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Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and

cardiovascular complications are the leading cause of mortality in patients with

diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with

preserved ejection fraction, is defined as a cardiac dysfunction without

conventional cardiac risk factors such as coronary heart disease and

hypertension. Mitochondria are the centers of energy metabolism that are very

important for maintaining the function of the heart. They are highly dynamic in

response to environmental changes through mitochondrial dynamics. The

disruption of mitochondrial dynamics is closely related to the occurrence and

development of DCM. Mitochondrial dynamics are controlled by circadian clock

and show oscillation rhythm. This rhythm enables mitochondria to respond to

changing energy demands in different environments, but it is disordered in

diabetes. In this review, we summarize the significant role of circadian clock-

controlled mitochondrial dynamics in the etiology of DCM and hope to play a

certain enlightening role in the treatment of DCM.

KEYWORDS

diabetic cardiomyopathy, clock circadian, mitochondrial dynamics, mitochondrial
fusion, mitochondrial fission
1 Introduction

The incidence of diabetes mellitus is increasing, and now more than 350 million people

are reported to suffer from diabetes worldwide (1). The population and condition of

diabetes mellitus have become more and more juvenile and complicated (2). Patients with

diabetes may develop cardiovascular complications, especially diabetic cardiomyopathy

(DCM), which is prone to heart failure with preserved ejection fraction (HFpEF). This type
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of heart failure was first reported in 1972 in patients with type 2

diabetes, who had no risk factors for heart failure, such as

hypertension and coronary artery disease (3). Subsequent clinical

and experimental studies gradually revealed the main

pathophysiological mechanisms of DCM, such as inflammation,

lipid accumulation, myocardial fibrosis, cardiac hypertrophy,

cardiac apoptosis, microvascular damage, etc. (4, 5) The main

clinical features of DCM are cardiac hypertrophy, diastolic

dysfunction, and myocardium stiffing (6). At the late stage of

DCM, the myocardial systolic function is also affected, leading to

dilated cardiomyopathy (6). However, the pathophysiological

mechanisms of DCM remain complex and unclear.

Increasing studies suggest the involvement of dysfunctional

mitochondria in the pathophysiology of DCM. The dysfunctional

mitochondria result in myocardial metabolic disorders, oxidative

stress, Ca2+ overload, myocardial systolic/diastolic dysfunction, and

myocardial stiffness (7, 8). Mitochondria are the centers of energy

metabolism that are extremely essential for maintaining the

function of the heart, an organ with high energy requirements.

Mitochondria are highly dynamic in response to environmental

changes through mitochondrial dynamics, including mitochondrial

fusion and fission. Noteworthily, mitochondrial dynamics has a

circadian rhythm throughout the day. The circadian rhythm of

mitochondrial dynamics is regulated by circadian clock genes that

mediate the expression of mitochondrial dynamic molecules and

affect mitochondrial morphology and function (9). When circadian

clock genes are mutated or disrupted, mitochondrial dynamics may

lose circadian rhythm and become disordered, resulting in insulin

resistance, cardiac lipotoxicity, excessive production of

mitochondrial reactive oxidative species (ROS), mitochondrial

Ca2+ mishandling, decreased mitochondrial membrane potential

(MMP), impaired mitophagy, and endoplasmic reticulum (ER)

stress, which are associated with the pathophysiology of DCM (9–

11). Thus, recent advances in understanding clock-controlled

mitochondria l dynamics and its impl icat ion for the

pathophysiology of DCM may open up novel therapeutic avenues.
2 Mitochondrial dynamics

Mitochondria are highly dynamic organelles, constantly

changing their morphology, from tubular (fusion) to fragmented

(fission). The balance between mitochondrial fusion and division is

important for the proper functioning of cells. Disruptions in

mitochondrial dynamics affect mitochondrial morphology and

function, leading in the development of disease, DCM.
2.1 Mitochondrial fusion

Mitochondria have an outer mitochondrial membrane (OMM)

and an inner mitochondrial membrane (IMM) (12). The progress of

mitochondrial fusion includes OMM fusion and IMM fusion.

Mitofusin1/2 (MFN1/2), belongs to the family of GTPases, and
Frontiers in Immunology 02
primarily orchestrates OMM fusion (12). As a transmembrane

protein anchored to the OMM, MFN1/2 contains the N-terminal

GTPase domain and heptad-repeat regions (HR1 and HR2) (13).

When the tips of two mitochondria meet in the cytoplasm, MFN1/2

as a tether interacts with another mitochondrion, and forms the

MFN homodimer or heterodimer, then alters the conformation of

the HR2 region depending on GTPase, resulting in the fusion of

OMM. In fact, MFN1 plays a leading role in the process of

mitochondrial fusion, the role of MFN2 remains elusive, which

primarily participated in the site of OMM interacting with other

organelles (particularly the ER) (14, 15).

After OMM fusion, the IMM subsequently starts to fusion, and

optic atrophy (OPA1) as a pivotal factor mainly participated in the

process of IMM fusion. OPA1 consists of long OPA1 (L-OPA1) and

short OPA1 (S-OPA1). L-OPA1 interacts with cardiolipin on the

IMM to facilitate the fusion of the IMM. S-OPA1, which is

produced by the degradation of L-OPA1 by proteolytic enzymes

OMA1 and YME1-like ATPase (YME1L) (12), is mainly to promote

mitochondrial fusion by assisting L-OPA1. However, when S-OPA1

over-accumulates, it will suppress the role of L-OPA1 (12), leading

to mitochondrial division and disruption of mitochondrial

dynamics (Figure 1) (16). OPA1 is not only participated in IMM

fusion but also plays an important role in the remodeling of

mitochondrial cristae , which is the site of oxidative

phosphorylation (OXPHOS) and ATP synthase (17). The left-

turned assemblies at the cristate (the structure of OPA1 is

involved in the right- or left-turned helical assemblies) could

prevent cytochrome C entering from the matrix into the

intermembranous mitochondria by tightening mitochondrial

crista and diminishing crista lumen. When OPA1 is reduced or

destroyed, a large amount of cytochrome C enters into the

intermembrane, then enters into the cytoplasm through the

permeable out membrane, and finally induces cell apoptosis (12,

18). Overall, OPA1 has extensive effects on mitochondrial function,

and different aspects of its function need to be further refined.
2.2 Mitochondrial fission

The proteins involved in the mitochondrial fission process

mainly include dynamin-related protein1 (DRP1) and

mitochondrial fission factor (MFF)/fission protein 1 (FIS1). DRP1

performs a critical role in mitochondrial fission by translocation to

mitochondrial membranes and binding to receptors. In the

cytoplasm, the activity of DRP1 is regulated by many factors,

such as cAMP-dependent serine/threonine-specific protein kinase

A (PKA). PKA phosphorylates the tryptophan of DRP1, stabilizing

DRP1 in the cytoplasm and promoting mitochondrial elongation

(19, 20). Besides, DRP1 is dephosphorylated by Ca2+-dependent

phosphate calcineurin, which promotes DRP1 translocation to

OMM and binding to the receptor (21). MFF/FIS1 are primary

receptors located on the OMM and perform a vital role in recruiting

DRP1 (22). Mitochondrial dynamics proteins of 49 kDa and 51 kDa

(MID49 and MID51) also recruit and bind to DRP1, when MFF/
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FIS1 is not available (23). DRP1 is massively recruited and

combined with the receptor, forming a ring-like structure to shear

the mitochondria and promote the completion of mitochondrial

fission (24). Mitochondrial fission usually occurs at the interface

between mitochondria and the ER (Figure 1). This contact site is an

extremely critical interface. It not only leads to the occurrence of

mitochondrial fission but also is related to the rebuilds of

mitochondrial cristae driven by transporting Ca2+ from the ER to

the mitochondria (12).

The fission and fusion of mitochondria are dynamic and

continuous processes. The balance between fission and fusion is

very critical in maintaining the normal function of mitochondria.

When the balance of mitochondrial dynamics is compromised, the

mitochondrial dysfunction may disrupt normal metabolism

through cytochrome C release, Ca2+ influx, excessive production

of ROS, and mitochondrial protein efflux, causing cell damage and

death (12, 25). For damaged mitochondria, however, mitochondrial

fission can split this part of mitochondria out, and degrade or

eliminate it through mitophagy pathways such as the PTEN-

induced kinase 1 (PINK1)/Parkin or Bcl-2 19-kDa interacting

protein 3 (BNIP3) (Figure 1) (26). In the process of resolving

damaged mitochondria, mitochondrial fusion also exhibits a

beneficial role by allowing the transmission of proteins,

metabolites, and DNA across the network and attempting to

restore and replenish mitochondrial function in exchange (27).

Finally, mitochondrial fission, fusion, and mitophagy together

operate the healthy mitochondrial pool. Disrupted mitochondrial

dynamics would affect mitochondrial function and lead to the

occurrence of diseases such as diabetic cardiomyopathy (28, 29).
Frontiers in Immunology 03
3 Circadian clock and
mitochondrial dynamics

3.1 Circadian clock

The circadian clock is temporal progress influenced by Earth’s

rotation. Many activities of living organisms including gene

expression (30), metabolism (31), immune and endocrine

function (32, 33), as well as behavior (34), are controlled by day

and night clocks. Circadian clock is composed of master pacemaker

and peripheral clocks. The central, master clocks are located in the

suprachiasmatic nucleus (SCN) of the hypothalamus. The

peripheral clocks are virtually located in all the tissues and cells of

the body (35). The circadian clock can synchronize internal 24-hour

timing with a 24-hour solar day through a hierarchical network of

master and peripheral oscillators.

The molecular circadian clock in mammals is formed by a

transcription-translation feedback loop (TTFL). The main TTFL is

driven by the transcription factors CLOCK-BMAL1 and their

negative regulators including the period (PER) and cryptochrome

(CRY), as well as some other regulators such as casein kinases

(CKIa, CKId, and CKIϵ) and phosphatases (PP1, PP5), which

regulate the stability and localization of these integral circadian

proteins (36). The CLOCK-BMAL1 complexes directly combine

with DNA to regulate E-BOX and induce the expression of negative

regulators (37). The negative regulators PER and CRY form

heterodimeric in the cytoplasm and translocate into the nucleus

to inhibit the transcription of CLOCK-BMAL1. When the levels of

PER and CRY decline through ubiquitin-dependent degradation, a
FIGURE 1

The process of mitochondrial dynamics. Mitochondrial fusion: MFN1 and MFN2 form homodimer or heterodimer, then alter the conformation of the
HR2 region depending on GTPase, resulting in the fusion of OMM. IMM fusion is mainly orchestrated by OPA1. The L-OPA1 interacts with lid
cardiolipin and facilitates the fusion of the IMM. The S-OPA1 interacts with L-OPA1 and promotes IMM fusion. Mitochondrial fission: The
dephosphorylated DRP1 is recruited at the mitochondrial membrane by its receptors, mainly including FIS and MFF. MID49 and MID51 also recruit
DRP1 when the MFF/FIS1 is not available. Recruited DRP1 combined with the receptor, forming a ring-like structure to shear the mitochondria and
promote the completion of mitochondrial fission. Mitophagy: Damaged mitochondria are degraded by autophagosomes through PINK1/Parkin and
BNIP3 pathways.
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new CLOCK-BMAL1-driven transcription cycle begins with 24-

hour periodicity. The casein kinases and phosphatases also play a

key role in the circadian period by controlling the activity of the

PER-CRY dimer and the rate at which it enters the nucleus. In

addition to the main feedback loop, the second feedback loop also

plays an important role. The main components of the second

feedback loop are the nuclear receptors REV-ERBa/b (38),

retinoid-related orphan receptor a (RORa) (39), and CLOCK-

BMAL1. Like the main loop, REV-ERBa/b and RORa are also

activated by CLOCK-BMAL1. REV-ERBa/b negatively regulates

BMAL1 transcription, but RORa positively regulates BMAL1

transcription (40). REV-ERBa/b and RORa compete for binding

REV-ERB–ROR response elements in the promoter and enhancer

regions of the target gene, and make a rhythmic expression of the

BMAL1 gene (41). The primary function of the second feedback

loop is to provide additional robustness to the oscillatory

mechanism and counter surrounding disturbances to help

circadian keep accurate timing (Figure 2) (36, 42).

The circadian clock is an internal and predictable mechanism

that predicts the energy demands and metabolic changes through

synchronization with light and temperature cycles (37). In this

process, clock rhythm affects various cells or tissues, and confers

various tissue-specific functions to circadian rhythmicity, such as

the core body temperature with peak levels during the day and

trough in the early morning, more oxidation delivered to the cell in

active but less in inactive, and the melatonin secretion cycle that is

inhibited by light (43). There is growing evidence that circadian

disruption is involved in metabolic abnormalities. The liver-specific

BMAL1 knockout (KO) mice had higher levels of triglyceride,

cholesterol, and free fatty acids than that in wild-type mice, and

their livers contained lower levels of OXPHOS protein and complex
Frontiers in Immunology 04
I (10). Likewise, if the internal clock of an organism is uncoupled

with the natural clock circadian, the individual will have deleterious

effects on nutrient metabolism, such as increasing the risk of

developing diabetes (44) and cardiovascular disease (45).
3.2 Effects of the clock on
mitochondrial dynamics

The highly dynamic morphology of mitochondria is closely

regulated by the circadian clock. It was shown that the

mitochondria in cultured hepatocytes exhibited circadian

alteration that the number of the tubular structure of

mitochondria rhythmically decreased from the light to the dark

(46). In cultured fibroblasts, the mitochondrial structure also

showed rhythmic oscillations, a synchronous transformation from

the tubular structure at 16 h after serum shock to a fragmented

network at 28 h after serum shock (9). This rhythmic alteration of

mitochondrial morphology is affected by circadian clock disruption.

In the liver-specific BMAL1 KO mice, the dynamic morphology of

mitochondria lost rhythmic oscillation at different zeitgeber points

(10). These mitochondria manifested bigger and rounder, and

maintained a similar pattern throughout the day and night,

whereas wild-type mice showed a cyclical change in morphology

according to the surrounding changes (10).

Aiming to illustrate the rhythmic changes in mitochondrial

dynamics, the molecules related to mitochondrial dynamics have

been studied in recent years. Calcineurin, which has a strong

circadian rhythm (47), can dephosphorylate DRP1 at ser637 and

promote the transfer of DRP1 from the cytoplasm to the

mitochondrial membrane. Although the protein expression of

calcineurin is constant throughout the day, its activation is under

circadian regulation (47). Thus, the Ser637-phosphorylated DRP1

(P-DRP1) level exhibits circadian rhythm (9). The oscillations of

DRP1 phosphorylation bring different levels of mitochondrial

metabolism to adapt to environmental changes (9). It is also

shown that CLOCK can accelerate the degradation of DRP1

mRNA through competitively inhibiting PUF60 function, a

splicing factor that can improve DRP1 mRNA stability (48). The

loss of CLOCK activity may release PUF60, resulting in increased

DRP1 level and fragmented mitochondria (Figure 3) (48).

There are some other mediators linking mitochondria dynamics

to the clock, such as AMP-activated protein kinase (AMPK),

sirtuins (SIRTs) (9). AMPK is a serine/threonine kinase, whose

activity, subunit composition, and localization depend on the

circadian clock (49). For mitochondrial dynamics, AMPK not

only enhances mitochondrial fission and mitophagy by

phosphorylating MFF and recruiting DRP1 from cytoplasm under

energy stress (50), but also increases mitochondrial fusion by

increasing MFN2 expression during the fasting period, thereby

improving the efficiency of ATP generation (51). In addition, the

activated AMPK could phosphorylate PER2 and CRY, leading to

the efficient expression of CLOCK and BMAL1 and shorting the

period of the circadian clock (Figure 3) (52–54). SIRTs, a family of

NAD+ (nicotinamide adenine dinucleotide)-dependent protein

deacetylases, also play a significant role in the clock and
FIGURE 2

The transcription-translation feedback loop (TTFL) of the circadian
clock. The main TTFL is driven by BMAL1-CLOCK dimer combined
with E-box, and their negative regulators include the period (PER),
cryptochrome (CRY), casein kinases, and phosphatases, which form
a heterodimer in the cytoplasm and translocate into the nucleus to
inhibit the transcription of CLOCK-BMAL1. In the second TTFL, REV-
ERBa/b and RORa are also activated by CLOCK-BMAL1. REV-ERBa/
b negatively regulates BMAL1 transcription, but RORapositively
regulates BMAL1 transcription.
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mitochondrial dynamics. SIRT1 can promote the deacetylation and

degradation of PER2 by binding to the CLOCK-BMAL1

heterodimers, thus participating in the regulation of circadian

rhythm (55). Conversely, the CLOCK-BMAL1 can also influence

the level of SIRT1 by regulating the gene expression of nicotinamide

phosphoribosyl transferase (NAMPT), an important enzyme for the

production of NAD+ (56). Recent studies have shown that the

circadian clock can regulate the level of deacetylated OPA1 through

the NAD+/SIRT3 pathway (Figure 3) (54). Cardiac OPA1 is

hyperacetylated during pathological stress, and this modification

reduces its activity of GTPase, resulting in mitochondrial fusion

disorder (57). SIRT3 can deacetylate and activate OPA1, and

eventually restore mitochondrial dynamics (57). Overall,

mitochondrial dynamics are closely controlled by the clock and

exhibit a circadian rhythm.
4 Clock-controlled mitochondrial
dynamics in DCM

The clock-controlled mitochondrial dynamics are susceptible to

energy stress. Many studies have reported that circadian clock and

mitochondrial dynamics are disordered in the diabetic state (58–

61). The disordered clock-controlled mitochondrial dynamics

adversely affect cardiomyocytes through several underlying

mechanisms, including insulin resistance, cardiac lipotoxicity,

ROS, mitochondrial Ca2+ mishandling, decreased MMP, impaired

mitophagy and ER stress, which ultimately lead to the development

and progression of DCM (Figure 4).
Frontiers in Immunology 05
4.1 Clock-controlled mitochondrial
dynamics and insulin resistance

Insulin resistance is a critical pathophysiological abnormality

associated with DCM. Insulin resistance has many detrimental

effects on cardiomyocytes, such as decreased glucose uptake,

elevated lipid metabolites, and increased glycation reactions.

These harmful effects may lead to myocardial stiffness, reduced

ejection fraction, and heart failure (62). Insulin resistance is closely

related to mitochondrial dynamics disorder. In insulin-resistant

cardiomyocytes, mitochondrial dynamics are disordered,

manifested as decreased MNF1-mediated mitochondrial fusion

and increased DRP1-mediated mitochondrial division, resulting

in mitochondrial dysfunction and excessive ROS production (63).

The disordered mitochondrial dynamics also affect insulin secretion

and insulin signaling pathways. The overexpression of MFN1 or

MFN2 can promote mitochondrial fusion, accompanied by

improvement of insulin receptor substrate 1 (ISR1)-Akt signaling

and insulin-stimulated glucose absorption (64). On the contrary,

promoting mitochondrial division by overexpression of DRP1 and

FIS1 show the opposite behavior (64). MFN1/2 are also

demonstrated to be pivotal for glucose-stimulated insulin

secretion by controlling mitochondrial DNA content and may be

promising targets to restore glucose control in diabetes (65). Thus,

mitochondrial dynamics play a critical role in the physiological

function of insulin by impacting the insulin signaling pathway and

insulin secretion.

It is worth noting that insulin resistance is closely related to

circadian alteration. Under normal physiological conditions, insulin
FIGURE 3

The relevant mechanisms by which circadian clock controls mitochondrial dynamics. The circadian clock regulates mitochondrial dynamics through
influencing the molecules involved in it, including calcineurin, PUF60, AMPK, SIRT1 and SIRT3.
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secretion and insulin receptor sensitivity have a certain rhythm, that

is insulin secretion increasing during the day and decreasing during

the night, and insulin receptor sensitivity reaching a peak during the

day (66, 67). Nonetheless, the mice with circadian rhythm

disturbances induced by BMAL1 and CLOCK mutations showed

impaired glucose tolerance, reduced insulin secretion, and damaged

islet size and proliferation, which progressively worsened with age

(44). The insulin signaling pathways are also influenced by the

circadian system. A large number of insulin signaling proteins (e.g.

IRS1, Pik3r1, Akt1, and Akt2) in cardiomyocytes from clock mutant

mice are significantly reduced compared with that in wild-type

mice, which is consistent with the decreased insulin regulation of

glucose metabolism (68). Recently, by using chromatin

immunoprecipitation sequencing, researchers have found that

CLOCK and BMAL1 could bind to inner-mitochondrial genes

related to insulin sensitivity, suggesting that the relationship

between circadian rhythm and insulin resistance may be related

to mitochondrial dynamics (69). Jacobi and his colleagues also

observed insulin resistance when they studied changes in

mitochondrial dynamics by knocking out the BMAL1 gene (10).

Consistently, Ye et al. observed that BMAL1 inhibition resulted in

mitochondrial dynamics disorder, as well as impaired insulin

signaling in pancreatic beta cells (70). Thus, mitochondrial

dynamics are inherently influenced by clock rhythm, and the

disordered clock-controlled mitochondrial dynamics may lead to

insulin resistance and promote DCM.
4.2 Clock-controlled mitochondrial
dynamics and cardiac lipotoxicity

Lipid accumulation is a common feature of the diabetic heart.

Lipids that exceed the storage and oxidation capacity of the heart

may produce a variety of lipotoxic intermediates, including

ceramides, diacylglycerol, and oxidized phospholipids, which are
Frontiers in Immunology 06
detrimental to cardiac morphology and function (71). The lipotoxic

intermediates contribute to the development of DCM by triggering

cellular signaling (such as cellular metabolism, growth, and

proliferation) and modifications of proteins and lipids (72). It is

worth noting that the accumulation of lipids and the production of

lipotoxic intermediates in the heart is associated with abnormal

mitochondrial dynamics (73). Carnitine palmitoyl transferase 1

(CPT1) is the rate-limiting enzyme of b-oxidation that

determines the rate of fatty acid entry into mitochondria. Wang

et al. have shown that the abnormal activation of DRP1 in mice

deficient in low-density lipoprotein receptor-related protein 6 could

inhibit the activity of the CPT1 transcription factors CTCE and c-

Myc, leading to fatty acid accumulation and heart failure (74).

Ceramides are more directly related to mitochondrial dynamics. A

large accumulation of ceramides may lead to mitochondrial

fragmentation and mitochondrial apoptotic pathways, thereby

promoting cell death and insulin resistance (75, 76). Recent

studies have shown that the increased ceramide synthase 6, a key

enzyme in ceramide synthesis, is associated with fragmented

mitochondria and insulin resistance in high-fat diet induced

obese mouse models (77, 78), and that inhibition of ceramide

synthase 6 improves mitochondrial function and insulin signaling

(78). Similarly, downregulation of DRP1 decreases mitochondrial

fission and protects H9C2 cells from lipotoxicity (79). These

findings provide evidence that abnormal mitochondrial dynamics

are closely associated with cardiac lipotoxicity in diabetes.

It is not surprising that the lipid uptake and oxidation are

controlled by circadian clock. Under physiological conditions, the

myocardium rhythmically takes up and utilizes lipid in response to

variable environmental conditions (80). Disruption of circadian

rhythms induced by genetic or environmental perturbation results

in abnormal cardiac lipid metabolism, imbalances in lipid

availability, and lipid oxidation rates, leading to the accumulation

of intercellular lipotoxic derivatives (81, 82). Peroxisome

proliferator-activated receptor (PPAR) a is a master nuclear
FIGURE 4

The role of clock-controlled mitochondrial dynamics in DCM. The disturbed clock-controlled mitochondrial dynamics may affect insulin signaling,
lipid metabolism, mitochondrial ROS production, Ca2+ processing, MMP, mitophagy and ER stress, resulting in lipid accumulation, inflammation,
myocardial fibrosis, cardiac hypertrophy, cardiac apoptosis and microvascular damage, and ultimately participate in the development of DCM.
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receptor, which plays a critical role in lipid metabolism through

regulating lipid transport, esterification, and oxidation. Abnormal

expression of PPARa in the heart is thought to be an important

player in cardiac lipotoxicity (83). This conception is supported by

previously published experimental data showing that

overexpression of PPARa leads to lipid accumulation and the

development of DCM (84), and that pharmacological inhibition

of PPARa reduces cardiac lipotoxicity in diabetes (84, 85). Recent

studies have shown that the PPARa gene can be transactivated by

the CLOCK/BMAL1 heterodimer via an E-BOX-dependent

mechanism (86). The mutation of BMAL1/CLOCK increases

PPARa mRNA N6-methyladenosine, which affects PPARa
stability and increases lipid accumulation (86–88), suggesting that

the circadian clock is also involved in lipid metabolism. However,

under diabetic condition, the disturbed circadian clock is frequently

accompanied by disordered mitochondrial dynamics and cardiac

lipotoxicity (71, 89, 90). Collectively, currently available research

findings suggest that restoring clock-controlled mitochondrial

dynamics may be an effective way to reduce DCM by reducing

cardiac lipotoxicity.
4.3 Clock-controlled mitochondrial
dynamics and mitochondria-generated ROS

The role of mitochondria-generated ROS in DCM is well-

established (91). It is well demonstrated in diabetes that

cardiomyocytes from animal models and patients display

mitochondrial dysfunction and overproduction of ROS (92–94).

Large amounts of ROS result in the damage of cardiomyocyte

proteins, lipids, and DNA, eventually leading to the development of

DCM (91). It is worth noting that abnormal mitochondrial

morphology is intricately linked to the excessive production of

ROS. Increasing studies have shown large amounts of fragmented

mitochondria in diabetic cardiomyocytes, accompanied by

excessive ROS production, which is reduced by inhibition of

mitochondrial fission through decreasing DRP1 expression (95,

96). Additionally, improving OPA1 expression could decrease

mitochondrial ROS generation by stabilizing oligomers and

activity of ATPase, which is a key enzyme in ATP generation

using electron potential energy to produce ATP (28, 97). Notably,

the excessive mitochondrial ROS in the heart could promote

mitochondrial fission by decreasing DRP1 phosphorylation and

decrease mitochondrial fusion by altering OPA1 hydrolysis (98).

Thus, it is understandable that the fragmented mitochondria

induced by hyperglycemia can be restored with ROS scavenger

(99). Therefore, the disordered mitochondrial dynamics and

excessive ROS production may interact with each other, and it is

a vicious cycle in diabetes.

ROS production in the process of mitochondrial metabolism

in the physiological state has a circadian oscillation rhythm.

Mitochondria generate more ROS at sleep onset relative to the

wake period, due to higher levels of the clock genes BMAL1 and

CLOCK at sleep onset (100). A recent study has indicated the

decay of circadian genes (PER, TIM, CLOCK) oscillation with

elevated ROS levels in diabetes (101). The disruption of clock
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components can impact ROS production. In the pancreatic b-cell
line, BMAL1 knockdown triggers an increase of the ROS content

and impairs glucose-stimulated insulin secretion, the hallmark of

the pancreas islet function in diabetes (102). Similarly, the loss of

CLOCK gene increased ROS production and impaired cardiac

structure and function (103). PER1-deficient mice also show

impaired ROS-production rhythm with lower glutathione

peroxidase activity and higher ROS level (104). In addition to

affecting ROS production, the circadian clock also affects the anti-

oxidative system. BMAL1 interacts with HSPB1, a small heat

shock protein that resists ROS via S-thiolated modification, to

reduce oxidative damage in cardiomyocytes (105). PER interacts

with glutathione peroxidase to withstand oxidative stress, and

reduced PER expression will diminish the activity of glutathione

peroxidase (104). Recent studies have indicated that a disordered

circadian clock may increase ROS generation or weaken

antioxidant activity and is often accompanied by mitochondrial

dynamics dysfunction. The disruption of functional CLOCK gene

in cardiac myocytes impaired the expression of mitochondrial

fusion proteins OPA1 and MFN2, resulting in fragmented

mitochondria and the accumulation of mitochondrial-generated

ROS (103). Further study indicated the CLOCK could improve

mitochondrial dynamics and function by stabilizing DRP1

mRNA expression (48). In CLOCK mutation mice, abnormal

accumulation of DRP1 leads to fragmented mitochondria and

increased ROS levels (48). Together, these results suggest that

mitochondrial-generated ROS is impacted by circadian-

controlled mitochondrial dynamics and plays an important role

in DCM.
4.4 Clock-controlled mitochondrial
dynamics and mitochondrial Ca2+ handling

The abnormal Ca2+ signaling is a critical feature of DCM,

notably mitochondrial Ca2+ mishandling (106). Mitochondrial

Ca2+ handling normally provides a basis for normal excitation-

contraction coupling and mitochondrial energy supply, but the

disordered Ca2+ concentration in the mitochondrial matrix in

diabetes contributes to decreased ATP generation and increased

cardiomyocyte damage (8, 106, 107). Mitochondrial Ca2+

mishandling is affected by abnormal mitochondrial dynamics. In

cultured cardiomyocytes, FIS1-induced mitochondrial

fragmentation could reduce mitochondrial Ca2+ uptake (108). A

similar observation is made later in the myofibers, where the

inhibition of DRP1 could increase Ca2+ concentration in the

mitochondrial matrix during the phase of electrical stimulation,

and increase the expression of mitochondrial calcium uniporter

(MCU), an important channel for mitochondrial Ca2+ uptake (109).

The mitochondria-associated ER membrane (MAM), a critical

regulator affecting mitochondrial Ca2+ handling, is also

demonstrated to be affected by mitochondrial dynamics. In fly

fruit hearts, MFN2 deficiency impair the physical contact between

mitochondria and ER and decrease the protein content associated

with MAM, resulting in reduced mitochondrial Ca2+ uptake (110).

A further study has also shown that the disordered MAM induced
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by MFN2 knockdown impairs ER Ca2+ release and decreases ATP

generation in ventricular myocytes (111). Additionally, the

mutation of OPA1 could reduce the distance between ER and

mitochondria, suggesting OPA1 is necessary for mitochondrial

Ca2+ handling (112).

Notably, mitochondrial Ca2+ handling itself has circadian

oscillations and is controlled by clock system. A recent study

applied calcium pulses to isolate mitochondria in mouse hearts at

different periods to assess the calcium retention capacity and

calcium uptake rate of mitochondria, showing mitochondria have

higher calcium retention capacity and calcium absorption rate

during the sleep stage (100). For some critical proteins of

mitochondrial Ca2+ handling, MCU and sodium/calcium

exchanger had higher expression levels at sleep onset relative to

the wake phase (100). And, other proteins participated in

mitochondrial Ca2+ handling are also influenced by the circadian

clock, such as ryanodine receptors (RyR). The circadian complex

CLOCK/BMAL1 can bind to the E-box of the RyR gene and impact

its gene expression (113). In the suprachiasmatic nucleus of BMAL1

KO mice, the levels of RyRmRNA and RyR protein are significantly

reduced, as well as the decreased intracellular Ca2+ concentration

(114). In the models of disordered circadian clock, dysfunctional

mitochondrial dynamics and mitochondrial Ca2+ mishandling are

well observed (9, 100). Hyperglycemia is inherently a critical player,

causing circadian clock disturbance, dysfunctional mitochondrial

dynamics and mitochondrial Ca2+ mishandling (89, 90, 106). These

findings provide important insights that clock-controlled

mitochondrial dynamics may regulate mitochondrial Ca2+

handling and influence the development of DCM.
4.5 Clock-controlled mitochondrial
dynamics and mitochondrial
membrane potential

Mitochondria produce ATP through the electron transport

chain, which creates an electrochemical gradient and generates

mitochondrial membrane potential (MMP) (115). MMP is an

important parameter for evaluating mitochondrial function and

activity (116). Normal MMP is the key condition for mitochondrial

oxidative phosphorylation, and its stability contributes to

maintaining normal physiological function of the cells (115, 117).

The abnormality of MMP may be attributable to apoptosis, ROS,

and abnormal autophagy (118, 119). Mitochondrial dynamics is

closely linked to MMP. In diabetic hearts, both abnormal MMP and

dysfunctional mitochondrial dynamics are commonly observed.

Diabetic hearts from db/db mice show excessive fragmented

mitochondria and decreased MMP. Increased fusion events

through reconstituting MFN2 in DCM restored the MMP and

mitochondrial function (120). The lipotoxic hearts also exhibit

impaired mitochondrial fusion due to decreased OPA1 expression

and abnormal MMP (98). Further studies have revealed that the

specific mechanism by which OPA1 changes MMP may be related

to changes in mitochondrial cristae architecture (117). Moreover,

the loss of MMP destabilizes the L-OPA1 structure, leading to

increased OPA1 cleavage and consequent impact on mitochondrial
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fusion (121). Likewise, in cardiomyocytes treated with high glucose,

the inhibitors of DRP1, Mdivi-1, not only decreased excessive

mitochondrial fission but also alleviated the decreased MMP (122).

MMP is also influenced by the circadian clock. Under normal

physiological conditions, MMP has certain oscillatory patterns and

is also associated with mitochondrial activity. A study shows that, in

the suprachiasmatic nucleus of rats, MMP is higher during the light

period than the dark period (123). In semi-anaerobic yeast cells,

MMP is oscillating, and this oscillation may be related to

mitochondrial metabolic activity (124). Further research indicates

that this oscillatory pattern correlates with mitochondrial dynamics,

mitochondrial fusion along with high MMP (125). Disruption of

circadian rhythm leads to abnormal MMP and imbalance in

mitochondrial dynamics. In pancreatic beta cells, the loss of

BMAL1 decreased the expression of MNF1/2 and increased the

expression of FIS1, accompanied by decreased MMP and impaired

pancreatic function (70). Similarly, CLOCK-deficient cardiac

myocytes showed excessive mitochondrial fission, loss of MMP,

and impaired cardiac structure (103). Therefore, it can be

speculated that the disordered clock rhythm under diabetic

conditions can lead to the dysfunction of mitochondrial dynamics

and the decrease of MMP, thereby increasing myocardial damage.
4.6 Clock-controlled mitochondrial
dynamics and mitophagy

Hyperglycemia can easily lead to mitochondrial damage in

diabetes. The progressive mitochondrial damage in cardiomyocytes

leads to lipid accumulation and excessive oxidative stress, resulting in

the development of DCM (126). To prevent damage to dysfunctional

mitochondria, a selective degradation system referred to as

“mitophagy” is activated to remove dysfunctional mitochondria

(126). However, increasing studies demonstrate impaired

mitophagy in diabetes (127, 128). Although the molecular

mechanism of impaired mitophagy in DCM has not been fully

clarified, recent findings imply that abnormal mitochondrial

dynamics are involved. PINK/Parkin are critical molecules in

ubiquitin-dependent mitophagy (129). In mouse cardiomyocytes,

the OMM guanosine triphosphatase MFN2 could mediate Parkin

recruitment to the damaged mitochondria via a PINK-dependent

manner (130). Downregulation of MNF2 expression prevents

depolarization-induced translocation of Parkin to the damaged

mitochondria and inhibits mitophagy (130), which contributes to

the development of DCM (120). Likewise, DRP1 disruption in

cardiomyocytes leads to imbalanced mitochondrial dynamics, and

suppresses mitophagy via reducing the formation of

autophagosomes, resulting in cardiac dysfunction (131). In cultured

H9C2 cardiomyocytes, the overexpression of OPA1 promotes

mitochondrial fusion and stimulates mitophagy, thereby

attenuating high glucose-induced cardiomyocytes injury (132).

These findings suggest that mitochondrial dynamics are involved in

the regulation of mitophagy and thus influence the development

of DCM.

Mitophagy is also demonstrated to be regulated by circadian

clock. The key regulators of mitophagy, PINK/Parkin, are
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rhythmically expressed under clock control in response to

environmental changes (103). The disruption of clock rhythm

reduces the expression levels of PINK/Parkin, leading to

suppressed mitophagy and myocardial dysfunction (103). BNIP3

is one of the important molecules of receptor-dependent mitophagy

(129). It has been shown that BMAL1 binds to the E-BOX element

in the promoter region of BNIP3 gene and regulates the level of

BNIP3 protein oscillation in human embryonic stem cell-deprived

cardiomyocytes (133). Downregulating BMAL1 expression directly

reduces BNIP3 expression, leading to compromised mitophagy and

cardiomyocyte dysfunction (133). Recently, Jacobi et al. have

indicated that mitochondrial fission and mitophagy proteins show

a similar diurnal pattern in the livers of WT mice (10). However,

their levels fail to cycle and are significantly reduced in BMAL1 KO

mice, and mitochondrial fission and mitophagy-related genes

DRP1, FIS1, PINK1, and BNIP3 are also greatly reduced,

manifested by fragmented mitochondria and suppressed

mitophagy (10). In cardiomyocytes, similarly, the loss of CLOCK/

BAML1 expression may impair mitochondrial dynamics and

suppress mitophagy, leading to dysfunctional mitochondria and

cardiac injury (103, 133). Thus, the disordered circadian clock-

controlled mitochondrial dynamics contributes to compromised

mitophagy, which promotes the development of DCM.
4.7 Clock-controlled mitochondrial
dynamics and ER stress

The main function of ER is protein folding and assembly.

Hyperglycemia and hyperlipidemia in diabetes impair ER function,

leading to the accumulation of unfolded proteins (134). This process

can be prevented by a quality control system termed unfolded protein

response (UPR), a signal transduction pathway alleviating the

accumulation of abnormal proteins in the ER lumen (135). If the

UPR is not able to process these unfolded proteins within a certain

time lapse, it will induce cardiomyocyte apoptosis and promote the

progress of DCM (136). In animal models of diabetes, ER stress has

been shown to contribute to cardiac apoptosis, as evidenced by the

induction of UPR signaling proteins and ER stress-associated

apoptosis signaling proteins (71). UPR mainly contains three

signaling pathways, protein kinase RNA-like ER kinase/activating

transcriptional factor 4 (PERK/ATF4), inositol-requiring protein1a/
X-box binding protein (IRE1a/XBP1), and activating transcriptional

factor 6 (ATF6) pathways (134), which are demonstrated to be

influenced by mitochondrial dynamics. The overactivated UPR

branches such as PERK and ATF6 in hyperglycemia-treated

cardiomyocytes can be alleviated by reducing MFN2 expression

(137), and downregulation of MFN2 could attenuate mitochondrial

dysfunction and ER-stress induced cardiomyocytes apoptosis (138).

An opposite finding performed by other researchers suggests that

MNF2 can suppress PERK activity through direct interaction under

basal conditions, but hyperglycemia inhibits MFN2 expression and

promotes the reduction of MNF2-PERK interaction, thereby MNF2

overexpression could alleviate the abnormal activation of PERK

pathway, cardiomyocytes apoptosis and mitochondrial dysfunction

(139, 140). In addition, DRP1 is also involved in ER stress- induced
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pancreatic b-cell apoptosis through the process of mitochondrial

fission, cytochrome c release, ROS generation and caspase-3

activation (141).

It is worth noting that many proteins related to UPR and ER

stress are closely regulated by circadian rhythms (142). The

circadian clock can coordinate the rhythmic activation of IRE1a
in 12-hour cycles to respond to the metabolic demands of organism.

However, in Cry1/Cry2 KO mice liver, the rhythmic activation of

IRE1a was lost, accompanied by disrupted lipid metabolism (143).

A similar study was conducted in CLOCK mutant mice, showing

the UPR-related genes in liver such as PERK, IRE1a, and ATF6,

were significantly up-regulated as compared to the WT mice (142).

Additionally, the disruption of circadian rhythms caused by sleep

deprivation or gene mutant in pancreas contributed to ER stress,

resulting in the loss of pancreatic beta-cells and the development of

diabetes (144, 145). Recent studies have shown that disturbing

circadian clock can lead to ER stress and affect UPR-related protein

expression, accompanied by disturbed mitochondrial dynamics

(145, 146). Considering that the circadian clock is inherently

susceptible to hyperglycemia (89), and that there exists disturbed

mitochondrial dynamics and ER stress in diabetic myocardium (90,

134), it can be speculated that restoring the clock-controlled

mitochondrial dynamics may inhibit ER stress and alleviate the

development of DCM.
5 Clock-controlled mitochondrial
dynamics as a novel therapeutic
target in DCM

There is a lack of effective therapeutic approaches for DCM due

to its complex etiology. However, glycemic control is still the core

part. In healthy subjects, the combination of basal glucose

production and insulin-mediated suppression of glucose

production, in alliance with oscillatory insulin levels, keeps

glycemia stable throughout the day (147). The glycemia in

patients with diabetes has a special oscillatory pattern, manifested

as increased glycemic variability with specific circadian

characteristics (148, 149). Epidemiological evidence suggests that

irregular eating habits, reduced light exposure, increased night shift

hours, nocturnal light exposure, and sleep deprivation disrupt the

circadian clock and increase the risk of diabetes (150, 151). Thus, it

is understandable that enhancing circadian clock rhythms through

adjusting lifestyle contributes to prevention and treatment of

diabetes-associated complications (152).

The potential novel drugs targeting clock-controlled

mitochondrial dynamics are also imminent. The first circadian

clock-based drug was melatonin, a hormone secreted by the

pineal gland (153). Exogenous melatonin supplementation

increased ROR levels in diabetic myocardium, and prevented the

development of DCM via reducing dysfunctional mitochondria, ER

stress, myocardial apoptosis, autophagy dysfunction, and oxidative

stress damage (60, 153, 154). In recent years, a number of small-

molecule chemical enhancers targeting the circadian system have

been developed, such as Nobiletin, CRY activator (KL001), Rev-
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ERB-a/b agonist (especially SR9011/SR9009), and so on (The

mechanism of their action is given in Table 1). These chemical

compounds restored cardiac circadian rhythms and oscillatory

patterns of metabolic gene expression, resulting in phenotypical

improvements in insulin resistance, lipotoxicity, oxidative stress,

and dysfunctional mitochondrial dynamics (153, 155–158, 161–

163). Notably, improving mitochondrial dynamics is also a critical

approach to restore myocardial function in diabetes. It is well

demonstrated that inhibiting mitochondrial fission or increasing

mitochondrial fusion has beneficial effects on diabetic hearts. Ding

et al. suggest that the administration of mitochondrial fusion

promoter-M1 can restore mitochondrial dynamics balance and

attenuate DCM via an OPA1-dependent way (28). Similarly, Hu

et al. have shown that reconstitution of MFN2 in diabetic

myocardium inhibits mitochondrial fission and prevents DCM

progress (120). In a mouse model of diabetes, increasing MFN2

expression could improve mitochondrial function, inhibit

mitochondrial oxidative stress, and reduce cardiomyocyte

apoptosis (160). In addition, melatonin attenuates the

development of diabetes-induced cardiac dysfunction by

preventing DRP1-mediated mitochondrial fission through the

SIRT1-PGC1a pathway (164). Therefore, the interventions

involving in circadian clock and mitochondrial dynamics are

promising approaches for the treatment of DCM (The summary

of potential drugs were shown in Table 1).
6 Conclusion

Circadian clock-controlled mitochondrial dynamics are critical

for the normal structure and function of the heart. Alternations in

the circadian clock and mitochondrial dynamics in diabetes play an

important role in the pathophysiological process of DCM. In this

review, we summarize the relevant pathways of circadian clock-
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controlled mitochondrial dynamics and discuss how the disruption

of circadian clock and mitochondrial dynamics impact multiple

etiologies of DCM, including insulin resistance, cardiac lipotoxicity,

mitochondria-generated ROS, mitochondrial Ca2+ handling, MMP,

mitophagy, and ER stress. This study also provides a strong

rationale for targeting the circadian clock and mitochondrial

dynamics in the treatment and prevention of DCM. Further

studies are urgently needed to identify and characterize the

mechanisms of action of novel chemical and endogenous

modulators of the circadian clock and mitochondrial dynamics to

prevent heart damage in diabetic states.
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TABLE 1 Summary of potential interventions involving clock-controlled mitochondrial dynamics in DCM.

Potential drugs Effects on clock circadian/mitochondrial
dynamics Other effects on DCM References

Melatonin
Increase RORa expression
Increase DRP1 expression

Decrease myocardial apoptosis
Reduce oxidative stress
Mitigate myocardial hypertrophy and cardiac
fibrosis
Improve cardiac diastolic function

(60, 153, 155)

Nobiletin
Enhance amplitude of circadian rhythms
Enhance RORa/g transcriptional activity
Increase BMAL1 expression

Improve glucose tolerance and insulin sensitivity
Increase insulin secretion

(155, 156)

KL001 Increase CRY level Suppress glucose production (157)

SR9011/
SR9009

Increase REV-ERBa/b expression
Decrease triglyceride synthesis
Increase lipid and glucose oxidation
Mitigate cardiac fibroblasts

(158, 159)

Mitochondrial fusion promoter-
M1

Increase OPA1 expression
Improve mitochondrial function
Inhibit myocardial apoptosis
Decrease ROS generation

(28)

Nicotinamide riboside Increase MFN2 expression
Reduce cardiomyocyte apoptosis
Decrease ROS generation

(120, 160)
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