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Identification of cuproptosis-
associated subtypes and
signature genes for diagnosis
and risk prediction of
Ulcerative colitis based
on machine learning
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1Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China,
2Department of Anorectal Disease, Hospital of Chengdu University of Traditional Chinese Medicine,
Chengdu, China
Background: Ulcerative colitis (UC) is a chronic and debilitating inflammatory

bowel disease that impairs quality of life. Cuproptosis, a recently discovered form

of cell death, has been linked to many inflammatory diseases, including UC. This

study aimed to examine the biological and clinical significance of cuproptosis-

related genes in UC.

Methods: Three gene expression profiles of UC were obtained from the Gene

Expression Omnibus (GEO) database to form the combined dataset. Differential

analysis was performed based on the combined dataset to identify differentially

expressed genes, which were intersected with cuproptosis-related genes to

obtain differentially expressed cuproptosis-related genes (DECRGs). Machine

learning was conducted based on DECRGs to identify signature genes. The

prediction model of UC was established using signature genes, and the

molecular subtypes related to cuproptosis of UC were identified. Functional

enrichment analysis and immune infiltration analysis were used to evaluate the

biological characteristics and immune infiltration landscape of signature genes

and molecular subtypes.

Results: Seven signature genes (ABCB1, AQP1, BACE1, CA3, COX5A, DAPK2, and

LDHD) were identified through the machine learning algorithms, and the

nomogram built from these genes had excellent predictive performance. The

298 UC samples were divided into two subtypes through consensus cluster

analysis. The results of the functional enrichment analysis and immune infiltration

analysis revealed significant differences in gene expression patterns, biological

functions, and enrichment pathways between the cuproptosis-relatedmolecular

subtypes of UC. The immune infiltration analysis also showed that the immune

cell infiltration in cluster A was significantly higher than that of cluster B, and six of

the characteristic genes (excluding BACE1) had higher expression levels in

subtype B than in subtype A.
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Conclusions: This study identified several promising signature genes and

developed a nomogram with strong predictive capabilities. The identification

of distinct subtypes of UC enhances our current understanding of UC’s

underlying pathogenesis and provides a foundation for personalized diagnosis

and treatment in the future.
KEYWORDS
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Introduction

Ulcerative colitis (UC) is a chronic bowel disease with an

unclear etiology and multi-factorial, multi-layered inflammation

(1). The main symptoms of early UC include weight loss, frequent

bowel movements, pain, and abdominal discomfort, and often more

severe symptoms as the disease progresses. The incidence of UC has

been increasing globally, but it remains difficult to cure, with only

15% of patients experiencing an aggressive course and some even

developing dysplasia and colorectal cancer (2, 3). Although the

exact cause of UC is unknown, it is believed to be linked to

microbial imbalances, immune response, and genetic

susceptibility (4, 5). Therefore, further exploring the exact

etiology and pathogenesis of UC at the molecular level and

accurately distinguishing UC subtypes can provide assistance for

the diagnosis, treatment and prognosis of UC.

For eukaryotes, copper participates in many important

biological processes in the body and is an indispensable trace

element (6). In a recent study, cuproptosis was discovered as a

new form of controlled cell death, triggered by copper and different

from cell death caused by oxidative stress, such as apoptosis and
02
necroptosis (7). The specific mechanism is: the key protein in the

tricarboxylic acid cycle in the mitochondrial respiration

mechanism-fatty acylated protein directly combines with copper

ions, resulting in the loss of iron-sulfur cluster protein, which in

turn causes cell death (Figure 1) (7, 8). This study challenges the

long-held belief that oxidative stress is a critical molecular

mechanism of metal-induced toxicity and lends credence to the

theory that mitochondria are complex regulators of cell death (9). In

previous studies, in addition to normal programmed death, the

occurrence of UC was found to be closely related to special cell

death methods such as ferroptosis (10, 11). Previous studies have

found that most UC patients have obvious copper metabolism

abnormalities (12–14). Correspondingly, in some studies, copper is

considered to be a key element in the body’s immune regulation

mechanism (15–17). It has also been found that in the gut,

mitochondrial metabolism and function play a key role in

immune cell activation (18), and this is how copper ions direct

cell death. Therefore, we believe that cuproptosis is closely related to

the pathophysiology of UC.

In summary, in order to explore the pathogenesis of UC and the

involvement of cuproptosis in the development of UC, we collected
FIGURE 1

Schematic diagram of the mechanism of cuproptosis occurrence in cells.
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microarray datasets containing UC and normal tissues from the

Gene Expression Omnibus (GEO) database (19). We then

performed differential analysis and intersected with cuproptosis-

related genes. We used three machine learning algorithms to screen

out 7 signature genes, and then developed a novel nomogram based

on the 7 signature genes to aid in the early detection of UC. In

addition, we conducted an unsupervised cluster analysis of 298 UC

patients based on 7 signature genes to reveal the heterogeneity

among UC patients and determine a new UC classification. Finally,

we explored the biological functions and immune mechanisms

associated with each UC cluster using bioinformatics methods.
Materials and method

Data collection and processing

We searched the GEO database using the keyword “ulcerative

colitis” and vetted the dataset based on stringent inclusion/

exclusion criteria. The inclusion criteria are: (a) only healthy

control samples and UC patients’ genome-wide expression

profiles are present in the datasets; (b) there are at least 10 UC

samples and 10 healthy control samples in each dataset; (c) the test

specimens in the datasets should be derived from human colon

mucosal biopsy samples. The exclusion criteria are as follows: (a)

the datasets contain samples of inflammatory bowel diseases other

than UC. Finally, three microarray datasets were selected from GEO

according to the inclusion/exclusion criteria. Three datasets

[GSE38713 (20), GSE87473 (21), and GSE92415 (22)] containing

UC and normal tissues were downloaded from the GEO database

using the GEOquery package (https://www.bioconductor.org/

packages/3.1/bioc/html/GEOquery.html) of R software (version

4.2.1) (23), and a total of 298 UC and 55 non-UC healthy

participants were collected for the study (Table 1). The probe IDs

of each gene were mapped to gene symbols. When multiple probe

IDs were associated with a single gene symbol, the gene’s expression

value was determined by taking the average expression of the

corresponding probe IDs. For further analysis, we performed

background calibration, normalization, and log2 transformation

on all data. To avoid batch effects, a unified GEO dataset was

created using the comBat function of the Bioconductor “sva” R
Frontiers in Immunology 03
package (https://www.bioconductor.org/packages/release/bioc/

html/sva.html) (24). In addition, based on the same rigorous

screening steps and preprocessing methods, we downloaded the

GSE87466 dataset for validation (21). The details of all training and

test sets are provided in Table 1. On the other hand, using

“Cuproptosis” as the key word, the cuproptosis-related genes were

retrieved from the Molecular Signature (MsigDB) database (http://

www.gsea-msigdb.org/gsea/msigdb/) and summarized with the

cuproptosis-related genes in previous studies (7, 15). After

removing duplicates, we obtained a total of 61 cuproptosis-

related genes.
Identification and functional enrichment of
differentially expressed genes associated
with UC

In the combined dataset, we screened out differentially expressed

genes (DEGs) between UC and normal samples with |log2 fold

change (FC)| > 0.3 and adjust p-value < 0.05 as the threshold, and

visualized the results using the “limma” R package (https://

www.bioconductor.org/packages/3.0/bioc/html/limma.html) to

draw volcano maps and heat maps (25). Afterwards, we performed

Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis on the DEGs using

the “clusterProfiler” package in R (https://www.bioconductor.org/

packages/3.1/bioc/html/clusterProfiler.html) (26).
Immune cell infiltration analysis

Due to the special immune pathogenesis of UC, understanding the

infiltration of immune cells has irreplaceable significance for

understanding disease progression and treatment. As an extension of

the GSEA method, single-sample gene set enrichment analysis

(ssGSEA) is widely used in bioinformatics studies related to immune

infiltration. Therefore, we assessed the relative infiltrate abundance and

immunological signature of all UC and normal tissue samples using the

“GSVA” package (https://www.bioconductor.org/packages/3.1/bioc/

html/GSVA.html) in R based on the ssGSEA algorithm (27, 28).
TABLE 1 Basic information about the microarray data set for ulcerative colitis.

GEO Dataset Platform Samples UC Control

Training set:

GSE87473 GPL13158 127 colon biopsy samples 106 active UC samples 21 controls

GSE38713 GPL570 43 colon biopsy samples
8 inactive UC samples
22 active UC samples

13 controls

GSE92415 GPL13158 183 colon biopsy samples 162 active UC samples 21 controls

Validation set:

GSE87466 GPL13158 108 colon biopsy samples 87 active UC samples 21 controls
fro
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Identification of signature genes by
machine learning

We intersected cuproptosis-related genes with DEGs, and the

overlapping genes were defined as differentially expressed

cuproptosis-related genes (DECRGs). To identify potential

biomarkers for UC, DECRGs were further screened using three

machine learning algorithms: Least Absolute Shrinkage and

Selection Operator (LASSO), Support Vector Machine Recursive

Feature Elimination (SVM-RFE), and Random Forest (RF). Among

them, the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm finds the best model by introducing l (lambda, also known

as the penalty value, or shrinkage operator), at the same time, a

penalty function is generated to compress the regression coefficients

of the variables in the regression model, so eliminating the major

covariance problem and preventing overfitting. The package

“glmnet” (https://cran.r-project.org/web/packages/glmnet/) is used

to implement this in R software (29). Support vector machine

recursive feature elimination (SVM-RFE) based on the “caret”

package (https://cran.r-project.org/web/packages/caret/) is an

extremely powerful algorithm that assigns corresponding weights to

two variables through the SVM algorithm (30, 31), and obtains

smaller and smaller feature subsets through recursive screening,

and use the RFE algorithm to select the optimal feature subset, and

then obtain the optimal variables through 10-fold cross-validation.

The Random Forest (RF) algorithm based on the “randomForest”

package (https://cran.r-project.org/web/packages/randomForest/)

(32)was designed to predict continuous variables and provide little

fluctuating predictions for more accurate UC biomarkers.

Subsequently, we observed the prediction accuracy of the feature

genes obtained from the three machine learning algorithms in the

validation set, and visualized the results as ROC curves, and then

plotted the cumulative residual distribution of the three models to

compare the screening performance of the three together.
Construction and validation of the
predictive model

The “gglot2” package (https://sourceforge.net/projects/

ggplot2.mirror/) was used to build the nomogram of the signature

gene-based UC risk prediction model (25), and the “pROC” R

package (https://cran.r-project.org/web/packages/pROC/) was used

to perform receiver operating characteristic (ROC) analysis to

further evaluate the ability of the prediction model (33). Based on

the “pacman” package (https://cran.r-project.org/web/packages/

pacman/) (34), a calibration curve of the nomogram was drawn

to verify its accuracy. Decision curve analysis (DCA) was performed

using the “limma” package of R software to evaluate the clinical

predictive value of the model. Finally, based on GSE87466 data set,

calibration curve and ROC analysis were used to further evaluate

the prediction performance of the prediction model.
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Identification of cuproptosis subtypes in
ulcerative colitis

First, we classified 298 UC tissue samples into various clusters

using an unsupervised hierarchical clustering analysis based on the

7 hallmark genes identified by machine learning (35). Principal

component analysis (PCA), cumulative distribution function (CDF)

curves, and consensus cluster scores were used to determine the

optimal number of clusters. Subsequently, based on three different

databases, we performed gene set variation analysis (GSVA) on the

pathways of UC in different subclusters of cuproptosis discovered

by cluster analysis (27), and drew a heat map to visualize the results.

In addition, we evaluated the immune microenvironment of two

different clusters to compare the differences in immune cell

infiltration between them. Finally, we performed differential

expression analysis of two gene subclusters of UC in cuproptosis,

and functional enrichment analysis of differential genes to describe

their biological functions. All the above analysis were performed

using the corresponding packages (“ConsensusClusterPlus”

(https://www.bioconductor.org/packages/2.7/bioc/html/

ConsensusClusterPlus.html) (35), “limma”,”clusterProfiler”,

”GSVA” and “GSEABase” (https://www.bioconductor.org/

packages/3.0/bioc/html/GSEABase.html) (36) packages) in the R

software. |log2 fold change (FC)| > 0.5 and adjust p value < 0.05

were considered statistically significant.
Statistical analysis

All data processing, statistical analysis and plotting work were

performed using R software (version 4.2.1). Differences between

two groups were analyzed using Wilcoxon rank-sum test or

Student’s t test. The Spearman correlation analysis was employed

to determine correlations between immune cells and immune cells,

as well as between immune cells and signature genes. The level of

statistical significance was set at P value < 0.05.
Results

Data preprocessing and identification
of DEGs

The normalization, batch correction, and log2 transformation

of the three microarray datasets produced a combined dataset,

which was subjected to differential analysis. Filters of |log2 fold

change (FC)| > 0.3 and adjusted p-value < 0.05 were employed

during the analysis. The analysis resulted in the identification of a

total of 4177 DEGs, including 2122 upregulated and 2055

downregulated genes. The visualization of the DEGs in the form

of a volcano plot and heat map is presented in Figures 2A, B.
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Function and pathway enrichment analyses

We conducted GO enrichment analysis and KEGG pathway

enrichment analysis to further investigate the possible biological

roles of DEGs. The results of the analysis indicated that these DEGs

were largely involved in several biological activities, including

positive regulation of cytokine production, positive regulation of

cell adhesion, leukocyte migration, and leukocyte cell-cell adhesion.

Furthermore, the DEGs were enriched in pathways related to

cytokine-cytokine receptor interaction, cell adhesion molecules,

and the chemokine signaling pathway (Figures 2C, D).
Immune cell infiltration analysis of UC

To deeply explore and reveal the immune mechanism during

the onset and progression of UC, we used the ssGSEA method to

score the immune cell infiltration between UC patients and controls

to evaluate the immune cell infiltration landscape of UC. A heatmap

of immune infiltration created based on ssGSEA scores is shown in

Figure 3A. In the box plot (Figure 3B), we found that except

CD56dim natural killer (NK) cells, the infiltration of the other 22

immune cells in UC tissues and the control group were significantly

different (P<0.001). Interestingly, among the 22 types of immune
Frontiers in Immunology 05
cells, the immune scores of the UC group were all higher than those

of the control group. The correlation analysis revealed a general

correlation among different immune cells (Figure 3C). It is worth

mentioning that, unlike other immune cells, CD56dim natural killer

(NK) cell was negatively correlated with almost all other immune

cells (except activated dendritic cell), which is a phenomenon

worthy of attention.
Identification of signature genes by
machine learning

Inspired by previous research results, we used rigorous machine

learning methods to screen the cuproptosis-related signature genes

of UC. First, we obtained a total of 31 DECRGs by intersecting the

cuproptosis-related genes with DEGs (Figure 3D). Subsequently, we

screened the cuproptosis-related signature genes of UC through

three machine learning algorithms. For the LASSO algorithm, we

found the optimal lambda value to be 0.009 after ten-fold of cross-

validation. Twelve potential signature genes with non-zero

coefficients were subsequently screened out (Figures 4A, B).

According to the results of the RF algorithm, we identified 14

genes with relative importance greater than 2.5 as signature genes

(Figures 4C, D). For the SVM-RFE algorithm, the classifier reaches
B

C D

A

FIGURE 2

Identification of DEGs and functional annotation. (A, B). Volcano plot (A) and heatmap (B) showing DEGs between UC and control groups. (A) Blue
plot points represent upregulated DEGs, gray plot points represent genes with no significant difference, and yellow plot points show downregulated
DEGs. (B) Each row of the heat map represents one DEG, and each column represents one sample, either UC or normal. (C) GO enrichment
analyses of DEGs. BP, biological process; CC, cellular component; MF, molecular function. (D) KEGG enrichment analyses of DEGs.
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the minimum error when the number of features is 22, so we

identify 22 valid signature genes (Figure 4E). Subsequently, we

evaluated the performance of the three machine learning algorithms

using the diagnostic ROC curves and AUC values of the signature

genes screened by the three machine learning algorithms and the

cumulative residual distribution curves. The results show that the

feature genes screened by the three algorithms all have good

prediction accuracy, which indicates that the performance of the

RF algorithm is the best. The prediction accuracy of the feature

genes screened by the RF algorithm is 0.8501, which is better than

that of the LASSO algorithm (0.8054) and the SVM algorithm

(0.7853) (Figure 4F). The vast majority of the residual inverse

cumulative distribution curve of the RF model lies below the

residual line of the LASSO and SVM models (Figure 4G),

showing that the discrepancy between the predicted and true

values of the RF is minimal and the performance is superior,

while the LASSO algorithm has the second highest performance

and the SVM algorithm has the relatively worst performance. Then,

we identified 7 signature genes shared by the three machine learning

algorithms by taking the intersection of the results, including

LDHD, ABCB1, AQP1, BACE1, CA3, COX5A, and DAPK2

(Figure 5A). All seven signature genes have strong interactions, as

shown in Figure 5B. In addition, the heat map of signature gene and
Frontiers in Immunology 06
immune cell correlations showed that all seven signature genes were

correlated with immune cells to varying degrees. Notably, ABCB1,

COX5A, DAPK2, and LDHD were strongly negatively correlated

with most immune cells, whereas BACE1 was strongly positively

correlated with most immune cells (Figure 5C).
Establishment and validation of the
signature gene-based nomogram for
predicting UC

Considering the lack of tools for clinical UC prevention and

early diagnosis, we developed a nomogram for predicting UC risk

based on the signature genes screened by machine learning

(Figure 6A). In the nomogram, each signature gene corresponds

to a score, and the scores of all signature genes are added to obtain a

total score. Different total scores correspond to different UC risk. In

Figure 6B, the ROC curve demonstrates the outstanding diagnostic

value of each signature gene in predicting UC. The calibration

curves and clinical decision curves also show that the nomogram

have excellent accuracy and net clinical benefit (Figures 6C, D). In

addition, the calibration curve (Figures 6E) and ROC curve
B

C D

A

FIGURE 3

Immune infiltration in UC patients and controls and identification of DECRGs. (A) Each row of the heat map represents a type of immune cell, and
each column represents one sample, either UC or normal. (B) Box plots depicting the infiltration levels of immune cells in UC and control groups.
***p < 0.001. ns, no significance. (C) Correlation heatmap depicting the correlations between distinct immune cell compositions. Red dots represent
positive correlation, blue dots represent negative correlation, and the higher the absolute value of the number in the dot, the greater the correlation.
(D) Venn diagram showing the DECRGs shared by DEGs and cuproptosis-related genes.
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(Figures 6F) of the prediction model in the validation set show that

it has outstanding prediction performance.
Construction of cuproptosis subtypes in
ulcerative colitis

Based on 7 signature genes, we clustered 298 UC samples by

consensus clustering analysis. Finally, we determined that k=2 was

the optimal grouping based on the consensus matrix graph, the

CDF curve, and the relative changes in the area under the CDF

curve (Figures 7A-C). Therefore, we finally obtained two
Frontiers in Immunology 07
cuproptosis subtypes of UC, named cluster A (n = 225) and

cluster B (n = 73). Subsequently, we extracted the expression

levels of all 61 cuproptosis-related genes in all samples of the two

subtypes A and B (Supplementary Tables 1, 2). In addition,

principal component analysis (PCA) results further confirmed the

clear distinction of the two clusters (Figure 7D). The boxplots and

heatmaps of the two subtypes showed that the expression of seven

signature genes had obvious heterogeneity in the two cuproptosis

subtypes. Interestingly, the expression levels of ABCB1, AQP1,

CA3, COX5A, DAPK2, and LDHD were significantly higher in

cluster B than in cluster A, while the opposite was true for BACE1

(Figures 8A, B).
B C

D E

F G

A

FIGURE 4

Screening of signature genes by machine learning. (A-E). Construction of signature genes using LASSO regression (A, B), SVM-RFE (C, D), and RF
algorithm (E). (F) The ROC curves and AUC values demonstrate the screening performance of the three machine learning algorithms. (G) Cumulative
residual distributions for the three machine learning algorithms (RF, LASSO, and SVM).
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Pathways activity and immune infiltration
landscape between cuproptosis clusters

To explore the possible pathological mechanisms of each UC

subtype and assess the difference in pathway activity between the

two clusters, we further performed GSVA between the UC of the

two cuproptosis subtypes. The results are shown in the heatmap, in

cluster A, the expression of KEGG pathways associated with

bicarbonate reclamation, peroxisome, butanoate and fatty acid

metabolism was significantly decreased, while the expression of

pathways associated with nitrogen metabolism, immunodeficiency

and chemokine signaling were significantly elevated (Figure 9A). In

addition, cluster B had higher Hallmark activity for bile acid

metabolism, oxidative phosphorylation, and adipogenesis, and

lower IL6-JAK-STAT3 signaling, KRAS signaling, and

inflammatory response compared to cluster A (Figure 9B). While

based on the reatcome pathway, the results of GSVA showed that

the immunomodulatory interaction between lymphocytes and non-

lymphocytes, nodal signaling and nuclear receptor transcription

pathways and other related pathways were significantly enriched in

cluster B. In contrast, Cd22 mediated BCR regulation, ketone body

synthesis, and complement initial trigger enrichment in cluster A

(Figure 9C). As shown in Figure 10A, the level of infiltration of
Frontiers in Immunology 08
22 immune cells (except CD 56 dim NK cell) was significantly higher

in patients in group A than in patients in group B, which coincided

with the results of GSVA and the results of the immune infiltration

analysis of DEGs. These results suggest that there are significant

differences in the pathway activity, biological function and immune

infiltration among different subtypes of UC. Therefore, different

subtypes should be treated with different strategies. In addition, CD

56 dim NK cells showed their special infiltration in this study, so its

role in UC deserves further investigation.
Biological functional distinctions between
cuproptosis clusters

We performed differential expression analysis to further

investigate the differences in gene expression and biological

activities between the two subclusters of cuproptosis. A total of

333 differentially expressed genes were identified using |log2 fold

change (FC)| > 1 and adj. p < 0.05 as screening conditions. Among

them, 198 were up-regulated genes and 135 were down-regulated

genes, and we visualized the results using heat map and volcano

map (Figures 10B, C). We then performed functional enrichment

analysis of 333 differential genes, and the results of GO and KEGG
B

C

A

FIGURE 5

(A) The venn diagram shows the overlap of DECRGs between the three algorithms. (B) The chord diagram shows the relationship among the seven
signature genes. (C) Correlation heatmap depicting the relationship between immune cell infiltration and signature genes. (B, C) Red indicates a
positive correlation between two elements (signature gene and signature gene/signature gene and immune cells), blue indicates a negative
correlation, the darker the color/the greater the absolute value of the value, the higher the correlation.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1142215
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2023.1142215
enrichment analysis showed that these differentially expressed genes

were mainly enriched in biological processes such as leukocyte

chemotaxis, leukocyte migration, granulocyte chemotaxis,

neutrophil chemotaxis and neutrophil migration, and related

pathways such as chemokine signaling pathway, IL-17 signaling

pathway and TNF signaling pathway, which is also consistent with

the previous results of GSVA (Figures 10D, E).

Discussion

UC is a chronic inflammatory bowel disease mainly manifested

by mucosal inflammation and ulceration, and its most common site

of disease is the colon (37). It is often referred to as a non-fatal

cancer because of its severe long-term local and systemic symptoms

and frequent recurrence. Currently, the diagnosis and treatment of

UC is still limited by the available technology. The diagnosis of UC
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relies heavily on gastrointestinal endoscopy and mucosal

histopathological biopsy, which will delay the timing of treatment

for some patients with UC with atypical endoscopic signs or

pathological features (38, 39). Therefore, the development of new

diagnostic tools for the risk stratification of UC is of great

significance. In addition, the current treatment efficiency of UC is

also very low, and the complete cure rate is close to zero. For

patients with mild to moderate UC without complications, surgical

treatment is generally not given clinically, and only glucocorticoids

are given to help relieve symptoms (40–42). This has indirectly led

to the fact that most UC patients need to take medicine for life,

which brings a heavy economic burden to their families (43, 44).

Therefore, it is imperative to explore new therapeutic targets to

improve and individualize treatment approaches.

In this study, we linked cuproptosis to UC, explored its possible

pathogenesis, and created new possibilities for the diagnosis,
B

C D

E F

A

FIGURE 6

Construction and validation of the signature gene-based nomogram. (A) Nomogram for predicting UC risk based on signature genes. (B) ROC curve
of signature genes in UC diagnosis. (C) Calibration curve for the nomogram. (D) Decision curve showing the clinical value of nomogram.
(E) Calibration curve of nomogram for predicting UC in the validation set. (F) ROC curve for the validation set. **p < 0.01, ***p < 0.001.
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treatment and prognosis of UC. First, we obtained the gene

expression matrices of 298 UC patients and 55 healthy controls

from three datasets in the GEO database, and finally identified 4177

DEGs. Functional enrichment analysis based on DEGs revealed that

biological processes such as leukocyte adhesion and leukocyte

migration were significantly enriched. Indeed, in previous studies

(45), rapid recruitment and inappropriate retention of leukocytes

has been shown to be a hallmark of all chronic inflammatory

diseases, including UC, which is consistent with our study. As a

result, we speculate that DEGs play an important role in UC

through modulating leukocyte migration and adhesion. In

addition, KEGG enrichment results showed that DEGs were
Frontiers in Immunology 10
mainly related to chemokine signaling pathways. All

inflammatory responses inevitably contain one of the most

prominent features: leukocyte infiltration. The recruitment and

maintenance of leukocytes during inflammation requires complex

signaling, of which the chemokine pathway is the most important.

However, several previous studies (46–48) have shown that different

cells can lead to different outcomes through the same signaling

pathway. Therefore, we further hypothesized that leukocyte

adhesion and migration through chemokine signaling pathway is

a possible pathogenesis of UC.

In addition, the critical role of the immune response in the

pathogenesis of UC has long been the focus of attention. We
FIGURE 7

Construction of two cuproptosis subtypes in UC. (A) Consensus clustering matrix when k = 2. (B) Consensus CDF delta area curves when k = 2-9.
(C) Relative alterations in the area under CDF curve. (D) PCA plot showing the distribution of the two subclusters.
BA

FIGURE 8

Box plot (A) and heatmap (B) showing differential expression of signature genes in the two cuproptosis subtypes. (B) Each row of the heatmap
represents a signature gene, and each column represents a UC sample, either the A subtype or B subtype.*p < 0.05, **p < 0.01, ***p < 0.001.
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therefore assessed differences in immune infiltration between UC

and normal tissues using ssGSEA (28). The results showed that the

expression levels of almost all immune cells in UC were significantly

higher than those in the normal group, which was the same as the

results of many previous studies (49, 50). It is worth mentioning

that our study found that CD56 dim NK cells were the only cells

that did not differ between the two. As a fully mature NK cell, CD 56

dim NK cells account for 90% of peripheral blood NK cells and

mainly play a role in mediating cytotoxicity (51, 52). In previous

studies (53), CD 56 dim NK cells have been found to be associated

with a number of autoimmune diseases, including ankylosing
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spondylitis, systemic lupus erythematosus, Behçet’s disease,

multiple sclerosis, and type I diabetes. In addition, a 2018 study

showed that phenotypic changes in circulating immune cell subsets

such as CD 56 dim NK cells are an important cause of the

occurrence and progression of colorectal cancer (54). Overall,

although our study suggests that CD 56 dim NK cells are

associated with the occurrence and development of UC, the

specific mechanism needs further study. In previous studies, the

differentially expressed genes in UC were mainly concentrated in

the immune process, and our ssGSEA and enrichment analysis

results provided new evidence for this conclusion.
B

C

A

FIGURE 9

Biological characteristics of two distinct cuproptosis subtypes of UC revealed by GSVA. (A) Enriched pathways based on the KEGG pathway.
(B) Enriched pathways based on the Hallmark pathway. (C) Enriched pathways based on the Reatcome pathway. Each row of the heatmap
represents an enriched pathway, and each column represents a UC sample, either the A subtype or B subtype.
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Cuproptosis, a newly discovered form of cell death (7, 8), still

needs further investigation for its potential association with UC

given that UC patients have been found to have copper

accumulation in previous studies (14, 55). Therefore, we

intersected DEGs and cuproptosis genes, and then used machine

learning methods for further screening, and finally obtained 7

signature genes related to cuproptosis (ABCB1, AQP1, BACE1,

CA3, COX5A, DAPK2, and LDHD). The ABCB1 gene encodes for

the P-glycoprotein (P-gp) protein, which is a member of the ATP-

binding cassette (ABC) transporter family. P-gp is a multi-drug

resistance protein that is involved in the efflux of a wide range of

compounds from cells, including xenobiotics and drugs (56).
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Recent studies have suggested that P-gp can play a role in

cuproptosis by regulating copper efflux from cells. Particularly, P-

gp has been shown to control copper homeostasis in the cell and

stop oxidative stress and cell damage caused by copper (57). In a

previous study from Denmark (58), ABCB1 was found to be a “risk

gene” for the development of inflammatory bowel disease.

According to Anderson et al. (59), low ABCB1 gene expression

may contribute to the development of intestinal disease by

increasing intracellular exposure to oncogenic or inflammatory

ABCB1 substrates. In addition, Cao et al. (60) found that the

ABCB1 C1236T polymorphism was strongly associated with UC.

Aquaporin 1 (AQP1) is a water channel protein that is expressed in
B C

D E

A

FIGURE 10

Differential analysis, functional enrichment analysis and immune infiltration analysis between two cuproptosis subtypes of UC, functional enrichment
analysis and immune infiltration analysis. (A) Boxplot showing differences in immune infiltration between the two cuproptosis subtypes.
(B, C). Heatmap (B) and volcano plot (C) depicting DEGs between the two cuproptosis subtypes. (B) Each row of the heat map represents one DEG,
and each column represents a UC sample, either the A subtype or B subtype. (C) Blue plot points represent upregulated DEGs, gray plot points
represent genes with no significant difference, and yellow plot points show downregulated DEGs. (D, E). GO (D) and KEGG (E) enrichment analyses
of DEGs between the two cuproptosis subtypes. ***p < 0.001.
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various tissues, including the brain and lungs (61–63), where it

plays a role in regulating water transport. AQP1 has been shown to

be involved in the transport of copper ions into cells, and its

expression has been found to be regulated by copper ions (64). In

some cell types, AQP1 has been shown to be required for

cuproptosis to occur. For example, in astrocytes, AQP1 has been

shown to play a role in the transport of copper ions into the cell,

leading to oxidative stress and cell death (65). In addition, Ricanek

et al. (66) found that reduced AQP1 expression levels were the main

cause of reduced water and glycerol absorption in the small

intestine, which may further contribute to the development of

symptoms such as diarrhea and malnutrition in UC. Carbonic

anhydrase (CA) is a family of enzymes that catalyzes the

reversible hydration of carbon dioxide to bicarbonate and

protons. Studies have shown that CA enzymes play a crucial role

in the regulation of cuproptosis and have been shown to regulate

cuproptosis by modulating copper ion homeostasis within the cell

(67, 68). Inhibition of CA enzymes has been shown to enhance

cuproptosis, while overexpression of CA enzymes has been shown

to protect cells from cuproptosis.Carbonic anhydrase 3 (CA3) is a

zinc-containing metalloenzyme that catalyzes the reversible

hydration of carbon dioxide and regulates cellular ion transport

and pH homeostasis. Unlike other carbonic anhydrase family

members, CA3 has 2 reactive sulfhydryl groups that are reversibly

bound to glutathione via disulfide bonds and can protect cells from

oxidative stress (69). According to Okada et al, CA3 in the colonic

mucosa significantly inhibits the secretion of inflammatory

cytokines and has a protective effect against the exacerbation of

UC (70). In a previous study, BACE1 was pointed out to mediate

the progression of Crohn’s disease by regulating cuproptosis (49).

Moreover, previous studies have found that BACE1 inhibition can

increase susceptibility to oxidative stress by promoting

mitochondrial damage, but the exact mechanism is unclear (71).

This has some similarity with the biological function of COX5A,

which has been reported in previous studies to be involved in the

process of aluminum-induced oxidative stress (72, 73), promoting

reduced mitochondrial biogenesis by regulating the PGC-1a
signaling pathway, which coincides with the biological process of

cuproptosis-regulated cell death. DAPK2 is a member of the death-

associated protein kinase (DAPK) family, and several studies have

investigated the potential relationship between DAPK2 and copper

apoptosis. For example, a study published in 2019 suggested that

DAPK2 may regulate copper apoptosis by regulating cellular redox

homeostasis and regulating the accumulation of copper ions in cells

(74). In addition, its involvement in UC development through

classical pathways such as Hippo and Ephrin receptor signaling

pathways has been identified in many previous studies (75, 76). The

LDHD gene, also known as L-Lactate Dehydrogenase D, is involved

in the metabolic pathway that converts pyruvate to lactate. It has

been shown that LDHD is involved in the regulation of copper

apoptosis by controlling intracellular copper levels through

involvement in the fatty acylation process of proteins in the TCA

cycle (77, 78). LDHD is expressed in intestinal epithelial cells and is

involved in the regulation of oxidative stress and cellular

metabolism, and it is believed that altered LDHD gene expression

may lead to oxidative stress and altered cellular metabolism,
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resulting in increased intestinal inflammation (79), but the exact

mechanism of its association with the development of UC is not

fully understood.

Subsequently, we conducted a systematic bioinformatics

analysis on these 7 signature genes to explore the inner

relationship between gene-gene and gene-disease. First, we found

a general correlation (positive or negative correlation) among the

signature genes, suggesting that synergistic or antagonistic

interactions between them may be the underlying cause of the

occurrence and development of UC. Subsequent studies on the

association between characteristic genes and immune cells showed

that BACE1 was positively correlated with 22 immune cells (except

CD 56 dim NK cells), while ABCB1 was just the opposite, and it was

negatively correlated with 22 immune cells (except CD 56 dim NK

cells), suggesting that abnormal infiltration of CD 56 dim NK cells

may play an important role in the progression of UC. In addition,

COX5A, DAPK2 and LDHD were all strongly negatively correlated

with the majority of immune cells. Clinically, the diagnosis of the

vast majority of UC patients is usually after the occurrence of

intestinal mucosal injury. The establishment of a prediction model

tool at the gene level and the detailed classification of UC can not

only improve the accuracy of clinical diagnosis and treatment of

UC, but also provide strategies for preventing the occurrence of the

disease in the future. Therefore, we established a predictive model of

UC based on the above seven signature genes, which has been

verified to have good predictive ability and clinical benefits.

Subsequently, we identified two cuproptosis-associated clusters of

UC based on signature genes using unsupervised cluster analysis. In

cluster A, the expression of signature genes was significantly lower

than that in cluster B. Additionally, cluster A exhibited higher

expression of immune cell infiltration compared with cluster B.

Cluster B had higher amounts of immune-related pathways and

lower levels of metabolic-related pathways in the functional analysis

of clusters, while cluster A had the opposite. We identified

differential genes between the two subtypes of cuproptosis in UC,

and finally screened out 333 differential genes. In the subsequent

functional enrichment analysis, we found that the differential genes

between the two subtypes were mainly enriched in inflammation-

related biological processes and classic inflammation-related

pathways such as chemokine signaling pathways, IL-17 signaling

pathways, and TNF signaling pathways. These results are consistent

with previous research conclusions (47, 80, 81). In conclusion, the

systematic study on the cuproptosis subtypes and diagnostic

markers of UC will help us better understand the pathogenesis of

UC and provide a theoretical basis for its personalized diagnosis

and treatment.

In this study, we screened out highly valuable signature genes

through bioinformatics methods, and created a predictive model

with accurate diagnostic capabilities. In addition, we also classified

UC based on cuproptosis-related genes for the first time. These

results may bring new perspectives for the early prevention and

personalized diagnosis and treatment of UC. Nonetheless, several

limitations need to be pointed out. First of all, since the data used in

the above analysis are all from the same database, and there is a lack

of original sequencing data, there may be unavoidable selection bias.

Secondly, because the sample size is relatively small, and the
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potential influence of patients’ complications, gender, and age is

ignored, a large clinical cohort prospective study is still needed to

further study the potential of signature genes in predicting UC. In

addition, the mechanism of action of these signature genes will be

further elucidated through in vitro and in vivo experiments.
Conclusion

In conclusion, we finally screened seven signature genes

(ABCB1, AQP1, BACE1, CA3, COX5A, DAPK2, and LDHD)

associated with UC and cuproptosis through a series of

bioinformatics analyses, and a nomogram composed of these

genes can effectively predict the risk of UC occurrence. In

addition, for the first time, we have divided UC into two distinct

subtypes, which improves understanding of the disease and can

guide individualized treatment. Therefore, our study may provide

new insights into exploring the heterogeneity of clinical

manifestations and prognosis of UC, and provide a theoretical

basis for risk stratification and individualized diagnosis and

treatment of UC in the future.
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