A) Benchmarking putative cross-reactivity pairs in allele agnostic simulation. In total, 5
million peptide pairs were simulated and categorized based on relatedness intervals. For each pairwise comparison was calculated an empirical p-
value. The left-sided y-axis shows the percentage of cases per bin (i.e., intervals). The blue line represents the average p-value in each interval
(second y-axis). Additionally, red and brown are associated with standard p-value thresholds, 0.05 and 0.01, respectively. (B) Table covering
experimentally validated CR cases. MAGEA3-TITIN was retrieved at 14-16 bin, which holds less than 0.1% of putative cases.
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specific preferences displayed by contact maps from molecular

dynamics were highly similar to that of the crystal, including

interaction types. However, a few interactions were lost, related to

positions 1, 7, and 8 (Figure 4C). The reduction of TCR interactions

over the simulated time might indicate these peptide positions were

more involved with HLA interactions. In the case of position 1, we

were still able to detect short-range Coulomb interactions with TCR

residues in the simulation (Supplementary Figure S3). This type of

interaction is not supported by GetContacts, but it can be computed

with the gmx energy tool from Gromacs.
3.5 CrossDome predictions are consistent
across protocols

CrossDome can predict T-cell cross-reactivity using two

distinct approaches: i) based only on the biochemical profile (BP)

of the peptides, or ii) using a combination of peptide’s biochemical

profile and TCR contact map (BP + CM). Note that in the first case

we have a peptide-centered prediction, regardless of TCR

information. While, on the second case, we have a TCR-centered

prediction. To evaluate the overall performance of CrossDome

using these different protocols, we leveraged a dataset of over 60

unrelated peptides known to be cross-reactive with MAGEA3, as

described in section 2.1. As expected, the CM-based predictions

increased the overall number of experimentally validated cases

under statistical confidence (Figure 5A). Moreover, we could

observe an incremental increase in sensitivity among protocols.

The percentage of experimentally-validated cases in the top 50

ranking was equal to 63%, 71%, and 82% for BP only, CM-crystal,

and CM-custom, respectively.
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Subsequently, we analyzed qualitative changes in each protocol

regarding the top 50 off-target candidates (Figure 5B), which were

broadly shared between protocols (n = 33). The high level of

agreement between protocols demonstrates CrossDome’s accuracy

even without the CM imputation. Further, at the sequence level, we

noticed a reduction in the substitution rate at peptide positions 1, 3,

and 9. Specifically, top ranking peptides on the CM-based

screenings showed an even greater conservation of glutamic acid,

aspartic acid, and tyrosine at these positions (Figure 5C), reflecting

differences in the weighted vector values in each analysis (see

section 2.4). The glutamic acid (position 1) displayed the largest

increase across protocols, ranging from 74% up to 92% in residue

conservation. The ranking of the known TITIN-derived cross-

reactive peptide also improved between protocols, from the 27th

position on BP to 8th and 6th position on CM-crystal and CM-

custom, respectively. Together, these findings validate the contact

maps as a reliable resource to tailor CrossDome predictions for a

specific TCR.
3.6 CrossDome outperforms sCRAP when
predicting known off-target toxicity cases

We used the aforementioned dataset of 16 validated cross-

reactive peptide pairs (Figure 3B) to compare the top-ranking

predictions by CrossDome with those of the recently published

sCRAP tool (48). The same 4 cancer-associated antigens were used

as queries for each tool (Supplementary Table S1), with default

protocols. On CrossDome, we used the BP-based prediction (i.e., no

TCR-based position-specific weights). On sCRAP, we used

recommended settings (i.e., including default position-specific
B

CA

FIGURE 5

Evaluating protocols using yeast-displayed peptides. (A) Overall performance across CrossDome protocols. The y-axis corresponds to experimentally
validated off-targets. The data was filtered considering best-scored candidates (p-value <0.01). The ranking was divided into four intervals. In total,
three screenings were carried out, i) Biochemical properties (BP) only, ii) A3A-derived static contact map, and iii) manually curated contact map.
(B) Venn diagram showing TOP50 best-scored peptides overlap among protocols. (C) TOP50 substitution heatmaps and seqLogos. The heatmaps
present the substitution probability for each position across candidates. The seqlogos summarizes the most prevalent residue per position. The
amino acid colors are related to biochemical classifications.
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weights). In this context, CrossDome was able to predict 10 out of

16 off-targets within the top 50 sequences. For the other 6 cases,

while not in the top 50, CrossDome still predicted the off-target at

the 99+ percentile rank (Figure 3). sCRAP, on the other hand, was

only able to predict 5 out of 16 within the top 50, and we could not

determine the percentile rank for the other predictions since only

the top 100 entries are provided.

Note that a fair direct comparison between peptide rankings

obtained with these tools might not be possible, since they differ in

multiple aspects (e.g., different search algorithms, different

reference universe of self-derived peptides, different use of third-

party methods, etc.). Instead, we decided to evaluate if there was any

overlap between the top-ranking predictions by CrossDome and

sCRAP in these experiments. To determine this overlap, we used

only the top 50 predicted peptides by each tool, for each query

(Supplementary Table S2). Any agreement between tools with such

different implementations highlights their potential to identify

dangerous off-targets. However, it is important to note that the

entire list of candidates predicted by CrossDome is comprised of

real immunopeptidomics-derived peptide targets. In addition, with

the exception of the MAGEA3 prediction, multiple of these off-

targets are also predicted to be both immunogenic and strong HLA-

binders. In spite of that, only a fraction of these off-targets is also

predicted by sCRAP. This difference is probably driven by the fact

that sCRAP predictions are highly populated by predicted peptides,

for which there is no available immunopeptidomics validation.

Interestingly, in the case o MAGEA3, only the TITIN-derived

peptide was kept as a candidate target after considering HLA

binding and immunogenicity predictions. On the other hand, 12

of the top 50 predictions by CrossDome were also in the top 50 by

sCRAP, with no further support to exclude them. The full list of top

50 predictions for both tools can be found in Supplementary

Table S3.
3.7 MAGEA3-specific predictions
can be refined based on mRNA
expression and immunogenicity

In order to demonstrate the impact of incorporating mRNA

expression for off-target localization and tolerability assessment, we

applied this additional analysis to the best-scored peptides derived

from the MAGEA3 screening using BP-based protocol. Note that a

few peptides were dropped due to lack of similarity with RefSeq

Protein database (101). Figure 6A shows the expression profile

summary across all best-scored peptides (RdS P-value ≤ 0.01). The

MAGEA3 screening presented higher percentages associated with

low-specificity followed by tissue-enriched, tissue-enhanced, and

not-expressed groups. In the tissue-enriched group, several

candidates are strongly associated with the Heart/Skeletal Muscle

(TITIN, TIMM50, PSMA3, etc.), Testis (MAGEA6, MAGEA11,

etc.), Liver (LCAT, ABCC2, etc.), and Cerebellum (FAT2). Next, we

displayed the expression levels for the top 50 peptides (Figure 6B).

The experimental relevant MAGEA3 off-targets, TITIN and FAT2,

were correctly assigned to respective tissues (41, 102, 103).

Curiously, other liver-biased candidates identified here, such as
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LCAT, were not associated with off-target toxicity in previous

clinical trials (26).

Next, we hypothesized that genes with ubiquitous (low-specificity)

expression could be considered dangerous candidates due to a putative

broad autoimmune response. For instance, NOP53, a ribosome

biogenesis factor, showed a high expression level across all tissues

(avg. PPM expression = 317.32). Furthermore, in terms of biochemical

similarity, the NOP53-related peptide showed a relatedness score equal

to 12.95. However, the NOP53 peptide (EVAPAGASY) has no

evidence of T-cell positive assays on IEDB (66). The lack of T-cell

assays reporting NOP53 can be indicative of either a low

immunogenicity profile (e.g., low binding HLA affinity or lack of

immunogenic features), or potential immune tolerance mechanisms.

To further investigate the immunogenicity potential of top-

ranked putative off-targets, we conducted computational

predictions of both HLA binding and peptide immunogenicity

(Figure 6C). MAGEA3-specific predictions for HLA-binding (BA =

33.50) and immunogenicity (IS = 0.68) were used as references

(dashed red line). In total, 23 off-target candidates were predicted

as putative strong binders, i.e., IC50 ≤ 50 nM. Additionally, three

candidates were reported with a meaningful immunogenicity level

(e.g., > 0.65). Only two of the candidates were predicted to be both

strong HLA-binders and highly immunogenic. As expected, TITIN

has a similar binding affinity to the cognate MAGEA3 peptide (< 50

nM) with a superior immunogenic score (> 0.90), and would have

been predicted as a dangerous off-target using our package.

MAGEA6, another experimentally validated cross-reactive peptide,

also displayed a similar profile. FAT2 and MAGEA18 had worse

scores than MAGEA3 and other validated cases. The combination of

high affinity (i.e., low predicted binding value) and high

immunogenicity score can indicate the most dangerous candidates

on CrossDome predictions.
3.8 Increased usability promoted through
an R package and user-friendly interface

R is a well-established language in the bioinformatics community.

To improve CrossDome’s usability, we developed an R package

containing several functions for predicting, analyzing, and

visualizing cross-reactivity risk. Currently, the package allows the

screening of putative off-targets by selecting a peptide-target (query)

and our immunopeptidome database (subject). This database can

also be combined with, or replaced by, a customized database. The

CrossDome immunopeptidome database includes peptide

immunogenicity and binding affinity predictions across several

HLA Class I alleles. On average, the CrossDome run takes less than

1 minute per allele in a workstation machine (e.g., Intel Core i7

Processor, 32GB RAM), therefore allowing for batch analysis using

several peptide-targets across distinct HLA alleles.

To foster reproducibility of results, we provided a tutorial/vignette

series from basic usage to MAGEA3 analysis (Supplementary

Materials). The MAGEA3 tutorial details contact map usage and

calculation, including the comparison between BP and BP + CM

predictions. In addition, the package was designed to store data

reporting essential parameters and outputs in each execution.
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CrossDome results can be manipulated using dplyr, a well-known R

package for data science (104), therefore promoting greater versatility

for bioinformaticians and computational biologists. Finally, we

developed a web application that allows CrossDome basic usage.

Currently, the app generates an interactive table supporting filtering,

ranking, and downloading (Figure 7).
4 Discussion

Here we describe CrossDome, a software suite for predicting

off-target toxicity risk for T-cell-based cancer immunotherapies.

Using experimentally-validated cases as positive controls, we
Frontiers in Immunology 10
demonstrate that for a given tumor-associated target of interest

for immunotherapy, this implementation can identify self-derived

peptides that represent a potential risk for off-target toxicity

mediated by T-cell cross-reactivity. Therefore, our method

reduces the screening space from many thousand peptides (e.g.,

entire host proteome) to dozens of high-risk candidates, also

providing information about the immunogenic profile and tissue-

specificity of these putative off-targets. More importantly,

CrossDome goes beyond previously proposed methods by

providing a p-value associated with each off-target prediction.

Based on the computed distribution of known cross-reactivities

involving cancer-associated antigens, the p-values can be used to

define a significance cut-off for the off-target toxicity risk.
B

C

A

FIGURE 6

Expression and immunogenic profiles related to the cross-reactive candidates. (A) Tissue specificity groups across all best-scored candidates (p-value <
0.01). The donut plot displays tissues/organs related to “Tissue-enriched” candidates, i.e., genes with tissue-biases expression. (B) Heatmap with TOP50
best-scored peptides showing Z-score mRNA expression (pTPM). High (red) to low (blue) expression values on color key. Finally, total mRNA expression
is represented on bar plot. (C) Peptide immunogenicity and MHC-antigen binding affinity predictions. The red dashed line represents the MAGEA3-
derived peptide (EVDPIGHLY). The data points size reflects experimentally validated candidates. TTN corresponds to TITIN gene aliases.
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It is also important to note that most of the previously published

methods for T-cell cross-reactivity prediction are based on a

“target-centered” perspective. By considering properties of the

peptide or the pHLA complex as the key to find potentially

similar off-targets, these methods can provide a baseline

prediction of cross-reactivity (46, 48, 57, 59, 105). However,

different T-cell clones will express unique TCRs, which can have

different specificities towards pHLA complexes (24, 53). In turn,

this can be reflected in different cross-reactivity patterns/profiles

among T-cell clones recognizing the same cognate peptide (21, 39,

63). In order to account for that, predictions with CrossDome can

be performed using two alternative approaches: one based on the

biochemical profile of the query peptide, and the other based on a

combination of peptide’s biochemical profile and a TCR contact

map. In the first case, we have the standard peptide-centered

prediction, regardless of TCR information. This option is useful

when the T-cell information is not available, or different T-cells can

be triggered depending on the subject (e.g., peptide based vaccine

design). Additionally, by changing the reference database, this

approach can be used to identify relatedness between tumor

associated antigens and microbial-derived peptides, therefore

extending its applicability towards distance-to-self calculations on

vaccine development studies (106–109). On the other hand, the

second case provides a TCR-centered prediction (i.e., clone-specific

off-target toxicity prediction). This option is preferred for users

interested in the cross-reactivity profile of particular T-cell clones

(e.g., in TCR-based immunotherapy). Tailoring CrossDome

predictions with TCR information helps filtering out spurious

candidates while recovering even more diverse peptide sequences,

and mitigates the need for exhaustive search through experimental

approaches (41, 52, 110). Consequently, CrossDome can reduce the

time and costs associated with prioritizing antigens for T-cell-based

immunotherapy, potentially accelerating their transition to

clinical trials.

Our implementation choices on CrossDome are supported by

extensive research on T-cell cross-reactivity, previously performed

by us and by others. For instance, the role of pHLA structural

similarity in T-cell recognition has been previously discussed, and
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even leveraged for cross-reactivity prediction (21, 58, 59, 111). It is

also well known that T-cell recognition is driven by a few hotspots

in the pHLA surface, and that T-cell cross-reactivity can be

observed between peptides with very different sequences, as long

as they share the same hotspots for TCR interaction (52, 63). Our

work is also informed by previous implementations, which

leveraged peptide sequence similarity, HLA binding prediction,

and tissue expression patterns (46, 48, 105). Is worth noting that

these tools rely on underlying AI-based methods for HLA-binding

prediction, which have been a standard in the field. In addition, AI-

based methods have enabled many other recent breakthroughs in

biosciences (112). However, these methods were not yet successfully

applied to the problem of T-cell cross-reactivity prediction, mostly

due to the lack of large enough labeled training datasets. This

landscape should change in the future, as data from high-

throughput experimental methods for T-cell activation becomes

more broadly available. In fact, available cognate TCR/peptide

sequences from databases such as VDJdb (113) are already been

leveraged to train AI-based models for the prediction of TCR

specificity (69, 114–116). CrossDome can be used in combination

with these methods to further accelerate the identification of

peptide-targets and TCRs requiring experimental validation.

Different from previous methods, our tool does not rely on

HLA-binding prediction to define the universe of self-derived

peptides used in the search for off-targets. Instead, it relies on a

local database of “real” peptides from immunopeptidomics studies.

On one hand, this is a major advantage since it reduces false positive

predictions (i.e., predicted off-targets that cannot be displayed by

HLAs). On the other hand, this implementation restricts the

universe to available experimental data, which might still be

incomplete. Fortunately, immunopeptidomics has become a

standard in the field, and we will continue updating our reference

database as new datasets become available (65, 117). Note that

CrossDome is also currently limited to the analysis of 9-mers, which

account for most of the peptides displayed by class I HLA alleles.

Future work will enable the expansion towards longer peptides,

including those restricted to class II HLA alleles, therefore

enabling cross-reactivity prediction for CD4+ T-cells. Although
BA

FIGURE 7

CrossDome R package. (A) Main features include expression heatmap, immunogenic plot, best-scored substitutions plot, and web application.
(B) CrossDome user-interface built with R’s Shiny framework.
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not associated with off-target toxicity, cross-reactivity involving

these cells is a promising future direction due to newly discovered

cytotoxic effects, and their role in mediating the production of

autoreactive antibodies following vaccination (118, 119).

Another original component of our study relates to the

demonstration of how structural information from a TCRpHLA

complex can be used to derive a TCR contact map. Such contact

map can be used by CrossDome as a per-peptide-position weighting

system, enabling the aforementioned TCR-centered prediction of

off-target toxicity. Note that automated extraction of the contact

map from a TCRpHLA complex is not yet available on CrossDome,

but it is a future implementation already being developed by our

team. The best predictions in our TCR-centered experiments were

obtained with a customized set of weights (CM-custom),

considering dynamic contact maps, Coulomb interactions, and

HLA binding motif. However, it is important to note that even

the contact map derived from the TCR-peptide bonds detected on a

single structure (CM-crystal) was already enough to recover over

71% of the validated cases in our dataset. Interested users can derive

such static contact map from a growing number of crystal structures

of TCRpHLA complexes being made available at PDB (81) and

IEDB (66). Alternatively, we are also investigating if these contact

maps can be accurately derived from 3D models, as new TCRpHLA

modeling methods become available (120–123). If successful, this

effort could enable future automation of structure-based contact

map extraction from TCR sequences, such as those produced by

single-cell TCR sequencing.

Finally, CrossDome can be easily incorporated into existing

antigen discovery pipelines, therefore aiding the selection of better

and safer peptide-targets and T-cell clonotypes for immunotherapy

applications. The tool is under active development, and the beta

version is available at https://github.com/AntunesLab/crossdome.
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SUPPLEMENTARY FIGURE 1

Background and validation datasets. (A) Schematic representation of sources
used to build the reference self-derived background dataset for CrossDome.

(B) Schematic representation of sources used for validation experiments.

SUPPLEMENTARY FIGURE 2

Dimensionality reduction of biochemical properties. (A) Scree plot presenting
the explained variance per principal component (dimensions of the Principal

Component Analysis). Twelve dimensions are accumulating 95% explained
variance among AAIndex databases. (B) Two-dimensional plot displaying

amino acid distribution according to the first and second principal

components (dimensions) from the dimensionality reduction. Similar
residues are grouped at closest distances, e.g., Isoleucine, Valine, and

Leucine. Proline and Arginine are outliers.

SUPPLEMENTARY FIGURE 3

Histograms of Coulomb interactions. Short-range Coulomb interactions

were calculated using the software gmx energy from Gromacs, and divided

into intervals (x-axis). The energy reflects the interaction between the A3A
frontiersin.org

https://github.com/AntunesLab/crossdome
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1142573/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1142573/full#supplementary-material
https://doi.org/10.3389/fimmu.2023.1142573
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fonseca and Antunes 10.3389/fimmu.2023.1142573
MAGEA3-specific TCR molecule and each amino acid from the MAGEA3-
derived peptide. The y-axis shows the fraction frame reporting that energy

range (molecular dynamics). Low values are related to proximity, i.e., putative

strong interaction with the TCR molecule. Positive values are related to
repulsion from TCR molecular, potentially favoring MHC interaction.

SUPPLEMENTARY FIGURE 4

CrossDome workflow diagram. The required and optional inputs are
displayed on top. Peptide and HLA allele parameters only support 9-mer

sequences and Class I alleles, respectively. TCR contacts and known off-

targets (e.g., positive controls) can be introduced as optional inputs. The
“CrossDome screening” process is performed over a reference “universe”

database, using the relatedness score to find biochemically similar peptides.
Next, a statistical threshold (p-value < 0.01) and data integration are applied to

the potential off-target candidates. The “Gene-donor expression” step maps
mRNA expression data from genes to each candidate. The expression profile

provides measurements across several healthy tissues. The “Tissue specificity
Frontiers in Immunology 13
plot” summarizes the expression profile and tissue specificity. Additionally, the
“Substitution plot” provides insights into sequence substitution among the

best-scored candidates. Finally, the “immune-related predictions” combine

immunogenicity and binding affinity predictions for each candidate. The
package functions are named below each step in the workflow.

SUPPLEMENTARY TABLE 1

Additional information on the 16 validated off target toxicity cases, involving 4
well-known tumor-associated antigens.

SUPPLEMENTARY TABLE 2

Overlap between sCRAP and the top 50 ranking by CrossDome, for 4

different queries.

SUPPLEMENTARY TABLE 3

Full list of peptides among the top 50 ranking for both sCRAP and

CrossDome, for 4 different queries.
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