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Combined analysis of bulk
and single-cell RNA sequencing
reveals novel natural killer
cell-related prognostic
biomarkers for predicting
immunotherapeutic response
in hepatocellular carcinoma

Kai Zhang* and Enwu Yuan*

Department of Laboratory Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China
Introduction: Natural killer (NK) cells play an irreplaceable and important role as

a subtype of innate immune cells in the contemporary setting of antitumor

immunity.

Methods: We chose a total of 1,196 samples for this analysis from the public

dataset’s six separate cohorts. To identify 42 NK cell marker genes, we first

carried out a thorough study of single-cell RNA sequencing data from the

GSE149614 cohort of hepatocellular carcinoma (HCC).

Results: Using the NK cell marker genes in the TCGA cohort, we next created a

seven-gene prognostic signature, separating the patients into two categories with

distinct survival patterns. This signature’s prognostic prediction ability was well

verified across several validation cohorts. Patients with high scores had higher

TIDE scores but lower immune cell infiltration percentages. Importantly, low-

scoring patients had superior immunotherapy response and prognosis than high-

scoring patients in an independent immunotherapy cohort (IMvigor210). Finally, we

used CD56 and TUBA1B antibodies for immunohistochemical labeling of HCC tissue

sections, and we discovered a lower number of CD56+ cells in the HCC tissue

sections with high TUBA1B expression.

Discussion: In summary, our research created a unique prognostic profile based

on NK cell marker genes that may accurately predict how well immunotherapy

would work for HCC patients.
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1 Introduction

It is generally recognized that a diverse tumor microenvironment

(TME) surrounds tumor cells in hepatocellular carcinoma (HCC) (1).

The TME, which has a very complicated makeup, is crucial to the

development and growth of tumors. Additionally, the interaction

between immune cells and tumor cells in the TME not only

influences a patient’s prognosis but may also alter a patient’s

response to immunotherapy (2). The importance of innate immune

cells has not gotten enough attention in the contemporary setting of

antitumor immunity, which has mostly focused on adaptive T-cell

responses, like CD4+ CD25+ Foxp3 regulatory T cells (Tregs),

cytotoxic T lymphocytes (CTLs) et all (3, 4). By specifically

identifying and eliminating tumor cells and encouraging adaptive T-

cell immunity responses, natural killer (NK) cells are a subtype of

innate immune cells that can reduce the proliferative and invasive

potential of tumor cells at an early tumor stage (5). The balance of

inhibitory and activating receptors that can interact with ligands on

target cells determines how well NK cell function. NK cells can

collaborate with T cells to control the spread of cancer and play a

crucial part in the development of antitumor immunity. Cancer risk is

increased by decreased NK cell activity in peripheral blood (6).

Additionally, more tumor-infiltrating NK cells are strongly linked to

improved prognosis across a variety of tumor types (7). Given the

function of NK cells in immunity, earlier research has focused on their

molecular features in cancer and infectious disorders (8, 9), but little is

known about their complete molecular analysis in HCC.

Unprecedented chances to unveil the molecular properties of

various immune cell populations in TME have been made possible

by the advent of single-cell RNA sequencing (scRNA-seq)

technology and related data processing methodologies (10). The

prognosis and immunotherapeutic response in cancer patients may

be accurately predicted by examining gene expression patterns

based on molecular characterization of immune cells acquired

from scRNA-seq data, according to previous research (11, 12). In

this work, we first carried out a thorough examination of scRNA-

seq data in HCC to characterize the molecular properties of tumor-

infiltrating NK cells and to identify NK cell flag genes. Then, using

bulk RNA-seq analysis, NK cell marker gene-related signatures for

predicting the prognosis of HCC were created. Additionally, the

link between NKCMGS and HCC immunotherapy response was

examined, and the predictive ability of NKCMGS was verified in

three separate cohorts from the ICGC and the Gene Expression

Omnibus (GEO) database. Multiple datasets from TCGA, GEO and

ICGC cohort were analyzed in our study for constructed NK cell-
Abbreviations: NK, Natural killer; HCC, hepatocellular carcinoma; TME, tumor

microenvironment; scRNA-seq, single-cell RNA sequencing; GEO, Gene

Expression Omnibus; TCGA, the Cancer Genome Atlas; ICGC, International

Cancer Genome Consortium; ICB, immune checkpoint blockade; IC50, half-

maximal inhibitory doses; NMF, non-negative matrix decomposition; GSEA,

Gene Set Enrichment Analysis; TMB, tumor mutational burden; TIDE, Tumor

Immune Dysfunction and Exclusion; PD, progressing disease; SD, stable disease;

CR, complete response; PR, partial response; HPA, Human Protein Atlas; ICIs,

immune checkpoint inhibitors.
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related genetic signature. We obtained a more parsimonious gene

signature over existing studies, which contains seven genes, and

provided better prediction for immunotherapeutic effect and

drug sensitivity.
2 Methods

2.1 Data collection and pre-processing

A total of 1196 samples, 31396 cells, including 10 HCC samples

with single-cell RNA-sequencing (scRNA-seq) data from the

GSE149614 cohort, 342 HCC samples from the Cancer Genome

Atlas (TCGA) cohort (https://xenabrowser.net/), 230 HCC samples

from the International Cancer Genome Consortium (ICGC) cohort

(https://dcc.icgc.org/), 221 HCC samples from the GSE14520

cohort, 95 HCC samples from the GSE76427 cohort, and 298

samples treated with immunotherapy from the IMvigor210

cohort (http://research-pub.Gene.com/imvigor210corebiologies/),

were enrolled in this study. In the GSE149614 dataset, with each

gene expressed in at least three cells and each cell expressing more

than 250 genes, single cells were initially screened for scRNA-seq

data. The percentage of mitochondria and rRNA was then

calculated by the Seurat package (13). Further testing of the single

cells involved caused each one to express at least 5000 genes with a

UMI > 100. The mitochondrial content was no more than 30%. In

the end, 31396 cells were still present for identifying the NK cell

marker genes of HCC. To find survival-related genes and create

prognostic signatures, the bulk transcriptome data (FPKM

normalized) and clinical details of HCC patients in the TCGA

were employed. For external validation, three separate datasets were

acquired: ICGC, GSE14520, and GSE76427.
2.2 Identification of NK cells and their
hub genes

The GSE149614 dataset contains scRNA-seq data from 10 HCC

samples, which we again examined. Following log normalization of

the expressed genes, uniform flow-form approximation and

projection techniques were used to reduce nonlinear

dimensionality. We used the FindNeighbors and FindClusters ()

algorithms to arrange individual cells into 17 separate subgroups at

dim=50 and resolution=0.1. Three marker genes, including CD3D,

CD3E, and NKG7, were identified in NK cells. Using the

FindAllMarkers program with logFC=0.5, minpct=0.25, and

adjusted p-values less than 0.05, marker genes were found for

each NK subpopulation. A univariate Cox regression analysis

with P less than 0.05 was then used to further identify the genes

among these NK marker genes that are associated with prognosis.

We used the LASO-Cox regression to compress the number of

genes and created a risk profile based on the outcomes of the

multivariate Cox model using the equation: Risk score

=∑iCoefficient (Genei)*Expression (Genei). Depending on their

risk assessments, patients were separated into high- and low-risk

groups. The receiver operating characteristic curve (ROC) analysis
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and Kaplan-Meier survival analysis were used to examine the risk

profile’s ability to predict survival outcomes. The validation cohort

underwent a similar examination. GSEA was used to examine

KEGG, GO, and HALLMARK elements that had drastically

changed across the different categories.
2.3 Analysis of the immune landscape

Based on the gene expression patterns of HCC patients, the

stromal and immune scores were computed using the ESTIMATE

software (14). The abundance ratio of immune cells was evaluated

using the CIBERSORT (15), MCPcounter (16), and TIMER (17)

databases to learn more about the TME.
2.4 Response to immune checkpoint
blockade (ICB) and analysis of the
sensitivity to potential therapeutic drugs

The TIDE database (http://tide.dfci.harvard.edu/), which

estimates how often immunotherapy for HCC patients will be

effective, was first performed. We also retrieved the matched

clinical and transcriptome data from the IMvigor210 cohort of

patients who were receiving anti-PD-L1 medication. Additionally,

we evaluated multiple immune checkpoint gene expression changes

such as PD1, PD-L1, CTLA4, and PD-L2 in different subgroups.

Finally, we searched the Cellminer database for delicate medications

that successfully address this risk profile (18). If a drug’s adjusted P-

value was less than 0.001 and its Pearson correlation coefficient was

larger than 0.3, it was categorized as tumor-sensitive. The

discrepancies in the half-maximal inhibitory doses (IC50) of

several classes of tumor-sensitive medications were then studied.
2.5 Evaluation of TUBA1B expression in
clinical samples

Using 30 samples of HCC and related paracancerous tissues

that had undergone standard pathological evaluation in our

pathology department, a validation cohort was developed. The

clinicopathological information for all patients were shown in

Table 1. Following the tissue wax blocks’ serial sectioning, sample

sections were gathered and stored for subsequent use in a 4°C

freezer. We next used TUBA1B (Abcam, ab108629) and CD56

(Abcam, ab75813) antibodies in IHC experiments on formalin-

fixed de-paraffinized slices and captured pictures using microscopy

as previously reported (19).
2.6 Statistical analysis

R software was used to conduct all statistical analyses (v4.1.2).

Pearson correlation was used to calculate the correlation analysis. For

comparisons between the two groups, the chi-square test and grouped
Frontiers in Immunology 03
t-test were used, respectively. Kaplan-Meier survival analysis and a Log-

rank test were used to assess survival differences between groups. Using

the RMS software, a nomogram was produced following the signature.

Statistics were deemed significant when the P value was less than 0.05.
3 Results

3.1 Identification of NK cells in the
scRNA-seq samples

Figure S1 displays the full outcomes of data preparation. After

log-normalization and dimensionality reduction, 17 clusters were

found. The TSNE plots showing the distribution of the 17 clusters

are displayed in Figure 1A. As shown in Figure 1B and S2A, based

on the expression of three marker genes (CD3D, CD3E, NKG7,

CXCR3 and IL2RB), two NK cell subsets were discovered

(Figure 1C). The fact that neither of the two NK cell clusters

expressed the epithelial cell-specific gene (PECAM1) proves that

NKs were correctly identified (Figure 1D). Further analysis of CD19

and CD14 expression in 17 clusters was performed for ruled out the

interference of other cell types (Figure S2B). The expression of the

top 10 DEGs in the two clusters is shown in Figure 1E. The 2 NK

cell clusters contained 42 DEGs (marker genes recognized as NK

clusters). The percentage of the two clusters in each sample was
TABLE 1 Characteristics of patients and tumor samples studied (n=30).

Clinicopathological characteristic

Age, median (range)
Female

56.5 (38–74) years old12/30
(40%)

T stage of primary tumor

T1 2/30 (6.67%)

T2 5/30 (16.67%)

T3 16/30 (53.33%)

T4 7/30 (23.33%)

N stage of primary tumor

N0 6/30 (20%)

N1 15/30 (50%)

N2 9/30 (30%)

Lymphovascular invasion present in primary
tumor

17/30 (56.67%)

Perineural invasion present in primary tumor 11/30 (36.67%)

Synchronous metastasis (unknown for n=2) 13/28 (46.43%)

Underlying liver disease etiology (unknown
for n=6)

HBV, HCV and hepatocirrhosis 14/24 (58.33%)

Fatty liver and diabetes mellitus 4/24 (16.67%)

Alcohol
Hereditary liver cancer

5/24 (20.83%)
1/24 (4.17%)
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shown in Figure 1F. Furthermore, we computed the ssGSEA scores

for the marker genes of each NK cluster (the top 10 DEGs of the NK

clusters) in the TCGA cohort to examine the connection between

NK clusters and prognosis. The samples in the high ssGSEA score

group in the NK 0 cluster had a better prognosis than those in the

low ssGSEA score group, while the opposite finding was seen in the

NK 1 cluster (Figure 1G). Finally, to further analyze the function

and mechanism of NKs marker genes in HCC, we performed

molecular subtype identification analysis of the TCGA dataset by

non-negative matrix decomposition (NMF) algorithm. The HCC

samples were split into two subclasses based on the NKs marker

genes after it was found that two clusters were the ideal number

(Figures 2A, S3). Significant disparities in patient survival existed

between the two subgroups (Figure 2B). Additionally, the two

subgroups’ TME features were contrasted. Figures 2C–E

demonstrates that as compared to samples from cluster 2,

samples from cluster 1 had higher immunological, stromal, and

ESTIMATE scores. HCC patients in Cluster 1 had a larger

percentage of immune cell infiltration in their TME, as shown by

the results of the TIMER (Figure 2F), MCPcounter (Figure 2G), and

CIBIS. ORT (Figure 2H).
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3.2 Screening for NK-associated hub genes

Using univariate Cox regression analysis, the prognostic value

of these DEGs was evaluated to create a signature, with 10 genes

displaying prognostic values (Figure 3A). To reduce the number of

genes, Lasso-Cox regression analysis was used (Figure 3B). Seven

genes were left with a lambda value of 0.0139 (Figure 3C). After

multivariate Cox regression analysis, we finally included these seven

genes (CREM, PFN1, KLRB1, TUBA1B, APOC1, ACTG1, and

HSPA1A) in the signature. Following is the final seven-gene

signature formula: Score = (0.1574×CREM) + (0.4582×PFN1)

- (0.3804×KLRB1)+(0.1094×TUBA1B)-(0.0821×APOC1)

+(0.3267×ACTG1) + (0.1718×HSPA1A). After each sample’s

score was determined, the groups of high- and low-risk

individuals were created (Figure 3D). The association between

score and clinical characteristics was first evaluated and found

that higher scores were associated with HBV infection, advanced

TNM stage, later grade, later T stage, and recurrence (Figure S4). In

both the TCGA, ICGC, and the GEO cohort, Kaplan-Meier survival

analyses showed that high-risk patients had considerably worse

survival outcomes than low-risk patients (Figures 3E, 4A). The
A B

D E

F G

C

FIGURE 1

Identification of NK cells in the scRNA-seq samples. (A) The TSNE plots showed the distribution of the 17 clusters. (B) The expression of three marker
genes (CD3D, CD3E, and NKG7) in the 17 clusters. (C) Two NK cell subsets were discovered. (D) The expression of PECAM1 gene. (E) The expression
of the top 10 DEGs in the two clusters. (F) The percentage of the two clusters in each sample. (G) The samples in the high ssGSEA score group in
the NK 0 cluster had a better prognosis than those in the low ssGSEA score group, while the opposite finding was seen in the NK 1 cluster.
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TCGA cohort’s AUC values for the model for 1- to 3-year survival

range from 0.71 to 0.77 (Figures 3F), whereas those for the ICGC

and GEO cohorts ranged from 0.57 to 0.72 (Figures 4B).
3.3 Mutation and functional enrichment
analysis of the signature

The results of Gene Set Enrichment Analysis (GSEA) revealed that

the majority of the impacted HALLMARK, GO, and KEGG

components were engaged in DNA synthesis and replication,

mitosis, chromosome segregation, and other biological processes

related to the cell cycle (Figure S5). Studies on genetic modification

that focused on significantly altered genes showed that the mutation

rates in the two groups were very different from one another (Figure

S6A). After tumor mutational burden (TMB) values for each HCC

patient were analyzed, we found that patients in the high-score group

with greater TMB values had the lowest overall survival rates, while the

opposite results were found in patients in the low-score group with

lower TMB values (Figure S6B).
Frontiers in Immunology 05
3.4 Correlation analysis between the
signature and immunity

Figure 5A showed that samples in the low-scoring group had

higher immune, stromal, and ESTIMATE scores compared to

samples in the high-scoring group. As shown in the results of

TIMER (Figure 5B), MCPcounter (Figure 5C), and CIBISORT

(Figure 5D), a greater percentage of immune cell infiltration was

found in the TME of HCC patients in the low-scoring group.
3.5 The signature’s response to PD-L1
blockade immunotherapy

The Tumor Immune Dysfunction and Exclusion (TIDE)

analysis showed that, although the exclusion scores had the

opposite impact, the TIDE and dysfunction scores were

significantly greater in the group with higher risk scoring than in

the group with lower risk scoring (Figure 6A). When the projected
A B

D E F

G H

C

FIGURE 2

Subtypes identification by NMF algorithm based on NKs marker genes. (A) Samples were split into two subclasses. (B) Significant disparities in patient
survival existed between the two subgroups. (C-E) Difference of immunological, stromal, and ESTIMATE scores in different molecular subtypes. The
difference in the percentage of immune cell infiltration in different molecular subtypes was analyzed by the TIMER (F), MCPcounter (G), and
CIBISORT (H). ns, not significant; *p < 0.05; **p <0.01; ***p < 0.001.
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A B

D E F

C

FIGURE 3

Screening for NK-associated hub genes. (A) Using univariate Cox regression analysis. (B) Lasso-Cox regression analysis. (C) Seven genes were left
with a lambda value of 0.0139. (D) After each sample’s score was determined, the groups of high- and low-risk individuals were created. (E) Kaplan-
Meier survival analysis. (F) ROC analysis.
A

B

FIGURE 4

Validation of the signature in the ICGC and GEO cohorts. (A) Kaplan-Meier survival analysis. (B) ROC analysis.
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immunotherapy response rate was included, the proportion of

“respond” was lower in the high-risk group (Figure 6B). Then,

using data from the IMvigor210 cohort, we assessed the predictive

efficacy of immune checkpoint treatment risk factors. In

comparison to the high-scoring group, patients in the low-scoring

group saw notable clinical benefits and considerably longer overall

life (Figure 6C). Figure 6D showed that patients with progressing

disease (PD) or stable disease (SD) had greater risk ratings than

those who had a complete response (CR)/partial response (PR).

Finally, we discovered that the levels of the genes PD-1, PD-L1, PD-

L2, CTLA4, CD4, CXCR4, LAG3, and LL6 were higher in patients

with lower scores than in patients with higher scores (Figure 6E),

suggesting that these ICIs may be more beneficial for patients with

lower scores.
3.6 Construction of a nomogram model
and exploration of potential drug sensitivity

As shown in Figure S7A, we created a nomogram incorporating

clinical features and the signature to maximize the predictive

performance of risk characteristics. The calibration plots

demonstrated that the nomogram was capable of accurately

forecasting the final survival rate (Figure S7B). In addition, we

identified 7 drugs with tumor sensitivity (Figure S8A). As shown in

Figure S8B, we also found that the IC50 for Cladribine, Fludarabine,

and Clofarabine was lower in patients with higher scores (20–22).
Frontiers in Immunology 07
3.7 TUBA1B expression in HCC

We first initially investigated the expression and prognostic

value of these seven genes in HCC in the GEPIA database (23). We

found that only TUBA1B showed differential expression in HCC

and normal tissues (Figure S9A), although several genes including

KLRB1, TUBA1B, APOC1, ACTG1, and HSPA1A had high

prognostic values (Figure S9B). We then focused our main

attention on TUBA1B. Using the Human Protein Atlas database

(HPA) (24), we found significant variability in the protein

expression of TUBA1B in normal and HCC tissues (Figure 7A).

This phenomenon was confirmed in clinical HCC and normal

tissue sections (Figures 7B, C). Last but not least, we found

differential expression of CD56 in these HCC tissues (Figure 7D)

and a lower number of CD56-positive cells in the HCC tissue

sections with high TUBA1B expression (Figure 7E).
4 Discussion

Researchers are learning more about the variety and

heterogeneity of TME as well as the molecular properties of

tumor-infiltrating immune cells thanks to the quick development

of scRNA-seq technology (25). However, the majority of recent

research has concentrated on adaptive immune cells, and the

function of innate immune cells has not received enough

attention, which may have a significant impact on the prognosis
A B

DC

FIGURE 5

Correlation Analysis between the signature and immunity. (A) samples in the low-scoring group had higher immune, stromal, and ESTIMATE scores
compared to samples in the high-scoring group. The difference in the percentage of immune cell infiltration in different molecular subtypes was
analyzed by the TIMER (B), MCPcounter (C), and CIBISORT (D). ns, not significant; *p < 0.05; **p <0.01; ***p < 0.001.
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and effectiveness of immunotherapy in patients with tumors (26). If

neighboring cells exhibit surface markers linked to oncogenic

transformation, NK cells can quickly destroy many of them by

improving antibody and T-cell responses (27). The prognosis of

patients with various tumors, including lung adenocarcinoma (28),

gastric cancer (29, 30), liver cancer (31), melanoma (32), and

colorectal cancer (33), is highly correlated with the number of

tumor-infiltrating NK cells. The overall survival of HCC following

hepatectomy is significantly impacted by the low frequency of NK

cells relative to myeloid and other lymphocytes seen in HCC tumor

tissue (34). The number of NK cells inside the TME, which has a

favorable correlation with patient survival, also influences how well

patients respond to sorafenib therapy (35). In the current work, we

aimed to investigate NK cell marker genes in HCC by bulk and

scRNA-seq analysis as well as to create a transcriptional signature

based on NK cell marker genes to evaluate NK cell infiltration in

TME. By boosting NK scores, we discovered a substantial

classification of HCC patients’ prognosis that was well verified

across three separate cohort datasets. Additionally, we discovered

that immunotherapy response rates were much greater for patients

with low NK scores than for patients with high NK scores,

indicating that immune checkpoint blockade treatment is better

suitable for individuals with low NK scores.

Immune cells that invade tumors and contribute considerably

to tumor growth might have a negative impact on a patient’s

prognosis if they have HCC (36). By using the TIMER,

MCPcounter, and CIBERSORT algorithms to estimate and

compare the abundance of immune cell infiltration between high

and low NK score populations, we discovered higher levels of

immune cell infiltration, particularly T and B cells, in low NK
Frontiers in Immunology 08
score tumors, indicating that low NK score tumors are referred to as

“hot tumors” with increased antitumor activity (37). The greater

survival rate of patients with low NK scores may be partially

explained by the strong immune cell infiltration, which may

promote tumor cell attenuation to avoid immune monitoring and

impede tumor development.

Taking into account that variations in immune cell infiltration

between different NK score subgroups affect the effectiveness of

immunotherapy that patients receive, we first examined the clinical

response to immunotherapy in HCC patients using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm (38). We

found significantly higher TIDE scores in the higher NK score group

than in the lower NK score group, and a lower proportion of

“respond” in the high NK score group. Subsequently, we validated

the predictive power of our NK score with an immunotherapy cohort

(Imvigor210). We found that patients with progressing disease (PD)

or stable disease (SD) had greater risk ratings than those who had a

complete response (CR)/partial response (PR). In light of the

possibility that complex TME can cause HCC cells to develop

resistance to immune checkpoint inhibitors (ICIs), which could

affect the efficacy of immunotherapy, we also looked at the

differences in the expression levels of various immune checkpoint

genes between high- and low-NK scores subgroups. It has been

demonstrated that patients with lower scores had larger prevalences

of the genes PD-1, PD-L1, PD-L2, CTLA4, CD4, CXCR4, LAG3, and

LL6 than people with higher scores. In conclusion, NK scores may be

a valid biomarker for predicting response to immunotherapy, and

patients with low NK scores are more likely to benefit from it.

Finally, utilizing the CellMiner database, we discovered seven

medicines that are tumor sensitive. Since individuals with higher
A B

D EC

FIGURE 6

The signature’s response to PD-L1 blockade immunotherapy. (A) The TIDE analysis. (B) When the projected immunotherapy response rate was included,
the proportion of “respond” was lower in the high-risk group. (C) In comparison to the high-scoring group, patients in the low-scoring group saw
notable clinical benefits and considerably longer overall life in the IMvigor210 cohort. (D) Patients with PD/SD had greater risk ratings than those who
had a complete response CR/PR. (E) The expression levels of the ICIs genes in the two groups. ns, not significant; **p <0.01; ***p < 0.001.
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NK scores had lower IC50s for Cladribine, Fludarabine, and

Clofarabine, it is obvious that these patients are more susceptible

to these medications. Cladribine and Clofarabine are nucleoside

analogs that are frequently used to treat hematologic cancers and

target B and T cells (39, 40). Cladribine has been successfully

utilized as a first-line therapy for hairy cell leukemia for some

time now (41). Unfortunately, when used to treat multiple sclerosis,

cladribine can lead to acute, specific liver harm in individuals (42).

Additionally, clofarabine is employed as an anticancer therapy for

several solid tumors, including bladder (43), stomach (44), and

breast malignancies (45). Since fludarabine dramatically reduces the

release of HBV progenitor DNA, it has been used to treat HBV

infection and enhance the prognosis of HCC that is related to HBV

(46). Combining fludarabine with fusion proteins comprising the

poliovirus receptor (PVR) and the programmed death-1 (PD-1)

extracellular structural domain improves long-term tumor-specific

immunosurveillance and CD8+ T cell-mediated anticancer effects

(47). However, additional research is required to confirm if these

drugs can eventually increase tumor cell death by targeting NK cells.

Despite the encouraging findings, there are several limitations

to this study. First, the candidate genes involved in our study were

limited to NK cell marker genes, and the tumor immune
Frontiers in Immunology 09
microenvironment is highly spatially heterogeneous; second, a

sizable multicenter randomized controlled trial will be needed in

the future to evaluate this signature. Finally, all mechanistic analyses

in our study were descriptive. Future studies must explore the

potential mechanisms between NK marker gene expression and

HCC prognosis.

5 Conclusion

In summary, a prognostic seven-gene signature built on NK cell

marker genes was discovered and proven to have a strong performance

in predicting immunotherapy response in HCC patients. It may be

used as a prognostic biomarker to aid in the selection of suitable

individuals who would benefit from immunotherapy and support

therapeutic decision-making about customized prediction.
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FIGURE 7

TUBA1B expression in HCC. (A) TUBA1B expression explored in HPA database. (B-C) TUBA1B expression explored by IHC in clinical samples. (D) CD56
expression explored by IHC in HCC samples. (E) A lower number of CD56-positive cells in the HCC tissue sections with high TUBA1B expression.
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