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Introduction: Female breast cancer is themost commonmalignancy worldwide,

with a high disease burden. The degradome is themost abundant class of cellular

enzymes that play an essential role in regulating cellular activity. Dysregulation of

the degradome may disrupt cellular homeostasis and trigger carcinogenesis.

Thus we attempted to understand the prognostic role of degradome in breast

cancer by means of establishing a prognostic signature based on degradome-

related genes (DRGs) and assessed its clinical utility in multiple dimensions.

Methods: A total of 625 DRGs were obtained for analysis. Transcriptome data

and clinical information of patients with breast cancer from TCGA-BRCA,

METABRIC and GSE96058 were collected. NetworkAnalyst and cBioPortal

were also utilized for analysis. LASSO regression analysis was employed to

construct the degradome signature. Investigations of the degradome signature

concerning clinical association, functional characterization, mutation landscape,

immune infiltration, immune checkpoint expression and drug priority were

orchestrated. Cell phenotype assays including colony formation, CCK8,

transwell and wound healing were conducted in MCF-7 and MDA-MB-435S

breast cancer cell lines, respectively.

Results: A 10-gene signature was developed and verified as an independent

prognostic predictor combined with other clinicopathological parameters in

breast cancer. The prognostic nomogram based on risk score (calculated based

on the degradome signature) showed favourable capability in survival prediction

and advantage in clinical benefit. High risk scores were associated with a higher

degree of clinicopathological events (T4 stage and HER2-positive) and mutation

frequency. Regulation of toll-like receptors and several cell cycle promoting

activities were upregulated in the high-risk group. PIK3CA and TP53 mutations

were dominant in the low- and high-risk groups, respectively. A significantly

positive correlation was observed between the risk score and tumor mutation

burden. The infiltration levels of immune cells and the expressions of immune

checkpoints were significantly influenced by the risk score. Additionally, the
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degradome signature adequately predicted the survival of patients undergoing

endocrinotherapy or radiotherapy. Patients in the low-risk group may achieve

complete response after the first round of chemotherapy with cyclophosphamide

and docetaxel, whereas patients in the high-risk group may benefit from 5-

flfluorouracil. Several regulators of the PI3K/AKT/mTOR signaling pathway and

the CDK family/PARP family were identified as potential molecular targets in the

low- and high-risk groups, respectively. In vitro experiments further revealed that

the knockdown of ABHD12 and USP41 significantly inhibit the proliferation,

invasion and migration of breast cancer cells.

Conclusion: Multidimensional evaluation verified the clinical utility of the

degradome signature in predicting prognosis, risk stratification and guiding

treatment for patients with breast cancer.
KEYWORDS

degradome, prognostic signature, tumour mutation burden, immune infiltration,
immunotherapy, breast cancer
1 Introduction

According to GLOBOCAN 2020 statistics, female breast

cancer is the most common malignancy worldwide, with

approximately 2.3 million new cases reported annually, and is

the fifth leading cause of cancer-related death (6.9%), thus

imposing a huge disease burden worldwide (1). Breast cancer

originates from mammary gland epithelial cells. The most

common types of breast cancer are infiltrating ductal carcinoma

(IDC) and infiltrating lobular carcinoma (ILC). Other types

include ductal carcinoma in situ (DCIS), lobular carcinoma in

situ (LCIS), mucinous carcinoma and medullary carcinoma.

Breast cancer is a major focus of anti-cancer research. Since the

beginning of the 21st century, remarkable progress has been

achieved in the treatment of breast cancer. Some patients with

breast cancer significantly benefit from targeted therapy and

immune checkpoint blockade (2). Despite substantial progress,

some challenges remain unresolved at present, such as

chemotherapy resistance, unperceived distant metastasis, triple-

negative breast cancer (TNBC) treatment and the unavailability of

sufficient molecular targets. More importantly, the overall

prognosis of breast cancer remains unsatisfactory owing to

individual heterogeneity (3). Therefore, developing accurate

strategies for predicting prognosis is necessary for improving

clinical management. Currently, machine learning and

bioinformatics are widely utilized as the mothodology to exploit

robust models focusing on diverse end events (4–8). Compared

with single indicators such as a clinicopathological parameter or

the expression of a single gene, an integrated signature comprising

several pivotal features appears to be a more robust tool for

predicting prognosis. Therefore, exploitation and application of

a valuable signature to predict the prognosis of patients with

breast cancer may help in clinical decision making, prioritizing

survival improvement.
02
The degradome is a repertoire of all proteases expressed in an

organism, with over 550 protease-coding genes being identified in

the human genome (9). It is preliminarily divided into five clusters

according to catalytic sites: aspartyl proteases, cysteine proteases,

serine proteases, threonine proteases and metalloproteases (9). The

degradome provides a different insight into the functional

dysregulation of cancer cells caused by protein/peptide

degradation and modification, which may help to elucidate

oncogenic mechanisms and identify potential drug targets.

Structural alteration or aberrant expression of degradome-related

genes (DRGs) has been associated with diverse human diseases,

including neurodegenerative disorders (10), cardiovascular diseases

(11), musculoskeletal diseases (12), bowel diseases (13) and,

particularly, malignancy. Numerous DRGs have been associated

with the phenotype of breast cancer. DNPEP (an aspartyl protease)

is sponged by PAK5 in breast cancer cells, and its overexpression

attenuates cell proliferation and invasion in vitro and suppresses

tumour growth and metastasis in vivo (14). USP4 (a cysteine

protease) has been identified as the downstream target of DNPEP

in the PAK5/DNPEP/USP4 regulatory axis in breast cancer. High

USP4 expression is associated with the poor prognosis of patients

with breast cancer (14). The expression of TMPRSS13 (a

transmembrane serine protease) is elevated in IDC tissues.

Silencing TMPRSS13 can significantly suppress breast cancer

progression both in vitro and in vivo by decreasing proliferation,

enhancing apoptosis and inhibiting invasion, resulting in the

inhibition of overall tumour burden and deficiency of detectable

tumour growth (15). Additionally, TMPRSS13 knockdown

sensitizes aggressive TNBC cells to chemotherapy agents in vitro.

PRSS8 (a serine protease) accumulation mediated by TMPRSS13

knockdown is a potential tumour-suppressive mechanism (15).

TASP1 (a threonine protease) plays an essential role in both

normal mammary gland development and breast cancer

progression (16). TASP1 knockdown reduces the expression of
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cyclins E and A in vivo, thereby blocking carcinogenesis. Mixed-

lineage leukaemia has been identified as a major substrate of TASP1

and is required for the development of HER2-positive breast cancer

in vitro (16). Matrix metalloproteases (MMPs) are well-known

members of metalloproteases. MMPs may promote breast cancer

progression by remodeling the tumor microenvironment (17).

Therefore, constructing a comprehensive prognostic signature

based on DRGs may help to understand their prognostic value in

breast cancer in a broader way.

In this study, we developed and validated a prognostic signature

based on DRGs. Investigations of the degradome signature with

respect to clinical association, functional characterization, mutation

landscape, immune infiltration and immune checkpoint expression

of were orchestrated. Additionally, the clinical utility of the

signature in predicting the prognosis of patients undergoing

different therapies was analyzed, and potential drugs for

chemotherapy and molecular targeted therapy were also implied

in different risk groups. In vitro experiments further confirmed the

molecular functions of two DGRs (ABHD12 and USP41).
2 Materials and methods

2.1 Data acquisition and pre-processing

The transcriptome data and clinical information of patients

with breast invasive carcinoma (BRCA) were downloaded from

TCGA (http://cancergenome.nih.gov/), GEO (GSE96058 dataset)

(https://www.ncbi.nlm.nih.gov/geo) and Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) databases.

Male BRCA samples and samples without survival information

were excluded. Eventually, 1069 BRCA and 113 normal samples

from TCGA, 3273 BRCA samples from GSE96058 and 1904 BRCA

samples from METABRIC were included.
2.2 Identification of
degradome-related genes

DRGs were selected from The Mammalian Degradome Database

(degradome.uniovi.es/dindex.html) (18). The DESeq2 R package was

used to screen for differentially expressed genes (DEGs) between

BRCA and normal samples in TCGA cohort. Genes with |Log2FC|

value > 1 and P-value < 0.05 were considered as DEGs. The survival R

package was used to screen for prognosis-related genes (PRGs)

significantly correlate with overall survival (OS) in TCGA cohort.

These DRGs, DEGs and PRGs were intersected, and 22 overlapping

DRGs were selected for subsequent analysis. The expression pattern

of the 22 DRGs and the correlation among them were analyzed. The

clusterProfiler and org.Hs.eg.db R packages were used for Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analyses of the 22 DRGs. Besides,

ConsensusClusterPlus R package was used to perform consensus

clustering to verify the consistence of the 22 DGRs by means of

dissecting subtypes in TCGA cohort.
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2.3 Construction of degradome-based
prognostic signature

TCGA cohort was used as the training cohort to construct a

degradome-based prognostic signature. Univariate and multivariate

Cox regression analyses were performed to identify independent

prognostic predictors from the 22 DRGs. Thereafter, LASSO

regression analysis was employed to construct a prognostic

signature based on the 22 DRGs. The risk score was calculated as

follows: Risk score = ∑(Ci*Ei). In the equation, i represents a certain

DRG, C represents the coefficient of the DRG and E represents the

expression level of the DRG. Patients were divided into the low- and

high-risk groups according to the median risk score. The survminer

and survival R packages were used to compare patient survival

between the two groups. The timeROC R package was used to plot

receiver operating characteristic (ROC) curves to assess the

predictive ability of the degradome signature.
2.4 Validation of the degradome signature

The GSE96058 dataset was used for external validation. Three

cohorts from TCGA were selected for internal validation:

pathological-stage-III, ER-positive and HER2-positive cohorts.

The degradome signature was tested in each cohort. Kaplan–

Meier (K-M) survival curves and ROC curves were plotted for

each cohort. Principal component analysis (PCA) was further used

to differentiate the low- and high-risk groups in both TCGA and

GSE96058 cohorts. In addition, we extracted 18 clinical subgroups

from TCGA cohort to clarify the applicability of the degradome

signature in a more broader way.
2.5 Clinicopathological differences
between the two risk groups

The clinicopathological parameters (11 parameters) and

complete response of patients undergoing different therapies

(chemotherapy, endocrinotherapy and radiotherapy) were

compared between the low- and high-risk groups. K-M survival

curves were plotted to compare disease-specific survival (DSS),

disease-free interval (DFI) and progression-free interval (PFI)

between the low- and high-risk groups.
2.6 Development of degradome-related
clinicopathological nomogram

Univariate and multivariate Cox regression analyses were

performed based on 11 clinicopathological parameters and risk

score. Characteristics with P-value < 0.05 from the multivariate Cox

regression analysis were further used to develop a nomogram to

predict OS. The predictive accuracy of the nomogram was verified

based on the concordance index (C-index) and calibration curves.

Besides, decision curve analysis (DCA) was performed to assess the
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advantage in clinical benefit of the nomogram compared with

traditional pathological stage.
2.7 Functional characterisation
of DEGs in the two risk groups

DEGs between the low- and high-risk groups were identified

and named new DEGs (nDEGs). NetworkAnalyst (http://

www.networkanalyst.ca) was employed to build a protein–protein

interaction (PPI) network based on nDEGs. The nDEGs were

functionally characterized via GO and KEGG analyses based on a

pre-determined |log2FC| threshold. Gene set enrichment analysis

(GSEA) was performed to identify the significantly enriched

functional pathways in the two risk groups. In addition, the

DRGs and nDEGs were intersected to compare the degradome

expression pattern between the low- and high-risk groups.
2.8 Mutation landscapes
of the two risk groups

The Breast Invasive Carcinoma dataset (TCGA, PanCancer

Atlas 1084 samples) in the cBioPortal for Cancer Genomics

database (http://www.cbioportal.org) was used for subsequent

analysis. The mutation landscape of the whole cohort, low-risk

group and high-risk group was respectively extracted. The top 10

most frequently altered genes and DRGs in the two risk groups

were determined. Differences in the fraction of genome altered,

mutation counts, microsatellite instability (MSI) and tumor

mutation burden (TMB) were analyzed between the low- and

high-risk groups. Samples were divided into the low- and high-

TMB groups according to the median TMB value. Subsequently,

differences in survival were analyzed between the low- and high-

TMB groups with or without the consideration of risk score.

Additionally, the correlation between risk score and TMB

was analyzed.
2.9 Differences in immune infiltration
and immune checkpoint expression
between the two risk groups

The GEPIA2021 database (gepia2021.cancer-pku.cn) was used

to examine the correlation among the infiltration of 22 types of

immune cells in the tumour microenvironment (TME) of breast

cancer. The CIBERSORT algorithm was used to evaluate the

infiltration levels of 22 types of immune cells. The correlation

between risk score and 22 types of immune infiltrating cells was

analyzed, and the infiltration levels were also compared between the

low- and high-risk groups. Furthermore, the expression pattern of

47 immune checkpoints was compared between the two risk groups

to assess the potential value of the degradome signature

in immunotherapy.
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2.10 Prognostic prediction of patients
undergoing different therapies

The survival of patients undergoing different therapies was

compared between the low- and high-risk groups in TCGA and

METABRIC cohorts. Potential drugs that may result in complete

response to chemotherapy were identified in the two risk groups.

Additionally, the expression pattern of 21 potential molecular

targets from the PI3K/AKT/mTOR signaling pathway, CDK

family and PARP family was examined to ascertain targets for

molecular targeted therapy in different risk groups.
2.11 Drug sensitivity analysis

With pRRophetic R package, we processed wide drug screening

based on GDSC database (https://www.sanger.ac.uk/tool/gdsc-

genomics-drug-sensitivity-cancer) to ascertain the drugs that the

two risk groups may sensitively respond to.
2.12 Cell culture and siRNA transfection

Two human breast cancer cell lines MCF-7 andMDA-MB-435S

were purchased from Wuhan Procell Life Science and Technology

Co., Ltd. (Wuhan, China) to form parallel contrast. Cells were

cultured in RPMI-1640 (Gibco-BRL) supplemented with 10% foetal

bovine serum (Bioserum), 100-U/mL penicillin G and 100-mg/mL

streptomycin. siRNAs targeting ABHD12 and USP41 were

purchased from GeneChem (Genechem Co., Ltd, Shanghai,

China). The siRNAs were transfected into MCF-7 and MDA-MB-

435S cells following the recommended guidelines. For each gene

(ABHD12 or USP41), a total of three groups were formed: normal

control (NC), siRNA1 and siRNA2 groups. The sequence of siRNAs

were provided in Supplementary Material.
2.13 Western blotting

MCF-7 cells and MDA-MB-435S cells were lysed in

radioimmunoprecipitation assay (RIPA) buffer (Zhonghuihecai,

Xi’an, China) and pelleted via centrifugation at 4°C for 15 min,

and the supernatant was discarded. Subsequently, 1/5 sodium

dodecyl sulfate–polyacrylamide gel loading buffer (5×; Beyotime,

Shanghai, China) was added, and the sample was heated in a 100°C

metal bath for 10 min. The extracted proteins were separated on a

15% sodium dodecyl sulfate–polyacrylamide gel and transferred to

a 0.22-mm polyvinylidene fluoride (PVDF) membrane (Millipore,

USA). The membrane was blocked with 5% skimmed milk for

approximately 2 h and incubated with specific antibodies: ABHD12

(Cat. No.: EPR13683, 1:100,000, Abcam), USP41 (Cat. No.: PA5-

71281, 1:100,000, Invitrogen) and b-actin (Cat. No.: Ab6276,

1:100,000, Abcam). The protein bands were visualised using a

chemiluminescent kit (Vazyme, Nanjing, China).
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2.14 Cell phenotype assays

Colony formation and CCK8 assays were performed to assess

the proliferation of breast cancer cells. Cells from different groups

were digested and inoculated in 6-well plates (Jet Biofilter Co., Ltd.,

Guangzhou, China), with 1,000 cells per well. The medium was

changed every 3 days, and the cells were cultured for 10–14 days.

After visible colonies were formed, they were immobilised with 4%

paraformaldehyde and stained with crystalline violet (Solarbio Life

Sciences, China). CCK8 assay (Dojindo, Tokyo, Japan) was

performed according to the manufacturer’s instructions. The

absorbance was measured at 450 nm using a microplate reader.

Wound healing and transwell assays were performed to assess the

invasive and migratory abilities of breast cancer cells. Cells from

different groups were digested and inoculated in 6-well plates. After

the cells had reached 95% confluence, a straight scratch was made

on the surface of each well with the tip of a 100-mL sterile pipette.

The wound area was photographed using an inverted microscope

(Nikon DS-RI2, Japan) at 100× magnification at 0, 12 and 24 h. For

transwell assay, 800 mL of a medium containing 10% foetal bovine

serum (Corning, USA) was added to the lower chamber, and 200

mL of a serum-free medium containing 20,000 cells was added to

the upper Matrigel-coated chamber. After 24 h of incubation, cells

that had crossed the membrane were fixed with 4%

paraformaldehyde, washed with phosphate-buffered saline,

stained with crystal violet and photographed using an inverted

microscope at 200× magnification.
2.15 Statistical analysis

All statistical analyses were performed using R 4.0.3. K-M

survival curves were compared via Cox regression analysis. The

Wilcoxon rank sum test was used to compare the gene expression

between groups, and the chi-square test was used to compare the

differences in clinicopathological parameters between risk groups.

Spearman correlation coefficients were evaluated for correlation

analysis. |r| value > 0.1 were considered relevant, and P-value < 0.05

were considered statistically significant. ‘*’ indicates P-value < 0.05,

‘**’ indicates P-value < 0.01 and ‘***’ indicates P-value < 0.001

throughout this study.
3 Results

3.1 22 DRGs correlated with prognosis
were demarcated

A total of 625 DRGs were selected from The Mammalian

Degradome Database, including 24 aspartyl proteases, 169

cysteine proteases, 201 serine proteases, 28 threonine proteases

and 203 metalloproteases. In the meanwhile, a total of 5068 DEGs

and 1596 PRGs were identified. These three gene clusters were

intersected (Figure 1A), and the expression patterns of the 22

overlapping DRGs were verified (Figure 1B). Furthermore, the

correlation among the expression of the 22 DRGs was examined
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(Figure 1C). The expression of most DRGs was positively

correlated. Functional enrichment analysis confirmed that the 22

DRGs are associated with protein degradation and processing

(Figure 1D). Additionally, two subtypes (BRCA subtype 1 and

BRCA subtype 2) were concisely divided via consensus clustering,

verifying the favourable consistence of the 22 DRGs

(Supplementary Figure S1).
3.2 A 10-gene degradome-based signature
was constructed for predicting prognosis

A total of 5 DRGs were identified as independent prognostic

predictors in BRCA (Figures 2A, B). PRSS2, SPPL2C and RHBDL1

were identified as protective factors, whereas USP41 and ABHD12

were identified as risky factors. A 10-gene signature was constructed

via LASSO regression analysis (Figures 2C, D), and the risk score

was calculated as follows: (-0.0776)*GZMK expression + (-0.0153)

*TMPRSS2 expression + (-0.0742)*PRSS2 expression + (-0.0251)

*PCSK6 expression + (0.0913)*ABHD12 expression + (-0.0405)

*FREM1 expression + (-0.0902)*RHBDL1 expression + (-0.0540)

*ADAMTS8 expression + (0.2896)*USP41 expression + (-0.9196)

*SPPL2C expression. K-M curves revealed that OS was worse in the

high-risk group than in the low-risk group (Figure 2E). The area

under the ROC curve (AUC) was 0.761, 0.749 and 0.708 at 1-, 3-

and 5-year, respectively (Figure 2F). The distribution of risk scores

and survival time (days) were also displayed between the low- and

high-risk groups (Figure 2G).
3.3 Degradome signature was fairly
validated in internal and external cohorts

Three TCGA cohorts were used for internal validation:

pathological stage III, ER-positive and HER2-positive cohorts.

Survival was adequately distinguished between the low- and high-

risk groups in the three cohorts, with patients in the high-risk group

having poorer outcomes (Figures 3A, D, G). In the pathological

stage III cohort, the AUCs for predicting survival probability at 1-,

3- and 5-year were 0.777, 0.726 and 0.798, respectively (Figure 3B).

In the ER-positive cohort, the AUCs for predicting survival

probability at 1-, 3- and 5-year were 0.771, 0.781 and 0.731,

respectively (Figure 3E). In the HER2-positive cohort, the AUCs

for predicting survival probability at 1-, 3- and 5-year were 0.703,

0.716 and 0.688, respectively (Figure 3H). The GSE96058 dataset

was used for external validation. Patients in the high-risk group

harbored worse prognosis (Figure 3J). The AUCs for predicting

survival probability at 1-, 3- and 5-year were 0.746, 0.669 and 0.636,

respectively (Figure 3K). The distribution of patients with risk score

and survival time in the three TCGA cohorts and GSE96058 cohort

were demonstrated, respectively (Figures 3C, F, I, L). The distinct

risk grouping in both TCGA and GSE96058 cohorts was confirmed

by PCA (Supplementary Figure S2). Besides, the AUC stands for

predictive capability of risk score was prior to other

clinicopathological characteristics but age in both TCGA and

GSE96058 cohorts (Supplementary Figure S3). Subgroup analysis
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further determined the robust efficacy of the degradome signature in

discriminating prognosis regardless of multiple clinicopathological

features (Supplementary Figure S4). Altogether, these results

verified the favourable applicability of the degradome signature.
3.4 Degradome-related clinicopathological
nomogram showed moderate
predictive capability

The distributions of 11 clinicopathological parameters were

displayed between the low- and high-risk groups, with integration

of the expression of 10 DRGs (Figure 4). These 10 DRGs were

significantly differentially expressed between the low- and high-risk

groups. On comparing the differences in clinicopathological

characteristics between the two risk groups (Supplementary Table

S1), the high-risk group was found to have more patients with T4

stage, ER-negative, PR-negative and HER2-positive breast cancers

and more patients in the post-menopausal status. Regarding the

PAM50 subtype, the high-risk group had more patients with the

Her2, basal and luminal B subtypes, whereas the low-risk group had
Frontiers in Immunology 06
more patients with luminal A subtype. In addition, the proportion

of patients with complete response to chemotherapy was higher in

the low-risk group than in the high-risk group. However, no

significant differences in complete response to endocrinotherapy

and radiotherapy were observed between the two risk groups.

Moreover, patients in the high-risk group had worse DSS, DFI

and PFI (Figures 5A-C).

Age, ER status (negative), N stage (N3) and risk score were

deciphered as independent prognostic predictors of BRCA

(Supplementary Table S2). The risk score was also identified as

an independent prognostic predictor in the four validation cohorts

(Supplementary Figure S5). The four factors were subsequently

used to develop a nomogram for predicting OS at 1-, 3- and 5-year

(Figure 5D). The C-index was 0.769 (0.747-0.790), demonstrating

the robust predictive ability of the nomogram. The risk score had

the strongest effect on OS according to its wide point contribution.

The calibration curves were close to the ideal line, suggesting

excellent predictive efficacy of the nomogram (Figure 5E).

Additionally, DCA revealed that the nomogram has more

satisfactory clinical decision-making advantages at 1-, 3- and 5-

year comparing with the traditional pathological stage (Figure 5F).
A

B D

C

FIGURE 1

Primary identification and verification of DRGs in BRCA. (A) Intersection of DRGs, DEGs and PRGs. (B) Expression pattern of the 22 DRGs between
BRCA and the normal. (C) Correlation among the expression of the 22 DRGs in BRCA. (D) GO/KEGG functional enrichment analyses of the 22 DRGs.
‘***’ indicates P-value < 0.001. "ns" represents non-significant.
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3.5 TLR signaling regulation and cell cycle-
promoting activities were significantly
upregulated in the high-risk group

nDEGs between the two risk groups were identified and used to

construct a tissue-specific PPI network (Figures 6A, B). GO/KEGG

analysis revealed that four biological activities mainly associate with

chemokine responses were significantly upregulated in the low-risk

group (z score > 1) (Figure 6C). A total of 30 GO terms and 5 KEGG

terms were significantly upregulated in the high-risk group

(z score > 1) (Figures 6D–F). These terms included cornification,

antimicrobial humoral response, digestion, collagen-containing

extracellular matrix, cornified envelope, neuronal cell body,

serine-type endopeptidase activity, receptor-ligand activity,

channel activity, neuroactive ligand-receptor interaction, PPAR

signaling pathway and nicotine addiction, etc. The detailed results

of functional annotation are provided in Supplementary Table S3.

Subsequently, GSEA revealed the biological activities and signaling

pathways enriched in the high-risk group (Figures 6G, H). These

activities and pathways were mainly summarized as the following

two aspects: TLR signalling regulation (regulation of TLRs by

endogenous ligands) and cell cycle-promoting activities (REG
Frontiers in Immunology 07
cascade of cyclin EXPR, polo-like kinase mediated events, PLK1

pathway, G0 and early G1 and G1 specific transcription). However,

no significant GSEA results were observed in the low-risk group.

Furthermore, a total of 45 degradome-related nDEGs (DR-nDEGs)

were identified after the intersection of DRGs and nDEGs

(Figure 6I). The expressions of the 45 DR-nDEGs were compared

between the low- and high-risk groups, suggesting the distinct

degradome pattern in different risk groups (Figure 7).
3.6 Different risk groups had distinct
mutation characteristics

The top 20 most frequently altered genes in BRCA, plus the two

putative genes, BRCA1 and BRCA2, were examined (Figure 8A).

The mutation frequency of PIK3CA (34%) and TP53 (33%) was the

highest, with the most common mutation type being missense

mutation. The fraction of genome altered was less than 25% in

most patients (Figure 8B). The gene mutation count of most

patients ranged from 10 to 40 (Figure 8C). Furthermore, the gene

mutation landscapes of the low- and high-risk groups were

determined, respectively (Figures 8D, E). PIK3CA (40%) and
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FIGURE 2

Construction of the degradome signature via LASSO regression analysis. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression
analysis. (C, D) LASSO regression analysis. (E) K-M curve for comparing OS between the low- and high-risk groups. (F) ROC curves of the
degradome signature at 1-, 3- and 5-year. (G) Distribution of risk scores and survival time (days) between the low- and high-risk groups.
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TP53 (46%) were the most frequently altered genes in the low- and

high-risk groups, respectively. This finding indicated the different

gene-driven oncogenesis in patients with different risk statuses.

Subsequently, significantly altered genes between the two risk

groups were identified (Figures 8F, G). The frequency of

significant gene mutations was higher in the high-risk group.

Genes with significantly different mutation frequencies between

the two risk groups were further counted (Figure 8H). For both the

entire genome and degradome, the number of significantly mutated

genes was higher in the high-risk group. The top 10 significantly

mutated genes in the entire genome and degradome in the two risk

groups were respectively displayed (Figures 8I–L).
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Patients in the high-risk group had a significantly higher

fraction of altered genome, more gene mutation counts, higher

MSIsensor scores and higher TMB than patients in the low-risk

group (Figures 9A–E). The dominant oncogenic pathway was

checked out to be the TP53 signaling pathway in the high-risk

group and the PI3K/AKT/mTOR signaling pathway in the low-risk

group (Figures 9F, G). These results are consistent with those of

gene mutation landscapes. However, TMB was found to have no

prognostic value in BRCA (Figure 9H). Survival analysis integrating

risk score and TMB revealed that patients with low TMB and high

risk score had the worst prognosis, whereas those with high TMB

and low risk score had the best prognosis (Figure 9I). More
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FIGURE 3

Internal and external validation of the degradome signature. (A–C) Internal validation based on TCGA pathological stage III cohort. (D–F) Internal
validation based on TCGA ER-positive cohort. (G–I) Internal validation based on TCGA HER2-positive cohort. (J–L) External validation based on
GSE96058 dataset.
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importantly, the risk score was significantly positively correlated

with TMB (r = 0.283, P < 0.001) (Figure 9J).
3.7 Degradome signature was correlated
with immune infiltration and immune
checkpoint expression

The infiltration levels of a majority of immune cells were

positively correlated with each other in BRCA (Figure 10A). The

infiltration levels of 22 types of immune cells were evaluated in each

BRCA sample (Figure 10B). The risk score was significantly

positively correlated with the infiltration levels of resting NK cells,

M0 and M2 macrophages, activated dendritic cells and neutrophils
Frontiers in Immunology 09
and significantly negatively correlated with the infiltration levels of

naive B cells, CD8 T cells, resting memory CD4 T cells, gamma-

delta T cells, activated NK cells, M1 macrophages, resting dendritic

cells and resting mast cells (Figure 10C). Furthermore, the

infiltration levels of resting NK cells, macrophages M0,

macrophages M2 and activated dendritic cells were significantly

higher in the high-risk group, whereas those of naive B cells, CD8 T

cells, resting memory CD4 T cells, gamma-delta T cells, activated

NK cells, M1 macrophages, resting dendritic cells and resting mast

cells were significantly higher in the low-risk group (Figure 10D).

Only CD80 was significantly upregulated in the high-risk group,

while the other 35 immune checkpoints were significantly

upregulated in the low-risk group, including CTLA4, PD1 and

PDL1 (Figure 10E).
FIGURE 4

Distribution of clinicopathological characteristics in the low- and high-risk groups.
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3.8 Degradome signature efficiently
predicted the prognosis of patients
undergoing endocrinotherapy
or radiotherapy

The efficiency of the degradome signature in predicting the

prognosis of patients undergoing different therapies was

examined in TCGA and METABRIC cohorts, respectively. The

prognosis of patients undergoing traditional chemotherapy was

not significantly distinguished between the low- and high-risk

groups in both TCGA and METABRIC cohorts (Figures 11A, D).
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The prognosis of patients undergoing endocrinotherapy was

worse in the high-risk group than in the low-risk group in both

TCGA and METABRIC cohorts (Figures 11B, E). The prognosis

of patients undergoing radiotherapy was poorer in the high-risk

group than in the low-risk group in the METABRIC cohort

(Figure 11F). However, there was no difference in the prognosis

of patients undergoing radiotherapy between the low- and high-

risk groups in TCGA cohort, possibly owing to limited

samples (Figure 11C).

We next summarized the TCGA-BRCA samples that gain

complete response after first-round traditional chemotherapy and
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FIGURE 5

Correlation between the degradome signature and clinicopathological characteristics. (A–C) Survival differences in DSS, DFI and PFI between the
low- and high-risk groups. (D) Prognostic nomogram based on clinicopathological characteristics and risk score. (E) Calibration curves of the
nomogram at 1-, 3- and 5-year. (F) DCA of the nomogram at 1-, 3- and 5-year.
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the corresponding drug agents (Figure 11G). A total of 94 and 59

patients exhibited complete response to the first-round traditional

chemotherapy in the low- and high-risk groups, respectively.

Cyclophosphamide and docetaxel were found to be more

beneficial for patients in the low-risk group, while 5-fluorouracil

may be more proper for patients in the high-risk group to gain

complete response. Furthermore, the expression pattern of 21

molecules in the PI3K/AKT/mTOR signaling pathway, CDK

family and PARP family were investigated between different risk

groups (Figure 11H). Most targets from the PI3K/AKT/mTOR

signaling pathway were significantly upregulated in the low-risk

group, whereas most targets from the CDK family and PARP family

were significantly upregulated in the high-risk group. These targets

may potentially serve for molecular targeted therapy in BRCA.

Interestingly, drug sensitivity analysis with IC50 further suggested

that docetaxel, epirubicin and inhibitors of PI3K/AKT/mTOR

signaling pathway (afuresertib, buparlisib, ipatasertib and

dactolisib) are more beneficial to patients in the low-risk group,

whereas tyrosine kinase inhibitors (ibrutinib, lapatinib and

sapitinib) may better benefit patients in the high-risk group

(Supplementary Figure S6).
A

B

D

E

F

G

I

H

C

FIGURE 6

Functional characterization in the two risk groups. (A) DEGs between the low- and high-risk groups. (B) Tissue-specific PPI network of the DEGs. Dots
with blue borders represent nDEGs. Dots with a larger size and stronger colour intensity indicate nDEGs that play a more important role in the PPI
network. (C) GO/KEGG biological activities that are significantly enriched in the low-risk group. (D–F) GO/KEGG biological activities that are significantly
enriched in the high-risk group. (G, H) GSEA in the high-risk group. (I) Identification of DR-nDEGs.
FIGURE 7

Expression pattern of DRGs between the low- and high-risk groups.
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3.9 Sponging ABHD12 and USP41
significantly inhibited the proliferation,
invasion and migration of breast
cancer cells

To examine the molecular functions of DRGs in breast cancer,

ABHD12 and USP41 were selected for in vitro analysis. ABHD12

and USP41 were significantly elevated in both BRCA samples and

the high-risk group. ABHD12 and USP41 were knocked down in

both MCF-7 cells and MDA-MB-435S cells via siRNA transfection
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(Figures 12A, B). Colony formation assay (Figures 12C–F) and

CCK8 assay (Figures 12G–J) consistently verified that the

knockdown of ABHD12 and USP41 significantly attenuated the

proliferation of both MCF-7 cells and MDA-MB-435S cells.

Transwell assay suggested that the knockdown of ABHD12 and

USP41 significantly inhibited the migration of both MCF-7 cells

and MDA-MB-435S cells (Figures 12K–N). Besides, wound healing

assay revealed that the knockdown of ABHD12 and USP41

significantly weakened the invasion of both MCF-7 cells and

MDA-MB-435S cells (Figures 13A–F).
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FIGURE 8

Mutation differences between the low- and high-risk groups. (A) Mutation landscape of the whole TCGA-BRCA cohort. (B) Fraction of genome
altered. (C) Gene mutation count. (D) Mutation landscape of the low-risk group. (E) Mutation landscape of the high-risk group. (F, G) Significantly
altered genes between the low- and high-risk groups. (H) Genes with significantly different mutation frequencies in the entire genome and
degradome in the two risk groups. (I, J) The top 10 genes with significantly different mutation frequencies in the high- and low-risk groups. (K, L)
The top 10 DRGs with significantly different mutation frequencies in the high- and low-risk groups.
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4 Discussion

Previously, degradation was merely considered as a destructive

mechanism of proteins. Recent studies have revealed that the

repertoire of proteases plays an important role in various

physiological and pathological activities than ever (19). The

identified 625 DRGs account for over 3% of the currently known

19,587 protein-coding genes in human. Therefore, the degradome

contains the most abundant class of enzymes that play an essential

role in modulating cellular activities (18, 20, 21). Dysregulation of

DRGs may contribute to the onset and progression of breast cancer

(14–17, 22). But the crucial DRGs remain unknown in breast

cancer. Moreover, to the best of our knowledge, no previous

study has systematically evaluated the degradome pattern in

breast cancer to predict prognosis, assess treatment response and

guide risk stratification. Therefore, this study may serve as a

primary reference for subsequent studies.

We constructed and validated a 10-gene signature based on

DRGs to predict the prognosis of patients with breast cancer. The
Frontiers in Immunology 13
OS, DSS, DFI and PFI of patients between the low- and high-risk

groups were adequately differentiated by the degradome signature.

Three DRGs (PRSS2, SPPL2C and RHBDL1) were identified as

protective factors and two DRGs (USP41 and ABHD12) were

identified as risky factors for BRCA. In vitro experiments revealed

that USP41 and ABHD12 play an essential role in breast cancer

progression, which was consistent with the results of our functional

assays (23, 24). Elucidating the detailed regulatory mechanisms of

USP41 and ABHD12 may help to further understand their roles in

breast cancer. But no previous study has reported the role of PRSS2,

SPPL2C and RHBDL1 in breast cancer, thus this study may report

the potential role of these genes as independent prognostic

predictors in breast cancer for the first time.

Furthermore, the correlation between risk score and

clinicopathological parameters was investigated. Patients with T4

stage, ER-negative, PR-negative, HER2-positive, basal subtype

(PAM50), Her2 subtype (PAM50), post-menopausal status and

those without complete response to chemotherapy harbored high

risk score and hence worse prognosis. The risk score was identified as
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FIGURE 9

Mutation differences between the low- and high-risk groups. Differences in (A) fraction of genome altered, (B) gene mutation count, (C) MSIsensor
score, (D) MSI MANTIS score and (E) TMB between the two risk groups. Dominant signaling pathways in the (F) high-risk group and (G) low-risk
group. (H) Survival analysis between the low- and high-TMB groups. (I) Survival analysis integrating the risk score and TMB. (J) Correlation between
the risk score and TMB.
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an independent prognostic predictor, together with ER status

(negative), N stage (N3) and age. A novel prognostic nomogram

integrating these four factors was developed. The C-index, calibration

curves and DCA confirmed that the nomogram shows favourable

capability to predict survival and clinical decision-making advantages

comparing with the traditional pathological stage.

The proportion of DEGs was lower in the low-risk group than

in the high-risk group, which led to unsatisfactory results of GO/

KEGG functional enrichment analyses and GSEA in the low-risk

group. The GO/KEGG biological activities positively upregulated in

the high-risk group included small-molecule transport, digestion

and peptidase activity, which indicated a more active degradome in

the high-risk group. GSEA revealed that the most enriched

biological activity in the high-risk group was regulation of TLRs

by endogenous ligands. Endogenous ligands from host cell origin

that regulate TLRs are also called damage-associated molecular

patterns (DAMPs), which can be activated and secreted to respond

to tissue damage by enhancing inflammatory responses (25).

DAMPs from breast cancer cells and other invasive cancer cells
Frontiers in Immunology 14
can promote cancer progression and enhance tumor aggressiveness

(26, 27), which may explain the worse outcomes of patients in the

high-risk group in this study. Furthermore, five cell cycle-

promoting biological processes and signaling pathways were

enriched in the high-risk group: REG cascade of cyclin EXPR,

polo-like kinase activity, G0 and early G1, PLK1 pathway and G1

specific transcription. Polo-like kinase 1 (PLK1) is a pivotal

regulator in mitosis. Its overexpression during mitosis activates

the transcription factor FOXM1, which subsequently activates

genes that are involved in mitosis (28). PLK1 silencing attenuates

cell proliferation and growth and induces apoptosis in breast cancer

(29, 30). Therefore, the poor prognosis of patients with high risk

score in this study may be partially attributed to enhanced

proliferation via more active mitosis. Additionally, the expression

of DRGs was different between the two risk groups, suggesting

distinct degradome pattern in the two groups. Altogether, the

results of functional enrichment analyses revealed two potential

mechanisms underlying breast cancer progression in the high-risk

group. On the one hand, DAMPs from cancer cells are activated and
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FIGURE 10

Evaluation of the infiltration levels of immune cells and the expression pattern of immune checkpoints between the low- and high-risk groups.
(A) Correlation among the infiltration levels of 22 types of immune cells in BRCA. (B) Infiltration levels of immune cells in each BRCA sample.
(C) Correlation between the risk score and infiltration levels of the 22 types of immune cells. (D) Differences in the infiltration levels of the 22 types
of immune cells between the two risk groups. (E) Differential expression of 47 immune checkpoints between the low- and high-risk groups.
‘***’ indicates P-value < 0.001. "ns" represents non-significant.
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secreted to generate inflammation responses and promote tissue

repair, thereby enhancing cancer progression. On the other hand,

stronger PLK1 signaling enhances mitosis to promote the

proliferation of cancer cells. The two mechanisms may provide

novel insights into targeted therapy; however, further experimental

verification is required to support these findings.

Excessive gene mutation, especially the mutation of tumour

suppressor genes, is one of the triggers for tumorigenesis (31).

PIK3CA and TP53 are both commonly mutated oncogenes in breast

cancer (32). In this study, PIK3CA and TP53 were identified as

potential carcinogenesis-driving genes in the low- and high-risk

groups, respectively. Kotoula et al. (33) showed that patients with

non-lymphocyte-dominant early-stage breast cancer with PIK3CA-

only mutations had a favourable DFI, those with TP53-only mutations

had a worse DFI and those with PIK3CA-TP53 co-mutations had the

worst DFI. They concluded that PIK3CA and TP53 mutations have
Frontiers in Immunology 15
diverse effects on the prognosis of patients with early stage breast

cancer (33). Consistently, in this study, patients with TP53 mutations

in the high-risk group had a worse prognosis than those with PIK3CA

mutations in the low-risk group. Patients in the high-risk group had

higher genome instability and mutation frequency, which may explain

the unsatisfactory outcomes observed in this group. More importantly,

the risk score was significantly positively correlated with TMB.

Immune infiltrating cells in the TME can influence the prognosis

of patients with cancer (34–36). High infiltration levels of T cells

usually represent favourable survival probability (37, 38). In breast

cancer, CD4 T cells can mitigate CD8 T cell exhaustion, and high

infiltration levels of CD4 and CD8 T cells indicate favourable

prognosis (39, 40). Consistently, in this study, the infiltration levels

of both resting memory CD8 and CD4 T cells were high in the low-

risk group with better survival outcomes. Gamma-delta T cells act

like a double-edged sword in breast cancer. The Vg9Vd2+ subtype can
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FIGURE 11

Efficiency of the degradome signature in predicting the prognosis of patients with BRCA undergoing different therapies. Differences in the survival of
patients undergoing (A) chemotherapy, (B) endocrinotherapy and (C) radiotherapy between the low- and high-risk groups in TCGA cohort.
Differences in the survival of patients undergoing (D) chemotherapy, (E) endocrinotherapy and (F) radiotherapy between the low- and high-risk
groups in the METABRIC cohort. (G) Proportion of patients with complete response to the first-round chemotherapy and the corresponding drug
agents in the two risk groups. (H) Expression pattern of 21 potential molecular targets between the low- and high-risk groups.
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exert cytotoxic effects on cancer cells to suppress tumour growth and

angiogenesis and induce apoptosis, whereas the gd1+ subtype

orchestrates cancer progression (41). In this study, although the

infiltration levels of gamma-delta T cells were found to be high in

the low-risk group with better prognosis, the subtypes were not

identified. Therefore, more precise sequencing data are required for

further investigation, such as single-cell sequencing data. NK cells are

the main effectors against cancer cells in innate immunity and are

correlated with better survival (42). The anti-cancer effects of NK cells

activated by ILs have been verified in previous studies (43–45). In this

study, the infiltration levels of NK cells were found to be higher

in the low-risk group, which verifies the tumour-suppressing role of

NK cells. Macrophages are important components of the innate
Frontiers in Immunology 16
immune system; however, when they infiltrate the TME, called

tumour-associated macrophages (TAMs), they are employed by

tumour cells to promote cancer progression, resulting in a worse

clinical outcome (46). TAMs can restrict tumour-associated antigen

presentation and attenuate the activation of cytotoxic T lymphocytes

(CTLs) while simultaneously promoting the survival, angiogenesis

and metastasis of cancer cells (46). Consistently, in this study,

the infiltration levels of macrophages were higher in the high-

risk group with a poorer prognosis, which verifies the tumour-

promoting role of macrophages. In conclusion, the prognostic role

of several tumor infiltrating immune cells in BRCA was verified in

this study that immune infiltrating cells in the TME are important for

cancer status. Recently, immunotherapy has emerged as the first-line
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FIGURE 12

Effects of ABHD12 and USP41 on cell proliferation and migration. (A) Evaluation of silencing of ABHD12 and USP41 via western blotting in MCF-7 cells.
(B) Evaluation of silencing of ABHD12 and USP41 via western blotting in MDA-MB-435S cells. (C, E) Colony formation assay in MCF-7 cells. (D, F) Colony
formation assay in MDA-MB-435S cells. (G, H) CCK8 assay in MCF-7 cells. (I, J) CCK8 assay in MDA-MB-435S cells. (K, M) Transwell assay in
MCF-7 cells. (L, N) Transwell assay in MDA-MB-435S cells. ‘*’ indicates P-value < 0.05; ‘**’ indicates P-value < 0.01; ‘***’ indicates P-value < 0.001.
"ns" represents non-significant.
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anti-cancer strategy. Identification of the expression patterns of

immunotherapeutic targets may help to improve the survival of

patients (47, 48). Studies have demonstrated that compared with

monotherapy, combination therapy with PD1 and CTLA4 inhibitors

results in better survival improvement in several cancers (49–52). In

this study, the expression levels of PD1, PDL1 and CTLA4 were

higher in the low-risk group, suggesting that co-blockade of these

molecules represents a new strategy for immune checkpoint blockade

therapy. This finding also indicates that the degradome signature can

be used to guide clinical treatment.

The aberrant expression of a single DRG has been reported to

associate with the therapeutic effects of chemotherapy (17, 53),

endocrinotherapy (54) and radiotherapy (55, 56). In this study, the

prognosis of patients undergoing endocrinotherapy or radiotherapy

was worse in the high-risk group than in the low-risk group,

possibly owing to treatment resistance induced by degradome

dysfunction. Subsequently, cyclophosphamide and docetaxel were
Frontiers in Immunology 17
determined as beneficial chemotherapeutic drug agents for patients

in the low-risk group, whereas 5-fluorouracil may be more proper

for patients in the high-risk group. Additionally, evaluation of the

expression pattern of potential molecular targets revealed that

targeting CDKs/PARPs may represent a better therapeutic

strategy for patients in the high-risk group, which is consistent

with the results of functional enrichment analysis. In the

meanwhile, targeting the PI3K/AKT/mTOR signaling pathway

may serve as a better therapeutic strategy for patients in the low-

risk group, which is consistent with the results of mutation analysis.

These findings also indicate the utility of the degradome signature

in developing individualized treatment strategies in clinical settings.

However, this study has certain limitations. First, specimens

from real-world clinical patients are required for verifying the

expression of the 10 DRGs. Second, prospective, multi-centre

studies with a large BRCA cohort should be conducted to verify

the reliability of the degradome signature and corresponding
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FIGURE 13

Effects of ABHD12 and USP41 on cell invasion. (A, C, D) Wound healing assay in MCF-7 cells. (B, E, F) Wound healing assay in MDA-MB-435S cells.
‘**’ indicates P-value < 0.01; ‘***’ indicates P-value < 0.001. "ns" represents non-significant.
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results. Third, more experimental studies are required to elucidate

the regulatory mechanisms and functions of the 10 DRGs.
5 Conclusion

A 10-gene signature based on DRGs was constructed and

validated to predict the prognosis of breast cancer. A nomogram

integrating clinicopathological parameters and risk score was further

developed for predicting OS. The high-risk group had a higher degree

of clinicopathological events, as well as higher mutation frequency.

TLR regulation and several cell cycle-promoting activities were

significantly upregulated in the high-risk group. The risk score was

significantly correlated with the infiltration of several immune cells

and TMB. The expression of various immune checkpoints, including

PD1, PDL1 and CTLA4, was significantly higher in the low-risk

group. Additionally, the prognosis of patients undergoing different

therapies was distinguished by the degradome signature between the

two risk groups possibly owing to treatment resistance. Therefore, the

degradome signature may be utilized for prognostic prediction, risk

stratification and clinical decision making in breast cancer.
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Glossary

DNPEP Aspartyl Aminopeptidase

PAK5 P21 (RAC1) Activated Kinase 5

USP4 Ubiquitin Specific Peptidase 4

TMPRSS13 Transmembrane Serine Protease 13

PRSS8 Serine Protease 8

TASP1 Taspase 1

PPI Protein-protein interaction

PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase

AKT AKT Serine/Threonine Kinase

mTOR Mechanistic Target of Rapamycin Kinase

CDK Cyclin Dependent Kinase

PARP Poly(ADP-Ribose) Polymerase

PRSS2 Serine Protease 2

SPPL2C Signal Peptide Peptidase Like 2C

RHBDL1 Rhomboid Like 1

USP41 Ubiquitin Specific Peptidase 41

ABHD12 Abhydrolase Domain Containing 12, Lysophospholipase

GZMK Granzyme K

TMPRSS2 Transmembrane Serine Protease 2

PCSK6 Proprotein Convertase Subtilisin/Kexin Type 6

FREM1 FRAS1 Related Extracellular Matrix 1

RHBDL1 Rhomboid Like 1

ADAMTS8 ADAM Metallopeptidase With Thrombospondin Type 1 Motif 8

TLR Toll Like Receptor

REG Regenerating Family

PLK1 Polo Like Kinase 1

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit
Alpha

TP53 Tumor Protein P53

CD80 CD80 Molecule

CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4

PD1 Programmed Cell Death 1

PDL1 CD274 Molecule, Programmed Cell Death 1 Ligand 1

FOXM1 Forkhead Box M1.
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