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Background: Remarkably, the anti-cancer efficacy of immunotherapy in lung

adenocarcinoma (LUAD) has been demonstrated. However, predicting the

beneficiaries of this expensive treatment is still a challenge.

Materials and methods: A group of patients (N = 250) diagnosed with LUAD and

receiving immunotherapy were retrospectively studied. They were randomly

divided into a training dataset (80%) and a test dataset (20%). The training dataset

was utilized to train neural network models to predict patients’ objective

response rate (ORR), disease control rate (DCR), responders (progression-free

survival time > 6 months), and overall survival (OS) possibility, which were

validated by both the training and test datasets and packaged into a tool later.

Results: In the training dataset, the tool scored 0.9016 area under the receiver

operating characteristic (AUC) curve on ORR judgment, 0.8570 on DCR, and

0.8395 on responder prediction. In the test dataset, the tool scored 0.8173 AUC

on ORR, 0.8244 on DCR, and 0.8214 on responder determination. As for OS

prediction, the tool scored 0.6627 AUC in the training dataset and 0.6357 in the

test dataset.

Conclusions: This immunotherapy efficacy predictive tool for LUAD patients

based on neural networks could predict their ORR, DCR, and responder well.

KEYWORDS

immunotherapy, lung adenocarcinoma, neural network, deep learning,
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Highlights

Remarkably, the anti-cancer efficacy of immunotherapy in lung

adenocarcinoma has been demonstrated, but predicting the

beneficiaries of this expensive treatment is still a challenge.

We developed a clinician-friendly tool to predict lung

adenocarcinoma immunotherapy efficacy by only using patients’

demographic features and routine testing to act as predictive

variables, without any additional or expensive examination.

This tool might provide some reference for clinicians on the

management of lung adenocarcinoma patients’ therapy.
1 Introduction

Lung cancer remains one of the leading causes of cancer-related

death worldwide with a 5-year relative survival rate of 23.6%,

accounting for approximately one in five (18.0%) deaths (1, 2).

Lung adenocarcinoma (LUAD), the most prevalent histological

type of lung cancer, comprised virtually 40% of all cases, and the

incidence has risen over the last few decades with progressive

screening, examinations, and diagnosis (3, 4). Nearly half of

LUAD patients harbor activating oncogenes, and identification of

oncogenic alteration is routine in clinical practice. Targeted

therapy-based precise genotyping has significantly prolonged the

survival of LUAD patients with driver gene mutations and

profoundly led tumor treatment strategies to a revolutionary era,

which emerged and developed rapidly in the past decade (5, 6).

However, a majority of patients received an initial response but

eventually developed resistance to targeted therapy (6). These cases

did not change much until immunotherapy appeared. In addition,

patients without driver oncogenes had a poor outcome because of

lacking targeted therapy when compared to those with oncogenes,

although the combination of chemotherapy with bevacizumab was

an optional first-line treatment.

Therapeutic advances in novel immunotherapies or

immunotherapy combinations based on the interaction between

the human immune system and cancer have emerged rapidly in the

past few years. Remarkably, the anti-cancer efficacy and safety of

immunotherapy have been demonstrated in numerous ongoing

cl inical tr ials (7–11) . Among these various types of

immunotherapies with different molecular targets, therapeutically
Abbreviations: LUAD, lung adenocarcinoma; PD-1, programmed cell death 1;

PD-L1, programmed cell death ligand 1; IHC, immunohistochemistry; ICIs,

immune checkpoint inhibitors; RECIST, Response Evaluation Criteria in Solid

Tumors; ECOG, Eastern Cooperative Oncology Group; PS score, performance

status score; AJCC, American Joint Committee on Cancer; Immu,

immunotherapy; Antiangio, antiangiogenic; Chemo, chemotherapy; ORR,

objective response rate; BOR, best of response; CR, complete response; PR,

partial response; SD, stable disease; PD, progressive disease; DCR, disease control

rate; OS, overall survival; PFS, progression-free survival; DNNs, dense neural

networks; ROC, receiver operating characteristic; AUC, area under the receiver

operating characteristic curve; IQR, interquartile range; CI, confidence interval;

TMB, tumor mutational burden.
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targeting immune inhibitory checkpoints through the blockade of

programmed cell death 1 (PD-1) or programmed cell death ligand 1

(PD-L1) has unprecedentedly led to durable responses across a

broad range of human cancers, which was then widely used in the

clinical practice of various solid tumors (12). PD-L1 expression

detected by immunohistochemistry (IHC) is widely considered the

gold standard in predicting the response for anti-PD1/PDL1 in

immunotherapy (13). However, considering the complex and

highly regulated nature of the immune system, only a minority of

patients experienced durable benefits from these therapies. The role

of PD-L1 in predicting efficacy and identifying beneficiary patients

is still imperfect. To overcome this dilemma, there has been a

growing interest in exploring interior biomarkers or formulating

methods or tools based on external clinicopathological

characteristics to predict the response of immune checkpoint

inhibitors (ICIs) for discovering individualized treatment

strategies tailored to patient-specific characteristics to maximize

efficacy and achieve personalized medicine.

In order to address this clinical need, 250 LUAD patients with

anti-PD1/PDL1 immunotherapy were retrospectively studied, and a

predictive tool was developed then based on their real clinical

features using a state-of-the-art neural network algorithm. The

tool has been uploaded, which might provide some reference for

clinicians on the management of LUAD patients.
2 Materials and methods

2.1 Data sources and study design

This research was designed as a retrospective cohort study.

Patients diagnosed with LUAD pathologically and received

immunotherapy from January 2016 to November 2021 in Beijing

Chest Hospital affiliated with Capital Medical University were

included. Inclusion criteria were as follows: patients had at least

one evaluable lesion, receiving at least two cycles of

immunotherapy, and had a response evaluation according to

Response Evaluation Criteria in Solid Tumors (RECIST) v1.1.

Meanwhile, patients with active autoimmune disease,

symptomatic interstitial lung disease, and multiple primary

pulmonary carcinomas were excluded. A total of 250 patients met

the above criteria and were enrolled finally and were then followed

up until lost to follow-up or death. The last follow-up time was 30

April 2022. All data were divided into two groups randomly: the

training dataset (80% of the total) and test dataset (20% of the total).

The training dataset was utilized to train the model, validated by

itself and the test dataset (Figure 1). This study has been approved

by the Ethics Committee of Beijing Chest Hospital affiliated with

Capital Medical University.
2.2 Clinical features and
predictive variables

According to clinical experience, we chose and collected these

clinical features as predictive variables: age, gender, smoking,
frontiersin.org
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Eastern Cooperative Oncology Group (ECOG) performance status

score (PS), PD-L1 expression, brain metastasis, liver metastasis,

bone metastasis, adrenal metastasis, T, N, M, stage, gene mutation,

therapy methods, and immunotherapy lines. TNM stage was

evaluated in terms of the 8th American Joint Committee on

Cancer (AJCC) stage. Gene mutation was classified into the

following categories: EGFR, KRAS, other mutation (TP53),

uncommon mutation (ALK, ROS1, RET, MET, BRAF, and

HER2), and negative. Therapy methods included immunotherapy

(Immu) only, immunotherapy with antiangiogenic (Antiangio),

immunotherapy with chemotherapy (Chemo), or a combination

of the above three treatments. Immunotherapy medicine was

divided into two types: first line or subsequent lines.

There were some missing values (Supplement Figure 1) in certain

clinical features, so we used Multivariate Imputation by Chained

Equationsmethod to impute them,with the help of R packagemice (14).
2.3 Study outcome

The primary outcome was the objective response rate (ORR).

According to patients’ best of response (BOR) to immunotherapy,

they were assessed as complete response (CR), partial response

(PR), stable disease (SD), or progressive disease (PD). Patients

showing CR or PR were regarded as ORR. The subordinate

outcome was disease control rate (DCR), responder identification,

and overall survival (OS). DCR included CR, PR, and SD. Patients

whose progression-free survival (PFS) time was more than 6

months after immunotherapy were considered responders. The

measurement above complied with RECIST v1.1. The PFS was

from the first day of immunotherapy to the date of disease

progression or any cause of death. The OS was defined from the

first day of immunotherapy to the date of death due to any cause.
2.4 Model training

Before training, numerical variables were standardized, which

meant numerical variables subtracted their means and divided by
Frontiers in Immunology 03
their standard deviations, while categorical variables were converted

into dummy variables, such as replacing gender with two dummy

variables (female = 0 or male = 1). Age and ECOG PS were

standardized, and the other clinical features were transformed

into dummy variables.

Given this classification task, we used dense neural networks

(DNNs) to predict the outcomes. ORR, DCR, and responder

identification were analyzed by three DNNs independently. OS

was predicted by a neural network survival model based on

Katzman’s DeepSuvr theory (15). Usually, the neural network

performed well in classification tasks, but it is not its forte to

handle time-dependent data.

To obtain better training effectiveness, we used batch training,

dropout layers, and early stopping function during the above

process. Batch training meant that models were trained with

several samples per training epoch. Dropout layers randomly set

input units to 0 at each step during training to prevent overfitting.

Early stopping function could end up training immediately as the

model’s performance did not get promoted after selected training

epochs. These procedures were completed in python 3.9 (https://

www.python.org/).
2.5 Model evaluation and packaged
into a tool

The receiver operating characteristic (ROC) curve and the area

under the receiver operating characteristic curve (AUC) were

applied to evaluate the models’ performance. The closer the ROC

curve is to the upper left corner of the graph, the higher the accuracy

of the model. Similarly, the closer the AUC is to 1, the better the

performance of the model. A model with AUC ≥ 0.8 is considered

acceptable and performed well (16). The training dataset was used

to conduct models, which were then validated by both the training

dataset and test dataset.

Finally, all models were packaged into an immunotherapy

efficacy predictive tool for lung adenocarcinoma. This tool was a

Windows 11 64-bit executable program and free for doctors and

researchers to use.
FIGURE 1

Workflow diagram of this study. ECOG, Eastern Cooperative Oncology Group; PS score, performance status score; PD-L1, programmed cell death
ligand 1; OS, overall survival.
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2.6 Statistical analysis

We conducted Cox proportional hazards regression to explore

the prognostic risk factors and protective factors on OS in advanced

LUAD patients (III–IV stage) after immunotherapy. All statistical

analyses were completed with R software (https://www.r-

project.org/). Categorical features were represented by numbers

and percentages, compared by chi-square or Fisher’s exact test.

Skewed distribution data were represented by the median and

interquartile range (IQR) and analyzed by the Wilcoxon test. A

two-sided p < 0.05 was considered to be statistically significant.
3 Results

3.1 Clinical features of patients

A total of 250 patients were enrolled. They were classified into

two groups—responders (41.6%, 104/250) and non-responders
Frontiers in Immunology 04
(58.4%, 146/250)—according to the duration of PFS. The PD-L1

expression of responders (PFS > 6 months) was 1%–49% or ≥50%

mostly, while non-responders (PFS ≤ 6 months) mainly expressed

PD-L1 less than 1%. Responders had less adrenal metastasis and

seemed to receive first-line immunotherapy medicine more. All

responders showed PR or SD without any PD, but non-responders

tended to achieve SD or PD the most. Responders had a longer OS

than non-responders. In brief, responders tended to achieve a

higher PD-L1 expression and less adrenal metastasis and used

first-line immunotherapy medicine more commonly. Otherwise,

responders and non-responders had similar features in other

aspects, like age, gender, smoking, ECOG PS score, brain

metastasis, liver metastasis, bone metastasis, T, N, M, stage,

mutation, and therapy (Table 1).

Figure 2 visually illustrates the source of PR, SD, and PD

patients. Figure 2A shows the relation between categorical

features and BOR, while Figures 2B, C display the numerical

features’ distribution (age and ECOG PS score) in different

BOR groups.
TABLE 1 Clinical features of patients.

>6 months ≤6 months

Test method p-Value(N = 104) (N = 146)

N (%)

Age Wilcoxon 0.9703

Median (IQR) 62 (56, 67.25) 63 (56, 68)

Gender Chi-square 0.0629

Female 23 (22.12) 48 (32.88)

Male 81 (77.88) 98 (67.12)

Smoking Chi-square 0.6300

No 41 (39.42) 62 (42.47)

Yes 63 (60.58) 84 (57.53)

ECOG PS score Wilcoxon 0.4343

Median (IQR) 1 (1, 1) 1 (1, 1)

PD-L1 Chi-square 0.0077**

<1% 19 (18.27) 51 (34.93)

1%–49% 31 (29.81) 29 (19.86)

≥50% 31 (29.81) 33 (22.6)

Unknown 23 (22.12) 33 (22.6)

Brain metastasis Chi-square 0.1056

No 89 (85.58) 113 (77.4)

Yes 15 (14.42) 33 (22.6)

Liver metastasis Chi-square 0.1377

No 96 (92.31) 126 (86.3)

(Continued)
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TABLE 1 Continued

>6 months ≤6 months

Test method p-Value(N = 104) (N = 146)

N (%)

Yes 8 (7.69) 20 (13.7)

Bone metastasis Chi-square 0.7906

No 73 (70.19) 105 (71.92)

Yes 30 (28.85) 40 (27.4)

Unknown 1 (0.96) 1 (0.68)

Adrenal metastasis Chi-square 0.0326*

No 94 (90.38) 120 (82.19)

Yes 8 (7.69) 25 (17.12)

Unknown 2 (1.92) 1 (0.68)

T Fisher’s exact 0.3132

1 5 (4.81) 5 (3.42)

1a 1 (0.96) 1 (0.68)

1b 2 (1.92) 5 (3.42)

1c 6 (5.77) 3 (2.05)

2 14 (13.46) 24 (16.44)

2a 3 (2.88) 9 (6.16)

2b 8 (7.69) 4 (2.74)

3 15 (14.42) 15 (10.27)

4 48 (46.15) 75 (51.37)

Unknown 2 (1.92) 5 (3.42)

N Chi-square 0.0502

0 20 (19.23) 17 (11.64)

1 8 (7.69) 7 (4.79)

2 47 (45.19) 57 (39.04)

3 24 (23.08) 55 (37.67)

Unknown 5 (4.81) 10 (6.85)

M Chi-square 0.1745

0 24 (23.08) 21 (14.38)

1 4 (3.85) 6 (4.11)

1a 22 (21.15) 34 (23.29)

1b 18 (17.31) 18 (12.33)

1c 31 (29.81) 62 (42.47)

Unknown 5 (4.81) 5 (3.42)

Stage Fisher’s exact 0.5256

I 1 (0.96) 1 (0.68)

II 0 (0) 2 (1.37)

(Continued)
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3.2 Model performance

The immunotherapy efficacy predictive models showed

satisfactory performance. In the training dataset, models scored

0.9016 (95% confidence interval (CI): 0.8592–0.9441) on ORR

judgment, 0.8570 (95% CI, 0.7923–0.9218) on DCR, and 0.8395

(95% CI, 0.7829–0.8960) on responder prediction. In the test

dataset, the models scored 0.8173 (95% CI, 0.6959–0.9388) on

ORR, 0.8244 (95% CI, 0.7000–0.9488) on DCR, and 0.8214 (95%

CI, 0.6903–0.9526) on responder determination (Table 2 and
Frontiers in Immunology 06
Figure 3). As for OS prediction, model performance was very

ordinary, scoring 0.6627 (95% CI, 0.6613–0.6640) in the training

dataset and 0.6357 (95% CI, 0.6331–0.6384) in the test

dataset (Table 2).
3.3 Predictive tool

Immunotherapy efficacy predictive models for LUAD based on

the neural network were packaged into a predictive tool. As Figure 4
TABLE 1 Continued

>6 months ≤6 months

Test method p-Value(N = 104) (N = 146)

N (%)

III 23 (22.12) 24 (16.44)

IV 79 (75.96) 118 (80.82)

Unknown 1 (0.96) 1 (0.68)

Mutation Chi-square 0.2061

EGFR 20 (19.23) 31 (21.23)

KRAS 29 (27.88) 28 (19.18)

Other 9 (8.65) 7 (4.79)

Uncommon mutation 8 (7.69) 14 (9.59)

Negative 28 (26.92) 55 (37.67)

Unknown 10 (9.62) 11 (7.53)

Therapy Chi-square 0.5195

Immu 17 (16.35) 32 (21.92)

Immu + Antiangio 9 (8.65) 12 (8.22)

Immu + Chemo 56 (53.85) 80 (54.79)

Immu + Chemo + Antiangio 22 (21.15) 22 (15.07)

Immunotherapy lines Chi-square 0.0466*

Firstline 61 (58.65) 67 (45.89)

Subsequent lines 43 (41.35) 79 (54.11)

BOR Chi-square <0.001***

PR 58 (55.77) 34 (23.29)

SD 46 (44.23) 66 (45.21)

PD 0 (0) 46 (31.51)

PFS Wilcoxon <0.001***

Median (IQR) 9.96 (7.56, 14.64) 3.07 (1.62, 4.51)

OS Wilcoxon <0.001***

Median (IQR) 15.65 (11.97, 20.82) 8.41 (5.55, 12.47)
fron
Only non-missing values were statistically analyzed.
PFS, progression-free survival; IQR, interquartile range; ECOG PS score, Eastern Cooperative Oncology Group performance status score; PD-L1, programmed cell death ligand 1; Another gene
mutation, TP53; Uncommon gene mutation, ALK, ROS1, RET, MET, BRAF, and HER2; Immu, immunotherapy; Antiangio, antiangiogenic therapy; Chemo, chemotherapy; BOR, best of
response; PR, partial response; SD, stable disease; PD, progressive disease; OS, overall survival.
*p < 0.05; **p < 0.01; ***p < 0.001.
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shows, after related clinical information is inputted, models will

calculate and report this patient’s possibility of ORR, DCR, and

responder. The tool can also predict this patient’s OS after

immunotherapy when the Predict button is clicked.
Frontiers in Immunology 07
3.4 Survival analysis

In our clinical practice, the majority of LUAD patients receiving

immunotherapy were primarily advanced ones (stage III–IV).
A

B C

FIGURE 2

The source of progressive disease (PD) partial response (PR) and stable disease (SD) patients. (A) categorical features, (B) age, and (C) Eastern
Cooperative Oncology Group (ECOG) performance status score (PS score). PD-L1, programmed cell death ligand 1; Other gene mutation, TP53;
Uncommon gene mutation, ALK, ROS1, RET, MET, BRAF, and HER2; Immu, immunotherapy, I+A, immunotherapy and antiangiogenic therapy; I+C,
immunotherapy and chemotherapy therapy; I+C+A, immunotherapy, chemotherapy, and antiangiogenic therapy; PFS, progression-free survival;
BOR, best of response.
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Therefore, advanced LUAD patients’ data were utilized to orient

risk and protective factors on their OS after missing values were

omitted. As Supplement Figure 2 illustrates, patients with bone

metastasis had shorter survival, while patients with PR and SD had

better prognoses than those with PD.
4 Discussion

In recent years, numerous clinical trials have strongly supported

immunotherapy for routine clinical use (7–11). According to

KEYNOTE-024, pembrolizumab has shown a durable, long-

term survival benefit with a 5-year OS rate of 31.9%, further

providing meaningful evidence of immunotherapy’s clinical

application (17). Currently, whether monotherapy or combination

with chemotherapy plus antiangiogenic therapy or not,

immunotherapy has been commonly used in clinical practice as

the first-line or subsequent treatment for LUAD patients without

targetable mutations.

With the widely applied and remarkable achievement of

immunotherapy in LUAD, there is an increasingly great concern
Frontiers in Immunology 08
for how to accurately select the best candidates (10, 18). The current

standards for selection still have certain limitations. First, although

PD-L1 expression in tumor tissue has been advocated as a standard

for anti-PD1/PD-L1 immunotherapy and moderate concordance

has been shown by previous studies in PD-L1 assay results, the

results are still influenced by multiple factors such as intra-tumoral

heterogeneity of PD-L1 expression, cellularity, and more three-

dimensional cell clusters in cytology samples (19). Second,

researchers were committed to discovering new biomarkers, such

as tumor mutational burden (TMB). TMB, which is defined as the

total number of non-synonymous somatic mutations in tumor cells,

has been found to be related to tumor antigenicity, and might be an

independent biomarker of immunotherapy outcome (20). Patients

with high TMB and receiving immunotherapy were significantly

correlated with longer PFS and higher ORR, compared to those

receiving traditional chemotherapy (21, 22). Based on KEYNOTE-

158 (NCT02628067), TMB was approved as a reference index for

the treatment of solid tumors using pembrolizumab (23). However,

TMB has not been widely endorsed because of its inability to predict

OS and its inconsistent predictive efficacy in all cancer types (21,

24). Furthermore, the accuracy of TMB evaluation could be affected
TABLE 2 The performance of immunotherapy efficacy predictive tool.

Train dataset Test dataset

AUC 95% CI AUC 95% CI

ORR 0.9016 0.8592–0.9441 0.8173 0.6959–0.9388

DCR 0.8570 0.7923–0.9218 0.8244 0.7000–0.9488

Responder 0.8395 0.7829–0.8960 0.8214 0.6903–0.9526

OS 0.6627 0.6613–0.6640 0.6357 0.6331–0.6384
AUC, area under receiver operating characteristic curve; CI, confidence interval; ORR, objective response rate; DCR, disease control rate; Responder, progression-free survival time is more than 6
months; OS, overall survival.
FIGURE 3

Receiver operating characteristic curves of models on predicting ORR, DCR, and responder. ORR, objective response rate; DCR, disease control rate;
Responder, progression-free survival time was more than 6 months.
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by different methods of specimen handling (25). Third, researchers

began to use more sophisticated and better algorithms to handle

medical issues, like predicting immunotherapy efficacy. The

combination of chemotherapy and immunotherapy is more

popular because of a better outcome, but still, there is a lack of

predictive markers. Predictive tools or models based on artificial

intelligence have been increasingly emerging in recent years. T.

Araujo and colleagues used a convolutional neural network to

diagnose breast cancer based on hematoxylin and eosin-stained

breast biopsy images, and the model achieved 83.3% accuracy and

95.6% sensitivity (26). C. Du and colleagues applied a neural

network to classify imbalanced electrocardiosignal data, achieving

98.45% accuracy and 97.03% sensitivity (27). T. Dratsch developed

and validated a neural network to identify the 30 most common

categories of plain radiographs, and the model showed 90.3%

overall accuracy (28). Deep learning is gradually recognized by

clinicians. Therefore, we chose a neural network to predict LUAD

patients’ immunotherapy efficacy.

In this study, we aimed to develop a predictive tool to help identify

the ideal candidates for immunotherapy in LUAD, which was

packaged into a Windows file later and convenient to use. We

collected the clinical features of 250 patients included, dividing them

into the training dataset and the test dataset randomly. Then, we

utilized the training dataset to conduct models and validated them with

both the training and test datasets. The predictive performance of our

tool is satisfactory, with AUC > 0.8 on most evaluated items (ORR,

DCR, and responder possibility), except OS. Notably, our model scored

0.9016 and 0.8173 AUC in ORR classification, 0.8570 and 0.8244 in

DCR prediction, and 0.8395 and 0.8214 in responder identification.

These showed that our tool had good efficacy in predicting LUAD

patients’ immunotherapy benefits.

More and more researchers have devoted themselves to

developing a model to predict the benefit of immunotherapy for

cancer patients. Some investigators focused on building a model on

the database of gene mutation. Jie Peng et al. developed a predictive
Frontiers in Immunology 09
model associated with the durable clinical benefit of ICIs to LUAD

patients, using deep neural networks based on somatic mutations

tested by whole-exome sequencing and targeted next-generation

sequencing (29). The model exhibited 0.884 AUC in the training

set and 0.914 AUC in the two validation sets. Regretfully, the authors

did not make the neural network available as a clinician-friendly

website or software. Meanwhile, other researchers were dedicated to

the information on the tumor microenvironment. Jinteng Feng et al.

constructed a nomogram associated with CD8+ T cells to predict

survival rates and immunotherapy benefits of stage III LUAD

patients (30). A moderate performance showed in an online

database that their prediction model had approximately 0.649–

0.709 AUC, but a survival difference between the two groups (high-

and low-risk groups) was not observed (30). A similar study used the

next-generation sequencing method mainly; these predictive models

might be limited to being widely applied for lack of gene sequencing

data, which might be too expensive for most patients. Compared to

those studies, our study provided novel insights into predicting the

clinical benefit of ICIs for LUAD patients. We only used patients’

demographic features and routine testing to act as predictive

variables, without any additional or expensive examination.

Moreover, to facilitate clinicians’ use, we have packaged the model

into available Windows software.

In spite of the advantages, our tool still had some limitations.

Regrettably, the efficacy of our tool to predict the patients’ OS

remained unsatisfactory. Increasing the sample size may improve

the predictive efficacy of our tool. Moreover, it is better to use

prospective clinical data to validate our tool again.

In summary, we developed a neural network model to predict

immunotherapy efficacy for LUAD patients using general clinical

features and packaged it into Windows software. This tool showed

satisfactory performance and has been uploaded in Supplement

File 1, which might help optimize immunotherapy management

for LUAD patients. More biomarkers may further enhance the

model’s predictive accuracy.
FIGURE 4

The interface of immunotherapy efficacy predictive tool for lung adenocarcinoma based on neural network. ECOG PS score, Eastern Cooperative
Oncology Group performance status score; PD-L1, programmed cell death ligand 1; Immu, immunotherapy; OS, overall survival.
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SUPPLEMENTARY FIGURE 1

The distribution of missing values. ECOG PS score, Eastern Cooperative
Oncology Group performance status score. PD-L1, programmed cell death

ligand 1. BOR, best of response. PFS, progression free survival. OS,

overall survival.

SUPPLEMENTARY FIGURE 2

Risk factors and protective factors on overall survival in III-IV stage lung

adenocarcinoma patients after immunotherapy. PS score, performance
status score. PD-L1, programmed death-ligand 1. Other mutation, TP53.

Uncommon mutation, ALK, ROS1, RET, MET, BRAF, HER2. Immu,

immunotherapy. Antiangio, antiangiogenic. Chemo, chemotherapy. BOR,
best of response. PD, progressive disease. PR, partial response. SD, stable

disease. *P<0.05, **P<0.01, ***P<0.001.

SUPPLEMENT FILE 1

The installation program of immunotherapy efficacy predictive tool.

SUPPLEMENT FILE 2

The raw clinical data.
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