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Dendritic cells (DCs) are antigen-presenting cells that bridge innate and adaptive

immune responses. Multiple cell types, including DCs, rely on cellular

metabolism to determine their fate. DCs substantially alter cellular metabolic

pathways during activation, such as oxidative phosphorylation, glycolysis, fatty

acid and amino acid metabolism, which have crucial implications for their

functionality. In this review, we summarize and discuss recent progress in DC

metabolic studies, focusing on how metabolic reprogramming influences DC

activation and functionality and the potential metabolic differences among DC

subsets. Improving the understanding of the relationship between DC biology

and metabolic regulation may provide promising therapeutic targets for

immune-mediated inflammatory diseases.

KEYWORDS
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1 Introduction

Dendritic cells (DCs) are antigen-presenting cells that coordinate innate and adaptive

immune responses (1). DCs not only recognize pathogens and danger signals through

pattern recognition receptors (PRRs), activate intracellular cascade signals, and release

antimicrobial mediators and inflammatory cytokines to initiate the innate immune

response but also take up, process, and present antigens to T lymphocytes, promoting

adaptive immune response activation (1, 2).

Cells acquire and use nutrients through metabolism to fulfill their energy and

biosynthetic demands for physiological processes (3). Studies have indicated that in

human and mouse DCs, DC activation is followed by different metabolic alterations that

regulate their survival and immune functions (4–6). Active oxidative phosphorylation

(OXPHOS) in mitochondria is related to immature DCs (5), whereas enhanced glycolysis

after pathogen sensing can boost immunogenic DC activity (5–7). However, increasing
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evidence suggests that DC activation involves multiple metabolic

pathways, including glycolysis, amino acid, and fatty acid

metabolism. In various pathological situations, the regulation of

DC metabolism after immunogenic activation is complex, i.e.

changes in metabolic pathways, molecular signaling pathways

regulating cellular metabolism, as well as metabolites and

nutrients may affect the function of DCs (4, 8). In addition,

different subsets of DCs exhibit distinct metabolic response

specializations (4).

Thus, improving the understanding of the impact of metabolic

regulation on quiescent DCs and immunogenic DC activation is

important. This review highlights the relationship between

metabolic adaptations and functional DCs, particularly in

inflammation, to identify new therapeutic prospects for

inflammatory and immune diseases.
2 Heterogeneity of DC populations

DCs are a heterogeneous group of immune cells found in

lymphoid tissues (e.g., the lymph nodes [LNs], spleen, and bone

marrow [BM]), as well as in the majority of nonlymphoid tissues (9,

10). Classical DCs (cDCs) can be divided into two major subsets:

IRF8-dependent cDC1s and IRF4-dependent cDC2s (9). cDC1s are

efficient at cross-presenting antigens to CD8+ T cells, and cDC2s

specialize in CD4+ T-cell activation and cytokine generation (9). By

contrast, several non-classical DC subsets play a crucial role in

peripheral immune surveillance and the infection response.

Plasmacytoid DCs (pDCs) are powerful Type-I interferon makers

that play a crucial role in viral defense. The subpopulations also

contain monocyte-derived “inflammatory DCs” (infDCs), which

have a consequence of inflammation or infection (11). The principal

characteristics of DC subsets have been described (9, 12–14), and in

this section, we briefly review the current models of DCs

development (11, 15).

As DCs are relatively few in vivo, several ex vivo experimental

models have been established to investigate DC biology (Table 1).

For studying human DC physiology, monocyte-derived DCs

(moDCs) (16), generated from circulating monocytes stimulated
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with granulocyte-macrophage colony-stimulating factor (GM-CSF)

and interleukin-4 (IL-4), have become a commonly used model

(17–19). In addition, mouse DCs in vitro are typically produced

from BM induced by GM-CSF and IL-4 (BMDCs). MoDCs and

BMDCs are the most functionally similar to immature DCs (20, 21),

and they are critical for studying DC metabolism and biology.
3 Metabolic demands of DCs
in quiescence

During homeostasis, DCs are mostly quiescent in peripheral

tissues (Figure 1). In resting DCs, glucose is converted to pyruvate

through glycolysis (22–24). Some pyruvate is metabolized to lactate,

but the majority is sent to the tricarboxylic acid (TCA) cycle via

acetyl-CoA (24, 25) (Figure 2). The mitochondrial electron

transport chain receives electron donations from NADH, which is

produced by the TCA cycle and predominantly regulated by the

Liver Kinase B1 (LKB1)-AMP-activated protein kinase (AMPK)

axis (3, 7, 25–27). LKB1 plays a key role in cellular metabolism by

controlling AMPK activation (28). LKB1 activates AMPK and

AMPK-related kinases, which leads to the upregulation of

catabolic pathways and mitochondrial biogenesis while inhibiting

anabolic processes (29). Activated AMPK can inhibit mTOR

complex 1 (mTORC1) either directly or indirectly via its

downstream target Tuberous Sclerosis Complex 1 and 2 (TSC1/

TSC2) (29). In addition, LKB1 maintains mouse CD11c+ DC

quiescence in an mTOR-dependent manner, and LKB1 deficiency

promotes CD11c+ DC activation and metabolic profiles, indicating

that LKB1 coordinates immunological and metabolic quiescence in

DCs (30). However, in LKB1-deficient CD11c+DCs, mTOR

inhibition only partially compensated for the loss of LKB1,

implying that LKB1 has other targeting pathways to maintain the

quiescent state (28, 30, 31).

Furthermore, resting DCs rely on catabolic metabolism to

degrade nutrients and generate energy for cell maintenance. The

degradation of proteins and triacylglycerols, for instance, yields

amino acids (AAs) and fatty acids (FAs), respectively, as fuels for

the TCA cycle within mitochondria (7). Additionally, fatty acid
TABLE 1 In vitro models of DCs.

DC culture Culture
conditions

Cell compo-
sition

Metabolic requirements for development Limitations

Mouse (from
bone marrow)

BMDCs GM-CSF (+IL-
4), 5-7 days

DC-like cells +
GM-Macs

Glucose uptake, OXPHOS, and FAS; At least two distinct populations

FLT3L-
DCs

FLT3L (+GM-
CSF), 9 days

cDC1-like cells Glucose uptake, FAO and mitochondrial metabolism;
higher mitochondrial mass & Dym than cDC2;

A mixture of cDC1, cDC2, and
pDC;

cDC2-like cells Glucose uptake & ROS;

pDC-like cells Glucose uptake;

iCD103-
DCs

FLT3L + GM-
CSF, 16 days

cDC1-like cells Not reported Less research

Human (from
blood monocyte)

moDCs GM-CSF + IL-
4, 6-7 days

moDCs Cytosolic FAS, mitochondrial metabolism, and OXPHOS; moDCs originate from a different
precursor (monocyte vs CDP)
CDP, common or conventional dendritic cell progenitor; GM-Macs, CD11c+MHC-II+ Macrophages; Dym, mitochondrial membrane potential.
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oxidation (FAO) was reported to be a key energy metabolic pathway

in immature BMDCs, sustaining their survival (7). In steady-state

DCs, lipids from the local microenvironment can serve as essential

fuel for FAO. Furthermore, resting DCs accumulate glycogen

intracellularly, utilize it to fulfill basal glycolytic requirements,

and provide metabolic substrates for OXPHOS (32).
4 Metabolic reprogramming of
immunogenic DCs

When DCs detect changes in the homeostatic state caused by

pathogens or tissue-derived inflammatory signals, they shift

from the resting state to the active state. Research has shown

that metabolic pathways regulate immunogenic DC activation

and the subsequent immune responses (6, 19, 33). Here, we

discuss the results of recent studies on the metabolic regulation

of DC activation, particularly glycolysis. Notably, most of the

data on DC metabolism are acquired from DC culture models,

namely, BMDCs (mouse systems) (34) and moDCs (human

systems) (11).
4.1 Critical role of glycolysis in DC
metabolic reprogramming

Upon immunogenic activation, DCs frequently convert catabolic

metabolism, marked by FAO and mitochondrial respiration, to

anabolic metabolism, with increased glycolytic activity and

decreased OXPHOS (33). Glycolysis is a key component of glucose

metabolism that transforms glucose into pyruvate in the cytoplasm
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(22–24). The majority of the generated pyruvate transforms into

lactate—instead of entering the TCA cycle in the mitochondria—

even if oxygen is available. These are classic characteristics of aerobic

glycolysis, often known as Warburg metabolism.
4.1.1 Effect of glycolysis on the function of
activated DCs

Growing evidence suggests that increased glycolysis promotes

DC activation and pro-inflammatory function (Figure 3), even in

different DC cultures and subsets in/ex vivo (7, 27, 35, 36). When

the methodologies for extracellular acidification and oxygen

consumption rates were employed to evaluate BMDC

metabolism, stimulation with TLR agonists such as LPS (TLR4)

increased glycolytic flux in BMDCs within minutes (7, 37–39). A

rapid increase in glycolysis has also been observed in response to

LPS activation in moDCs (39). In addition, pharmacological

inhibition of glycolysis with 2-deoxyglucose (2-DG) or

deficiencies in glycolytic enzymes such as alpha-enolase (ENO1)

can significantly impair BMDC maturation and subsequent T-cell

activation (7, 36, 40, 41). Similarly, glycolysis is important for DC

function in vivo. LPS-driven activation of splenic cDC subsets in

vivo was effectively diminished when mice were given a 2-DG

injection to block glycolysis at the same time. Their ability to release

IL12 and prime ovalbumin (OVA)-specific CD4 and CD8 T cells in

response to LPS was diminished in the presence of 2-DG (41).

However, another study found that glucose has a contrasting

function in DCs, as it represses the proinflammatory output of

LPS-stimulated BMDCs, and negatively affects DC-induced T-cell

responses (42). Directly limiting the rate of glycolysis or switching

BMDCs from glucose to galactose prevented LPS-stimulated

BMDCs from glycolytic reprogramming (42). Furthermore,
FIGURE 1

Metabolic demands of DCs during homeostasis. Quiescent DCs in peripheral tissues require glucose and fatty acids as fuels to generate energy for
cell maintenance and to build up intracellular glycogen and lipid storage. The metabolic state of quiescence is characterized by active oxidative
phosphorylation (OXPHOS), which is driven by the tricarboxylic acid (TCA) cycle Biorender.com.
frontiersin.org
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glucose-deprived BMDCs expressed more costimulatory molecules

(CD80, CD86) and IL12 (42), which are known to be important for

the induction of T-cell proliferation and the regulation of T-cell

effector functions (43).

Furthermore, glycolysis is required for cytoskeletal

modifications that allow activated BMDCs to shape and migrate

(44). DCs upregulate CCR7 and migrate into lymphatic capillaries,

producing CCR7 ligand CCL21 upon TLR activation (Figure 3)
Frontiers in Immunology 04
(45). Suppression of glycolysis impairs dendritic cell shape

maintenance, CCR7 oligomerization, and BMDC migration to

draining LNs (41, 44). To determine the effect of glycolysis on

DC migration in vivo, the ability of differentially activated DCs

injected in the footpad to migrate to draining LNs was investigated

using CFSE-labelled BMDCs (7). BMDCs stimulated with OVA and

LPS were more abundant in the LNs than BMDCs stimulated with

OVA alone. 2-DG treatment reduced the number of LPS-activated
A

B

FIGURE 2

Cellular metabolism networks. (A) Glucose is imported from the extracellular environment and can either be converted to glycogen or oxidized
during glycolysis to produce adenosine triphosphate (ATP). Pyruvate produced by glycolysis can be partially oxidized to lactate to quickly regenerate
the consumed nicotinamide adenine dinucleotide (NADH), or it can be translocated into the mitochondria and completely oxidized via the
tricarboxylic acid (TCA) cycle. The TCA cycle can also be powered by fatty acids through fatty acid oxidation or glutamine through glutaminolysis.
Electrons released by glycolysis and the TCA cycle enter the electron transport chain, which is made up of complex I-V (CI-CV), where ATP is
produced through oxidative phosphorylation (OXPHOS). (B) Acetyl-CoA from pyruvate enters the TCA cycle in mitochondria. Reactions in the cycle
produce NADH and FADH, which act as substrates for the electron transport chain (ETC) and thus support OXPHOS and ATP production. Figure 2
was created with Biorender.com. ACC, acetyl-CoA carboxylase; CoA, coenzyme A; CPT1a, carnitine palmitoyltransferase 1; CTP, citrate transport
protein; F6P, fructose 6 phosphate; FASN, fatty acid synthase; G6P, glucose 6 phosphate; GLUT1, glucose transporter 1; HK2, hexokinase 2; LDHA,
lactate dehydrogenase A; MPC1, mitochondrial pyruvate carrier 1; NADPH, nicotinamide adenine dinucleotide phosphate; PDH, pyruvate
dehydrogenase; PKM2, pyruvate kinase isozyme M2;PPP, pentose phosphate pathway.
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OVA-pulsed DCs in the draining LNs but did not eliminate the

effects of LPS (7). Finally, an animal model of allergic asthma

induced by HDM was established to monitor DC migration from

the lung to the mediastinal LN to investigate the migration of

endogenous DCs in vivo (46). Administration of 2-DG during

allergic inflammation did not significantly impair the

accumulation and migration of total immune cells but reduced

the migration of endogenous CD11c+MHCIIhi DCs to the lungs in

response to HDM (44). These findings suggest that initiating

glycolytic metabolism is critical for full DC maturation and

subsequent migration.

Moreover, the effects of glycolysis on DC phagocytosis have not

been consistently described. After the BMDCs had been exposed to

LPS, hypoxia, or hypoxia and LPS for 24 hours, fluorescently labeled

OVA was added to assess the uptake capacity of the differentially

treated DC (36). LPS and/or hypoxia decrease the ability of BMDCs

to engulf antigens but increase glycolytic activity (36), which has

also been reported in moDCs after pathogen-associated molecular

patterns (PAMPs) stimulation (47). In the presence of PAMPs, 2-

DG activated the inositol-requiring protein 1 (IRE1)/X-box-binding

protein 1 (XBP1) arm of the unfolded protein response (UPR) in

moDCs, whereas moDCs showed robust phagocytosis as well as a

robust ability to release arachidonic acid (47). Nevertheless, a

separate study examined the effect of aging on Ag acquisition,

processing, and presentation by DCs using a well-established model

of cross-presentation (the expression of MHC-peptide on the DC

surface). And the study revealed that reduced phagocytic activity in

aged mouse splenic cDC1s is associated with mitochondrial

dysfunction but not glycolysis (48).

In conclusion, these studies indicate that glycolysis is important

for DC activation and pro-inflammatory activity.

4.1.2 Glycolytic reprogramming mechanisms in
activated DCs

DCs undergo two rounds of metabolic reprogramming after

activation. These events are triggered by different signaling
Frontiers in Immunology 05
pathways. TBK1/IKKe/Akt signaling axis mediates early glycolytic

reprogramming in BMDCs (Figure 4) (41). Within minutes of TLR

stimulation, the glycolytic rate of BMDCs doubled and remained

elevated for several hours, independent of iNOS signaling (41). It

stimulates a non-classical AKT signaling pathway, specifically the

TBK1/IKKe pathway, which phosphorylates the glycolysis rate-

limiting enzyme, hexokinase 2 (HK2). HK2 then binds to voltage-

dependent anion channels on the outer mitochondrial membrane,

promoting hexokinase activity (41). These processes improve the

glycolytic rate and support early glycolysis induction in LPS-

stimulated BMDCs and mouse splenic cDCs (41). Targeted

inhibition of TBK1, IKK, or AKT or blocking the binding of HK2

to mitochondria significantly suppressed TLR agonist-induced

activation of BMDCs (41). Metabolite tracking experiments have

demonstrated that early glycolysis promotes the activation of the

pentose phosphate pathway and the preferential production of

citrate (41, 49). The citrate generated stimulated fatty acid

synthesis (FAS) for endoplasmic reticulum (ER) and Golgi body

enlargement to support the increased demand for protein synthesis

and transport necessary for BMDC maturation (6, 41, 49, 50). In

addition, citrate metabolism promotes the formation of acetyl-CoA,

which is required for the epigenetic regulation of glycolytic enzymes

such as HK2 (25, 51, 52).

Subsequently, a NO-dependent second wave of glycolytic

metabolism is driven by mTOR/HIF1a/iNOS in iNOS-expressing

DCs (BMDCs) (Figure 3) (38, 53, 54). After LPS stimulation of

BMDCs (14 h or more), the PI3K/AKT/mTOR pathway is

activated, which upregulates glycolytic enzymes, including

phosphofructokinase (PFK), pyruvate kinase 2 (PKM2), and

glucose transporters such as GLUT1 (7, 44), which may

ultimately increase the extracellular acidification rate (ECAR) (42,

55). In addition, mTOR induces glycolysis through the activation of

HIF1a, which upregulates iNOS expression (42, 56) and suppresses

NO-mediated mitochondrial activity and OXPHOS in TLR-

activated BMDCs (38, 54). Mitochondrial impairment induces a

sustained glycolytic metabolism in activated BMDCs to maintain
A B DC

FIGURE 3

Effect of glycolysis on DC activation and pro-inflammatory activity. (A) Quiescent DCs recognize pathogen-associated molecular patterns (PAMPs)
that are required for DC maturation, along with a rapid increase in glycolysis. (B) Increased glycolysis increases DC activation and antigen
presentation after TLR activation. (C) Glycolysis also promotes the migration of activated DCs by stimulating CCR7 oligomerization. (D) Activated
DCs in lymph nodes express co-stimulatory markers, initiating T-cell priming Biorender.com.
frontiersin.org
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cellular ATP generation and cell growth in the absence of a

functional respiratory chain (32, 41, 55). Moreover, iNOS

inhibitors can rescue mitochondrial respiration in LPS-activated

BMDCs (38).

Unlike BMDCs, the majority of DC subsets, such as natural

mouse cDCs and moDCs, do not exhibit detectable levels of iNOS

(53). To maintain glycolysis, iNOS-deficient DCs depend on

additional mechanisms, such as type-I interferon (IFN) signaling

and HIF1a (Figure 4). HIF1a contributes to the increased glycolytic

activity of mouse cDCs in vivo, BMDCs, and moDCs in vitro (35,

36, 57). Additionally, intracellular pyruvate or lactate generated by

glycolysis can activate HIF1a (58, 59). Activated CD11c+MHCII+

cDCs promote autocrine IFN-I signaling via HIF1a, which

decreases mitochondrial OXPHOS levels, increases glycolytic

flow, and supplies sufficient ATP for cell activation and survival

(57). HIF1a regulates multiple glycolytic genes, including lactate

dehydrogenase A (LDHA) and GLUT1, which may be

downregulated in DCs once HIF1a loses (36, 42, 47, 60).

However, weak activation fails to stabilize HIF1a and induce its

target genes, but strong BMDC stimulation results in long-term

activation of glycolysis (44). Weak stimulation nevertheless elicits

early glycolysis (44), indicating that HIF1a is involved in the

maintenance rather than the initial induction of glycolysis (47).

However, LPS-activated BMDCs have been shown to exhibit

increased IL-12 levels and CD8+ T-cell activation in the absence

of HIF1a (42). Hence, additional research is required to determine

the precise contribution of HIF1a to DC metabolism.

Extracellular glucose and intracellular glycogen serve as the

energy source for glycolysis, which is crucial for the survival and

function of activated DCs (7, 44, 61). At later stages after LPS

stimulation, overexpression of glucose transporters such as GLUT1

increases extracellular glucose absorption (7, 32, 44), whereas
Frontiers in Immunology 06
inhibition of GLUT1 suppresses the expression of co-stimulatory

molecules in BMDCs (31). In addition to the direct utilization of

extracellular glucose, intracellular glycogen can be utilized to fulfill

the metabolic demands of BMDCs and moDCs through the

glycolysis pathway. During the first 6 h after TLRs activation,

glycogenolysis of intracellular glycogen stores may sustain

enhanced glycolysis more than extracellular glucose (31).

Additionally, glycogen phosphorylase inhibitor CP91149 inhibits

BMDC maturation and function, particularly during the early stage

of activation (31).
4.2 Role of fatty acid metabolism and ER
stress in the regulation of DC function

FA metabolism is important for the development and function

of DCs (62). FAS causes BMDCs to increase lipid storage in lipid

bodies (LBs) (41). Increased lipid concentrations in LPS-stimulated

BMDCs are closely associated with improved antigen presentation

and T-cell activation, suggesting that the de novo synthesis of FAs

may regu la t e the immunogen ic i ty o f BMDCs (62) .

Correspondingly, downregulating lipid levels on the membranes

of BMDCs through high-density lipoprotein (HDL) and ApoA-I

can result in tolerant DCs and reduce T-cell responses (63).

Moreover, FAS blockade in LPS-stimulated BMDCs by fatty acid

synthase (FASN) or acetyl-CoA carboxylase inhibitors C75 and

TOFA, or by the suppression of the mitochondria–cytosol citrate

shuttle citrate transport protein, inhibits BMDC activation and pro-

inflammatory functions (41).

In LPS-stimulated BMDCs, de novo synthesis of FAs is the basis

for the Golgi apparatus and ER enlargement (33, 41).

CD11c+MHCII+ DCs isolated from mouse and human livers with
A B

FIGURE 4

Principal metabolic reprogramming pathways after DCs activation. (A) TBK1-IKKe-Akt-HK2 signaling regulates the short-term (minutes to hours
following TLR ligation) metabolic regulation in DCs, which undergo rapid metabolic reprogramming. This signaling pathway stimulates glycolysis,
which in turn supports other metabolic processes, such as fatty acid synthesis (FAS) and lipid synthesis, hence facilitating DC activation. (B) In the
later stage of DCs activation, iNOS-dependent glycolysis was performed. TLR ligation triggers PI3K/AKT, and mTOR-HIF1a pathways to promote
glycolysis, whereas iNOS-NO suppresses OXPHOS. While activated cDCs do not undergo iNOS-dependent glycolysis in vivo, autocrine type-I IFN
signaling triggers HIF-1a-mediated glycolytic reprogramming Biorender.com.
frontiersin.org
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high concentrations of lipid increased ER stress and limited their

capacity to trigger an immunological response (62). Additionally,

PAMP-stimulated moDCs release IL-23 by activating the ER stress

response (47). Another study showed that ER stress, characterized

by the accumulation of unfolded proteins in the ER lumen, may

cause cell death in activated BMDCs (64). However, the UPR can

prevent this (64). The UPR coordinates ER expansion and promotes

cellular viability by targeting mRNAs encoding XBP1 and IRE1 to

increase the synthesis of FAs for ER membranes and proteins that

comprise the folding machinery (33, 64).

Lipid accumulation in DCs could be due to increased FAS or

increased lipid uptake. Electrospray ionization mass spectroscopy

(ESI-MS) analysis of lipid content revealed that BMDCs cultured

with tumor explant supernatants (TES) had higher levels of

triacylglycerol (TAG), while no changes in the levels of

phospholipids and cholesteryl-esters were observed in these DCs

(65). The accumulation of oxidized lipids, particularly TAG, can

lead to BMDC dysfunction and shorten its lifespan (66). Scavenger

receptors (SRs) are an effective route for DCs to acquire fatty acids

(67). Experiments with the soluble SR ligand fucoidan and specific

antibody to block macrophage scavenger receptor (Msr 1), as well as

experiments with Msr1−/−mice, demonstrated that up-regulation of

Sra was primarily responsible for increased uptake of exogenous

lipids by BMDCs and cDCs (65, 68). When compared to wild-type

cells, Msr1-deficient BMDCs displayed a more mature phenotype

after LPS stimulation (69, 70), were more responsive to

inflammatory stimuli, and had a more effective antigen-presenting

capability (69). Fatty acids are most likely transferred to DCs in the

form of modified lipoproteins. The molecular mechanisms remain

unclear and require further research.

Thus, the regulation of FAS and ER stress, and lipid uptake can

affect the function of activated DCs in cytokine release and T-cell

activation (27, 33, 65), and further research is required to improve

the understanding of the regulation of their metabolic pathways.
4.3 Amino acid metabolism in DCs

AAs are involved in various metabolic activities and are crucial

for controlling DCs’ function. DCs are vulnerable to environmental

changes caused by AA concentrations. In immature moDCs, an

imbalance in intracellular AAs impairs mitochondrial activity,

decreasing ATP production and increasing glucose uptake, which

cannot be further increased by LPS stimulation (71). The plasma of

liver cirrhosis patients typically reveals an imbalance between lower

levels of branched-chain amino acids (BCAAs) and higher levels of

aromatic AAs. moDCs cultured in a medium containing similar AA

concentrations showed impaired maturation, IL-12 secretion, and

migratory potential after LPS stimulation (71, 72). LPS treatment

increased BCAAs uptakes, such as isoleucine, leucine, and valine, in

moDCs. BCAAs deficiency, particularly valine deficiency, can

inhibit the maturation of moDCs, evidenced by decreased co-

stimulated molecular expression (CD40, CD80, CD86, HLA-DR)

(71). Another study revealed that BCAAs might regulate human
Frontiers in Immunology 07
moDC metabolism through the mTOR pathway to affect moDC

maturation (73).

It was also demonstrated that LPS-stimulated moDCs increase

the absorption of glutamate, cysteine, and aspartate (71). However,

blocking the activity of the cystine or glutamate antiporter

decreased glutathione synthesis but had no impact on the

maturation and antigen uptake of moDCs (74). Additionally,

inhibiting glutaminolysis did not affect the metabolic activities

that occurred 6 h after LPS treatment, and reducing glutamine in

BMDCs culture media (from 2 to 0 mM) did not affect co-

stimulated molecular expression (32, 41). However, treatment

with l-homocysteine acid (LHC), a glutathione production

inhibitor, impairs the ability of murine spleen CD11c +DCs to

present antigens to CD4+ and CD8 + T lymphocytes (74).

The role of AAs in DC activation has not been elucidated, and

further research is required to determine the significance of various

AAs in DC metabolism.
4.4 Limitations of in vitro-generated DCs
for studying cellular metabolism

DCs are extremely rare in tissues (<2%), and the isolated

procedures are complex, necessitating lengthy enzymatic digestion

steps that may affect their phenotype and activity. Furthermore,

once cultured ex vivo, they are vulnerable to spontaneous activation

and cell death (75, 76). Hence, the majority of the data on DC

metabolism are based on the use of in vitro-generated DCs. There

are several differences in cellular metabolic programs between in

vitro-generated DC models and ex vivo primary DC subsets

(Tables 1, 2).

The most widely used in vitro DC models are BMDCs. Notably,

BMDCs in culture are heterogeneous and contain a population of

CD11c+MHC-II+ Macrophages (GM-Macs) (34). In contrast with

BMDCs, GMMacs are mainly immobile and release high quantities

of inflammatory cytokines and chemokines in response to microbial

stimulation (34). BMDCs and GM Macs have distinct functional

properties, which means that their metabolic requirements may be

different. Notably, differences in culture conditions can change the

ratio of cultured BMDCs to GM-Macs, which may result in different

experimental results in the field of cellular metabolism.

Furthermore, activated GM-Macs express iNOS, which suppresses

mitochondrial activity and OXPHOS by producing NO (77, 78),

changing the cellular metabolic machinery. After LPS activation, an

increase in glycolysis is caused by NO-induced inhibition of

OXPHOS in LPS-stimulated BMDCs cultures (7, 38). Therefore,

using a BMDCs model to study DC metabolism is not ideal.

Later, a protocol that relies on the addition of Flt3L to bone

marrow progenitors was developed (79). Flt3L is the main growth

factor driving DC differentiation, and its addition results in DC

subsets similar to those found in the spleen under resting

conditions. However, the culture of hematopoietic progenitors

with Flt3L generates a mixture of cDC1, cDC2, and pDCs (79,

80). If the study of a single population is desired, additional
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purification steps may be required. A variation of the original Flt3L-

DC culture that co-culture with OP9 stromal cells expressing the

Notch ligand Delta-like 1 (OP9-DL1), was recently proposed (80).

The authors supporting this modified protocol claim that the

addition of the Notch ligand DL1 can induce IRF8-dependent

cDC1s with a phenotype and expression profile similar to

primary splenic cDC1s (80). Besides, another protocol showed

that bone marrow cells cultured in the presence of Flt3L and

GM-CSF produced a high number of CD103+ cDC1s (81).

However, few metabolic studies have been performed based on

these DC cultures.

moDCs, generated from GM-CSF+IL-4 cultured blood

mononuclear cells, is the most commonly used model for human

DC studies in vitro (16). Despite several functional and phenotypic

similarities with the human DC population found in vivo, moDCs

are derived from a different precursor cell monocyte (cDC-CDP)

and have a low migratory capacity in vivo. In addition,

transcriptome research has revealed that human moDCs are more

strongly linked to monocytes and macrophages than blood DCs

are (82).

DCs generated in vitro can be produced quickly in large

quantities and are particularly useful in the field of cell

metabolism, in which high cell counts are necessary for

experiments (27); however, they have limitations. In further

research, new models closer to the in vivo situation are required

to study the metabolic requirements of DCs.
5 Cellular metabolism of cDC and
pDC subsets

As described, cellular metabolic programs can influence DC

function. However, early metabolic investigations using in vitro

BMDCs and moDCs cultures failed to correspond with natural DCs

subsets. Next, we discuss the research in the field of metabolism of

different mouse and human DCs subsets, focusing on the

differences between cultured models (Table 2). The combination

of these two aspects may contribute to the progress in

understanding DC metabolism and deepen the physiological
Frontiers in Immunology 08
understanding, which is critical for developing effective DC-

based therapeutics.
5.1 Metabolic features during DCs
development and differentiation

Little is known about the metabolic pathways that support

multiple stages of differentiation of BM progenitors to fully

differentiated DCs. DC subpopulations were generated with

different energy requirements for different functions (Table 1).

The LKB1-AMPK-mTOR axis plays a crucial role in

maintaining DC quiescence and can be activated during DC

differentiation. Studies have shown that AMPK and LKB1 play

important roles in DC differentiation. A reduced proportion of

cDC1 was observed in the LN of AMPKa gene-deficient mice,

suggesting a dominant role for AMPK in terminal cDC1

differentiation (83). A similar effect has been observed in

conditional gene-deficient mice with LKB1-deficient CD11c+

cDCs, with a higher proportion of cDC2 in the mouse thymus

(28, 30). The LKB1-AMPK axis helps determine cell differentiation

during DC development, and deletion of either molecule is

detrimental to IRF8+ cDC1 differentiation (83). Notably, cDC1

and cDC2 have been shown to have extremely pronounced

metabolic differences at baseline, where splenic cDC1 appears to

be more reliant on OXPHOS and functional mitochondrial

metabolism than cDC2 or pDCs (48, 83).

Indeed, in vitro and in vivo, cDC1 had a larger mitochondrial

mass and mitochondrial membrane potential (DYm) than cDC2s

(48, 83, 84), consistent with higher AMPK activity and increased

oxidative metabolism (27). Inhibiting catabolic processes such as

AMPK signaling, FAO, or mitochondrial clearance did not affect

total cDC/pDC development but significantly increased the

frequency of IRF4+ cDC2 cells while decreasing the frequency of

IRF8+ cDC1 cells. Scavenging anabolism-associated reactive oxygen

species (ROS), by contrast, tilted differentiation toward cDC1 cells

(83). In addition, a data-driven systems biology algorithm (NetBID)

study revealed significant enrichment of Mst1 and Mst2 (Mst1/2)

activity, the non-canonical Hippo pathway kinases, in cDC1 cells
TABLE 2 Metabolic regulation of DC subsets in vivo.

DC
subsets

Developmental
origin

Main locations Metabolic requirements in vivo for development and main
signaling factors

cDC1s HSC!CDP!pre-cDCs Lymphoid-resident, peripheral tissue,
blood

M: Reduced upon energy restriction;
more reliant on OXPHOS and functional mitochondrial metabolism than cDC2 or
pDCs; LKB1-AMPK-mTOR axis, Mst1/2
H: Mst1/2

cDC2s M: Reduced upon energy restriction; LKB1-AMPK-mTOR axis
H: Not reported

pDCs HSC!CDP!pre-pDCs Lymphoid-resident, blood M: mTORC1, TSC1
H: mTORC1, PI3K, PKB

infDCs HSC!CMP!monocyte Mainly induced upon inflammation in
peripheral tissue

Not reported
HSC, hematopoietic stem cell; M, mouse; H, human.
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relative to cDC2 cells. Mechanistically, cDC1 has a substantially

greater oxidative metabolism than cDC2 and relies heavily on Mst1/

2 signaling to maintain metabolic activity and mitochondrial

integrity for immunogenic function (84). However, in the steady

state, CD11c-Cre Mst1/2flox/flox mice have increased splenic cDC1

frequencies, unaffected pDCs, and decreased cDC2s (84), implying

that understanding the precise role of Hippo/Mst signaling in DC

formation requires further exploration.
5.2 Regulation of energy metabolism by
DCs activation - specific to cDCs and
pDCs subpopulations

Information on the metabolic pathways involved in cDCs

activation in vivo is limited. Next, we briefly outline the literature

on cDC subsets in the metabolic field. Splenic mouse cDC1 and

cDC2 enhance their ECAR quickly after in vivo LPS stimulation

(41); nevertheless, after ex vivo LPS stimulation for 24 h, they do not

differ in their ECAR/OCR ratio (38). In vivo stimulation with poly(I:

C) decreased the OCR and DYm of total spleen cDCs, which was

blocked by IFNAR elimination (57). TLR activation decreases the

mitochondrial content, increases OXPHOS activity, and stimulates

glycolysis in human blood cDC2. TLR-stimulated glycolysis and

cDC2 activation are impaired when mitochondrial fragmentation is

inhibited or when mitochondrial fusion is promoted. TLR

stimulation induces BNIP3-dependent mitophagy, which is

essential for glycolysis induction and cDC2 activation (85).

The understanding of metabolic reprogramming in pDCs is

relatively restricted, but recently, studies have demonstrated that

pDCs exhibit differential rewiring of their mitochondrial energy

metabolism in different environments. After ex vivo infection with

influenza or rhinovirus, OCR decreases in human pDCs (86),

whereas TLR7/8 stimulation boosts their glutaminolysis and

OXPHOS (85). TLR7/8-stimulated pDC activation requires

autophagy-supplemented glutaminolysis to fuel OXPHOS, which is

necessary for CD80 and IFNa expression (85). In addition, mouse

pDCs isolated from FLT3L-DC culture exhibited enhanced glycolytic

flux and OXPHOS approximately 24 h after TLR9 stimulation.

Increased FAO of de novo-produced fatty acids drives an increase

inmitochondrial metabolism. This impact is the result of autocrine or

paracrine type I IFNs, with IFNa regulating FAO in pDCs (87). TLR-

induced pDC activation is suppressed by pharmaceuticals that inhibit

FAS or block the action of Cpt1a (87, 88). TLR3 stimulation increases

mitochondrial-derived ROS in pDC, allowing them to stimulate CD8
+ T-cell responses via cross-presentation (89).

Additionally, activated pDCs consumed more glucose than

unstimulated pDCs with increased ECAR. pDC activation is

linked to alterations in glycolysis and mTORC1 activity (90). The

presence of appropriate amounts of AAs in the environment is

required for mTORC1 activation, with leucine and methionine

being particularly important (91, 92). Induction of the system L

amino acid transporters SLC7A5 and SLC3A2 in pDCs, as well as

leucine uptake mediated by these transporters, is required for

priming future mTORC1 activation and cytokine production by

activated pDCs (90). These results demonstrate that the
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coordinated actions of mitochondria, glycolysis and fatty acid

metabolism are essential for pDC function.
6 Conclusions and future perspectives

Although new knowledge on the metabolic control of DCs has

recently been revealed, many intriguing questions remain

unresolved because the exploration of DC metabolism is nascent.

Current investigations on the impact of the metabolic

microenvironment on DCs are primarily conducted with BMDCs

(murine) or moDCs (human) in vitro and generally involve alterations

to only a single gene or metabolite. Although these studies have

provided a foundation for understanding the metabolic regulation of

DC function, culture conditions in vitro frequently do not accurately

reflect the complexity of different metabolites in situ in vivo. DCs are

commonly cultured in DMEM and RPMI 1640 with higher levels of

glucose and lower levels of electrolytes, such as magnesium and

calcium (93). Furthermore, whether various DC subsets have

different metabolic demands or whether their functions depend on

similar metabolic programs remains unclear. The effects of other

metabolic processes, including the pentose phosphate pathway and

nitrogen metabolism pathways, on DC differentiation remain

unknown. Moreover, little is known about the cross-talk between

metabolic pathways and other epigenetic or molecular regulatory

pathways, such as microRNAs, cytokines, and transcription factors,

for determining the function or differentiation of DCs.

The metabolic microenvironment has a substantial impact on

DC function and dysregulated DC metabolism can contribute to

various diseases, including cancers (94, 95), autoimmune diseases

(96), and inflammatory disorders (97, 98).

Consequently, reprogramming the metabolic status of DCs

could be an efficient means of regulating inflammation. For

example, limiting glucose and fat uptake could decrease their pro-

inflammatory effects on tissue-associated DCs and subsequently

reduce diabetes-associated inflammation (99–101). Additionally,

approaches that directly target critical regulators of certain

metabolic pathways, such as AMPK, mTOR, or the addition of

specific nutrients, restrict the susceptibility of DCs to extracellular

environment alterations and hence control inflammation (55, 102).

In conclusion, understanding how DC immunological activity

is regulated by metabolism is essential. Using metabolic modulation

will advance the understanding of DC biology and immune

regulation in inflammatory diseases and facilitate the exploration

of effective DC-based immunotherapies.
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