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Combining chemotherapy with
CAR-T cell therapy in treating
solid tumors
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1Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia, 2Sir Peter
MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of
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Chemotherapy has long been a standard treatment for a wide range of

malignancies, where patients typically undergo multiple rounds of

chemotherapy regimens to control tumor growth. In the clinic, the

chemotherapy drugs cyclophosphamide and fludarabine are commonly used

prior to Chimeric Antigen Receptor T (CAR-T) cell therapy to lymphodeplete and

improve CAR-T cell engraftment. In this review, we discuss the use of

chemotherapy in combination with CAR-T cell therapy. We also show that

chemotherapy can deplete immunosuppressive cells, promote a pro-

inflammatory tumor microenvironment, disrupt tumor stroma, and improve

CAR-T cell recruitment to the tumor. Although the combination of

chemotherapy plus CAR-T cell therapy is promising, certain aspects of

chemotherapy also pose a challenge. In addition, the combined therapeutic

effect may be heavily dependent on the dose and the treatment schedule. Thus,

we also discussed the obstacles to effective clinical outcomes of the

combination therapy.

KEYWORDS

chemotherapy, Chimeric Antigen Receptor T cell (CAR-T), solid tumor, tumor
microenvironment (TME), personalized combination
Abbreviations: ALL, acute lymphoblastic leukaemia; BCMA, B-cell maturation antigen; CAFs, cancer

associated fibroblast; CAIX, carbonic anhydrase IX; CCL, C-C motif ligand; CLL, chronic lymphocytic

leukaemia; CR, complete response; CXCL, C-X-C motif chemokine ligand; ECM, extracellular matrix; EGFR,

epidermal growth factor receptor; IDO, indolamine-2,3-dioxygenase 1; MDSCs, myeloid-derived suppressor

cells; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NK cells, natural killer cells; NSCLC, non-

small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1; PD-

L2, programmed cell death ligand 2; PR, partial response; PSCA, prostate stem cell antigen; ROR1, tyrosine

kinase-like orphan receptor 1; SD, stable disease; TAMs, tumor-associated macrophages; TGFb, transforming

growth factor beta; TILs, tumor-infiltrating lymphocytes; TME, tumor microenvironment; Tregs, regulatory T

cells; TEM T effector memory; CAR, Chimeric Antigen Receptor; CRS, Cytokine Release Syndrome; ICANS,

Immune effector cell-associated neurotoxicity syndrome.
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1 Introduction

Recently, a large number of cancer therapies have been developed

to facilitate a patient’s immune system against cancers. One such

therapy is called the Chimeric Antigen Receptor (CAR) T cell therapy,

which involves the adoptive transfer of autologous T cells that have

been genetically engineered with a CAR to target tumor cells (1). CAR-

T cell therapy has induced remission in patients with relapsed/

refractory B-cell malignancies (2–4). However, this success has not

occurred in patients with solid tumors. The reasons for this poor

outcome include tumor heterogeneity, an immunosuppressive tumor

microenvironment (TME), insufficient T-cell trafficking to the tumor

site, and poor T-cell persistence (5).

Chemotherapy has long been a standard-of-care treatment for

many cancers, especially advanced solid tumors. The successful

treatment of cancers requires a combination of different

approaches. However, because chemotherapy can exert negative

effects on the immune system, it is not clear whether chemotherapy

can be combined with immunotherapy more broadly. Indeed,

different classes of chemotherapeutic drugs such as alkylating

agents (e.g., cyclophosphamide), platinum compounds (e.g.,

cisplatin, carboplatin, oxaliplatin), antimetabolites (e.g.,

methotrexate), anthracyclines, DNA methyltransferase inhibitors

and spindle poisons (e.g., taxanes) have mixed effects on the

immune system (6). Certain drugs can induce profound

immunosuppression, while some drugs can enhance anti-tumor

immunity. Some synergistic effects include relieving tumor-induced

immunosuppression, augmenting the anti-tumor activity of

cytotoxic immune cells, and improving immune cell trafficking to

tumor sites. As a result, these positive effects of chemotherapy could

overcome some of the roadblocks for CAR-T cell therapy in treating

solid cancers. Hence, this review will summarise the main effects of

chemotherapy when combined with CAR-T cells, including the

promises and challenges of combination therapy for solid cancers.
2 How can chemotherapy be used in
conjunction with CAR-T cell therapy?

CAR-T cell therapy have produced impressive clinical

responses in relapsed/refractory B cell malignancies. However,

there are numerous factors to be considered during the treatment,

including the need for a bridging therapy or conditioning regimen

prior to the infusion of CAR-T cell product. These regimens

significantly impact the clinical outcomes.
2.1 Chemotherapy as a bridging therapy

The infusion of CAR-T cells must be performed in a timely

manner to control disease progression (7). However, the period

between apheresis and CAR-T cell infusion can be weeks to months,

e.g. a maximum of 105 days (median time of 45 days) in the

ELIANA trial (NCT02435849) (3). This time interval may lead to a

treatment gap where some patients may experience disease
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progression and/or death. As a result, 7% of patients did not

survive while awaiting the production of CAR-T cells (8, 9).

Therefore, bridging therapy is critical in controlling disease

burden prior to CAR-T cell treatment.

The choice of bridging therapy is highly variable, depending on the

patient’s cancer type, disease stage, prior treatments, and disease

burden. Chemotherapy is one of the most widely used bridging

therapies, including kinase modulators, topoisomerase inhibitors,

platinum-based agents, and drugs that interfere with DNA

replication, synthesis and repair (10). These drugs can inhibit tumor

growth to achieve disease control in the bridging period. As a bridging

therapy, chemotherapy can also debulk the tumor before CAR-T cell

infusion in some cases. This is an important consideration as high

disease burdens have been associated with toxicities following CAR-T

cell infusions, such as cytokine release syndrome (CRS) and immune

effector cell-associated neurotoxicity syndrome (ICANS) (11).
2.2 Chemotherapy as a
conditioning regimen

Studies showed that lymphodepletion prior to adoptive T-cell

transfer significantly enhanced their expansion, engraftment, and

anti-tumor efficacy (12). This enhancement is likely due to reduced

immunosuppressive cells (e.g., myeloid-derived suppressor cells

and regulatory T cells) (12, 13), increased homeostatic cytokine

production (14, 15), and the downregulation of indoleamine 2,3-

dioxygenase (IDO) expression in the tumor (16). Together, these

mechanisms may create an optimal environment for the anti-tumor

function of infused CAR-T cells. Along with improved CAR-T cell

engraftment and homeostatic expansion, these findings led to the

introduction of lymphodepletion conditioning regimens with CAR-

T cell therapy.

Chemotherapeutic drugs such as cyclophosphamide (Cy) and

fludarabine (Flu) are the most commonly used lymphodepleting

regimen in CAR-T cell therapy (250-500 mg/m2 cyclophosphamide,

25-30 mg/m2
fludarabine, 3-5 days before infusion) (17, 18).

Compared to Cy alone, the combination of Cy/Flu significantly

enhanced CAR-T cell expansion and was associated with better

clinical responses (Cy/Flu = 50% CR, 72% ORR versus Cy alone =

8% CR, 50% ORR) (19). In the JULIET trial, patients with the Cy-

resistant disease also received bendamustine (90 mg/m2, 2-11 days

before infusion) in lieu of Cy/Flu, with similar clinical outcomes

(20). However, there are risks associated with intense

lymphodepletion, including prolonged neutropenia and toxicities.

Therefore, further studies are needed to investigate the favourable

dose and schedule of lymphodepletion with minimal side effects and

enhanced clinical response to CAR-T therapy.
2.3 Chemotherapy as a neoadjuvant/
adjuvant treatment

Although chemotherapy has not been conventionally utilized as

a neoadjuvant or adjuvant treatment for CAR-T cell therapy,
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emerging evidence suggests that specific chemotherapy drugs may

work in concert with CAR-T cells (6, 21) (Table 1). This novel

combination strategy shows great potential to overcome some

barriers in CAR-T cell therapy and provide synergistic effects in

treating solid tumors.

The immunosuppressive tumor microenvironment (TME) in solid

tumors is a significant obstacle to achieving clinical response to CAR-T

cell therapy (62). Numerous immune suppressive cells infiltrate the

TME, including myeloid-derived suppressor cells (MDSCs), tumor-

associated macrophages (TAMs), and regulatory T cells (Tregs). These

cells promote immunosuppression and negatively regulate CAR-T cell

effector function (63). In addition, cancer-associated fibroblasts (CAFs)

produce extracellular matrix components in the TME (64), forming a

physical barrier restricting CAR-T cell penetration. Together, these

cells play a pro-tumorigenic role that interferes with CAR-T cell

efficacy (65–67). This anti-inflammatory milieu would lead to poor
Frontiers in Immunology 03
CAR-T cell penetration, expansion, and persistence, rendering the

therapy ineffective.

In this regard, chemotherapy is a promising approach for

remodelling the TME, and could lead to the enhanced therapeutic

efficacy of CAR-T cells in solid tumors. Chemotherapy drugs can

modify the TME in four main ways: reducing immune suppressor

c e l l s , r e po l a r i s i n g th e an t i - i nfl amma to r y immune

microenvironment, disrupting the tumor stroma, and altering the

chemokine profile for T cell trafficking. These mechanisms are

discussed in the following sections of this review.

2.3.1 Chemotherapy reduces immune suppressor
cells in the TME

Chemotherapy has been shown to reduce the various immune

suppressor cells in the TME. Cy/Flu conditioning regimen have

enhanced CAR-T cell expansion and clinical responses in cancer
TABLE 1 Chemotherapeutic drugs that can be used as neoadjuvant or adjuvant regimen with CAR-T cell therapy - preclinical and clinical evidence.

Immunomodulatory effects of chemotherapeutic agents

Drug class Agent Cancer type/Animal model Effect Reference

Alkylating agents Cyclophosphamide Pleural mesothelioma Treg depletion and expansion of
CD8+ TEM cells.

(22)

Metastatic solid tumors Treg depletion and restoration of
T-cell function.

(23)

Metastatic breast cancer Treg depletion and expansion of
tumor-specific T cells.

(24)

Metastatic colorectal cancer Reduced proportions of Tregs, B
cells and NK cells.
Expansion of tumor-specific T
cells.

(25)

Dacarbazine Melanoma Increased T-cell recruiting
chemokine production.

(26)

Stage III/IV melanoma Increased chemokine production
and ECM remodelling.

(27)

Temozolomide Murine glioma model Treg depletion and inhibition of
Treg function.

(28)

Advanced melanoma Depletion of Tregs. (29)

Human/murine melanoma model Increased T-cell recruiting
chemokine production and T-cell
infiltration.

(26)

Anti-metabolites Gemcitabine Pancreatic ductal adenocarcinoma Depletion of granulocytic MDSCs
and Tregs in the peripheral blood
and reduction of plasma TGFb-1
levels.

(30)

Pancreatic ductal adenocarcinoma Polarisation of TAMs into M1-like
phenotype and induced secretion
of immunostimulatory cytokines.

(31)

Various murine cancers Depletion of MDSCs and
inhibition of MDSC function.

(32)

Gemcitabine and 5-fluorouracil Pancreatic and oesophageal cancer Depletion of MDSCs in peripheral
blood.

(33)

Murine thymoma model Depletion of MDSCs in spleen and
at tumor site.

(34)

(Continued)
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TABLE 1 Continued

Immunomodulatory effects of chemotherapeutic agents

Drug class Agent Cancer type/Animal model Effect Reference

Anthracyclines Doxorubicin Murine mammary cancer Depletion of MDSCs and
inhibition of MDSC function.

(35)

Taxanes Docetaxel NSCLC patients Depletion of Tregs in the
peripheral blood.

(36)

Murine mammary tumor model Inhibition of MDSC function and
restoration of T cell function.
Polarisation of MDSCs into M1-
like phenotype.

(37)

Paclitaxel Advanced non-small cell lung
cancer

Depletion of Tregs and inhibition
of Treg function.

(38)

Murine orthotopic renal cell
carcinoma model

Depletion of Tregs and inhibition
of Treg function.

(39)

Murine spontaneous melanoma
model

Depletion of MDSCs and
inhibition of MDSC function.

(40)

Murine breast cancer and
melanoma models

Polarisation of TAMs into M1-like
phenotype.

(41)

Human pancreatic cancer
xenograft models

Depletion of tumor stroma. (42)

Advanced pancreatic cancer Depletion of CAFs and disruption
of tumor ECM.

(43)

Platinum compounds Carboplatin, cisplatin and
oxaliplatin

Melanoma and colorectal cancer Downregulation of PD-L1/L2 on
tumor and dendritic cells.

(44)

Carboplatin + anthracyclines
and taxanes

Human breast cancer Increased T-cell recruiting
chemokine production.

(45)

Carboplatin Human NSCLC cell lines and
murine Lewis lung carcinoma
mouse model

Increased T-cell recruiting
chemokine production and
infiltration of CD8+ T cells.

(46)

Oxaliplatin + cyclophosphamide Murine lung adenocarcinoma
models

Increased T-cell infiltration
through immunogenic tumor cell
death. Increased CD8+ T cells:Treg
ratio at tumor.

(47)

Combination with CAR-T cells

Drug combination Cancer type/Animal model Outcome Reference

Cyclophosphamide pre-conditioning +
BCMA-CAR T cells

Phase I trial for multiple myeloma
(MM) patients

7 out of 11 patients achieved
partial response (PR) or better.

NCT02546167 (48)

Cyclophosphamide pre-conditioning +
CD19-CAR T cells

Phase I trial for chemotherapy-
refractory chronic lymphocytic

leukaemia (CLL) & Relapsed B-cell
acute lymphoblastic leukaemia (B-

ALL)

2 out of 5 patients with this
combination achieved stable

disease (SD).

NCT00466531, NCT01044069 (49)

Cyclophosphamide pre-conditioning +
PSCA-CAR T cells

Human PSCA knock-in mice
bearing subcutaneous human PSCA

tumors

Induced complete responses (CR)
in 3/7 mice.

Increased CAR-T cell infiltration
into TME.

Polarisation of TME into pro-
inflammatory state.

Reduced M2-like myeloid cells.

(50)

Cyclophosphamide/
Fludarabine pre-conditioning + CD19-
CAR T cells

Phase I/II for relapsed/refractory
CLL, NHL and ALL

16 out of 17 patients achieved
complete response (CR).

NCT01865617 (51)

(Continued)
F
rontiers in Immunology
 04
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1140541
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1140541
TABLE 1 Continued

Immunomodulatory effects of chemotherapeutic agents

Drug class Agent Cancer type/Animal model Effect Reference

Cyclophosphamide/Fludarabine pre-
conditioning + CD19-CAR T cells

Murine subcutaneous lymphoma
xenograft model

Downregulation of IDO expression
in lymphoma cell lines and

increased efficacy of CAR T-cells
against tumors.

(16)

Cyclophosphamide/Fludarabine pre-
conditioning + GD2-CAR T cells

Phase I relapsed/refractory
neuroblastoma

Increased CAR T cell expansion
and serum IL-15 levels.

Greater patient survival (6 out of
7).

NCT01822652 (52)

Cyclophosphamide/Fludarabine pre-
conditioning + CD19-CAR T cells

Phase I/II trial for advanced-stage B
cell lymphoma

Increased serum IL-15 levels.
12 out of 22 patients achieved
complete response (CR) and 4
achieved partial remission (PR).

NCT00924326 (15)

Docetaxel + PSMA-CAR T cells Human prostate cancer
subcutaneous xenograft model

Remodelling of TME by inducing
tumor damage and altering tumor

stroma.
Increased infiltration of CAR-T

cells
Reduction of tumor growth.

(53)

Docetaxel adjuvant + PSMA-CAR T cells Human prostate cancer liver
metastasis mouse model & human
prostate cancer xenograft mouse

model

Reduction of exhaustion markers
(PD-1, TIM3, CTLA3) on CAR T

cells.
Depletion of MDSCs in peripheral

blood.

(54)

Doxorubicin + systemic IL-2 + CD19-
CAR T cells

Various murine and human
xenograft solid tumors

Increased infiltration of CAR T-
cells into tumor.

Reduction in tumor infiltrating
Tregs.

Suppression of co-inhibitory
receptor (PD-1 & LAG3)
expression on T cells.

Promotes expression of T-cell
recruiting chemokines in tumor
cells (CXCL9, CXCL10) and

CXCR3 receptors on CAR T cells.

(55)

Doxorubicin pre-treatment + GD2-CAR
T cells

Osteosarcoma cell lines Decreased PD-L1 expression on
tumor cells.

(56)

Gemcitabine pre-treatment + CD19-CAR
T cells

Phase I/IIa trial for CD19-positive
B-cell lymphoma or leukaemia

3 out of 5 patients achieved
complete response (CR) and 1

achieved SD.

NCT02132624 (57)

Low dose cyclophosphamide pre-
conditioning + Ig kappa (k)-CAR-T cells

Phase I trial for non-Hodgkin
lymphoma/chronic lymphocytic
leukaemia (NHL/CLL) & Multiple

Myeloma (MM)

4 out of 9 NHL/CLL and 4 out of 7
MM patients achieved clinical

response.

NCT00881920 (58)

Nab-paclitaxel/Cyclophosphamide/
Fludarabine pre-conditioning +
Claudin18.1-CAR T cells

Phase I trial for gastric cancers Achieved responses in 21/28
patients who had previously failed

taxane treatment.

NCT03874897 (59)

Oxaliplatin + Cyclophosphamide +
ROR1-CAR T cells

Murine metastatic transplantable
lung adenocarcinoma model

Polarisation of TME into pro-
inflammatory state.

Promoting the expression of T-cell
recruiting chemokines in tumor-

infiltrating macrophages.
Increased CAR-T cell infiltration

into TME.

(60)

Temozolomide pre-conditioning +
EGFRvIII-CAR T cells

Murine glioblastoma models Increased CAR-T:Treg ratio in the
tumors.

Increased CAR-T cell expansion
and persistence.

(61)

Combination with CAR-T cells

Drug combination Cancer type/Animal model Outcome Reference
F
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patients (48, 49, 51, 52). Several preclinical and clinical studies have

shown that metronomic, low-dose Cy regimen (12.5mg/kg, single

dose) reduced the number and function of Tregs, thereby restoring

tumor-specific T cell responses (22–25, 58, 68) (Figure 1A).

Importantly, low-dose Cy does not affect tumor-responding T

cells (24), suggesting that low-dose Cy could be used as an

adjuvant treatment post-CAR-T cell infusion.

Temozolomide is another potential neoadjuvant treatment for

patients with glioblastoma receiving CAR-T cells. Temozolomide

reduced Tregs in both mouse models and in patients (28, 29). In

murine glioblastoma models, temozolomide treatment also

increased CAR-T cell expansion resulting in a greater CAR-T cell

to Treg ratio (61).

Two taxane drugs (paclitaxel and docetaxel) reduced immune

suppressor cells in the TME. Tregs in non-small cell lung cancer

patients were reduced after four cycles of docetaxel (30 mg/m2) and

cisplatin (75 mg/m2) (36). A similar reduction in Tregs and

impairment of their inhibitory function were also observed with

paclitaxel treatment (38, 39). In addition, when given as

neoadjuvant treatment prior to CAR-T cell infusion, docetaxel

was found to enhance the PSMA-CAR-T cell efficacy in prostate

cancer mouse models, by reducing MDSCs in the tumor (54).

Similarly, paclitaxel has also been found to reduce the tumor-

infiltrating MDSCs and restore effector functions of CD8+ T cells

(40). However, this impact was not consistently observed across

other studies (34, 69). This discrepancy could be due to differences

in drug dosage and treatment schedule.

Gemcitabine can also deplete MDSCs in cancer patients. In a

Phase I/IIa trial of CAR-T cell therapy, three out offive patients who

received gemcitabine as neoadjuvant treatment achieved complete

response (CR) following CAR-T infusion (57). Preclinical and

clinical studies demonstrated that gemcitabine treatment reduced

the amount of MDSCs (30, 33) and increased the cytotoxicity of

anti-tumor CD8+ T cells and NK cells (32), this may contribute to

enhanced responses to CAR-T cells.

Doxorubicin is another chemotherapeutic drug shown to

reduce Tregs and MDSCs in the TME. When combined with

CAR-T cells (55) or adoptively transferred T-helper cells (35),

doxorubicin synergistically increased anti-tumor activity by

diminishing the Tregs and MDSCs, leading to tumor suppression

in both murine and human xenograft models.

2.3.2 Chemotherapy polarizes the TME
In solid tumors, tumor cells can express high levels of immune

checkpoint molecules, including PD-L1 and PD-L2, to inhibit the

effector functions of tumor-infiltrating T cells and CAR-T cells (70).

In this regard, doxorubicin has been shown to affect CAR-T cell

activity by lowering the expression of the immune checkpoint PD-

L1 on tumor cells in osteosarcomas (56). Platinum-based

chemotherapeutic drugs such as carboplatin, cisplatin, and

oxaliplatin have also been shown to reduce PD-L2 expression on

tumor cells, resulting in increased tumor cell recognition,

proliferation and cytokine secretion of tumor-specific T cells

(44) (Figure 1B).
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Studies also revealed that oxaliplatin ameliorates the anti-

inflammatory TME and enhances the recruitment of ROR1-CAR-

T cells through modulating the TME chemokine profile (60). This

polarisation of anti-inflammatory TME into a favourable pro-

inflammatory state was also observed in CAR-T cell therapy with

prior Cy treatment (50). The change in TME polarisation into a

more inflammatory milieu is most likely accomplished through the

activation and differentiation of myeloid cells into a pro-

inflammatory phenotype. This TME change produces chemokines

that recruit CAR-T cells, transforming the “cold” tumor into a “hot”

tumor. In addition, paclitaxel, docetaxel, and gemcitabine were also

shown to polarise macrophages into an M1-like phenotype to

facilitate anti-tumor immunity (31, 37, 41, 71). This further

provides a rationale for the combination therapy of CAR-T cells

with chemotherapeutic drugs to overcome the immunosuppression

in solid tumors.

2.3.3 Chemotherapy disrupts the tumor stroma
Besides the suppressor cells, the immunosuppressive tumor

microenvironment is also enriched with stroma that could

exclude CAR-T cell infiltration. The anti-microtubule agent, nab-

paclitaxel, damaged the tumor stroma in primary tumors of

advanced-stage prostate cancer patients (42, 43). Patients treated

with nab-paclitaxel demonstrated less abundant fibrillar collagen

matrices and lower CAF numbers, which were also confirmed using

mice patient-derived xenograft (PDX) models (43). In a Phase I

clinical trial of combination treatment of Claudin18.2-CAR-T cells

with paclitaxel plus Cy, 21 out of 28 patients who failed prior taxane

treatment achieved a significant clinical response to the

combination treatment. The author suggested that this effect may

be due to the accumulated nab-paclitaxel in the tumor stroma,

which disrupted cancer-stromal interactions and helped with the

CAR-T cell infiltration (59) (Figure 1C). Similarly, in a human

xenograft mouse model, it was found that PSMA-CAR-T cells, in

combination with low-dose, non-ablative docetaxel as a

neoadjuvant regimen, eradicated large established tumors (53).

Further analysis revealed that docetaxel could remodel the TME

by altering the tumor stroma, which allowed the infiltration of

CAR-T cells into the tumor site. These findings raise the possibility

of using chemotherapy to overcome the physical barrier of TME,

allowing CAR-T cell penetration.

2.3.4 Chemotherapy enhances T cell trafficking
to tumors

T-cell trafficking to tumors remains a significant challenge for

CAR-T cell efficacy. Successful T-cell trafficking depends on

various chemokines including CCL5, CXCL9 and CXCL10 (72),

and is critical for the response to CAR-T cell therapy. In cutaneous

melanoma mouse models, temozolomide increased the expression

of CCL5, CXCL9, and CXCL10, resulting in increased T-cell

trafficking to the tumor (26). Furthermore, in patients treated

with dacarbazine, CCL5, CXCL9, and CXCL10 expression was

increased in chemotherapy-sensitive tumors, which was

associated with increased T-cell infiltrate and enhanced patient
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survival (26). Other chemotherapeutic agents, such as

dacarbazine, carboplatin, anthracycline and taxane, were also

seen to increase the secretion of these chemokines and enhanced

T cell trafficking to tumors (27, 45) (Figure 1D).

In preclinical mouse models, poor T-cell trafficking was

associated with low levels of chemokine expression, such as

ligands for CXCR3 and CXCR4 (73). Pre-treatment with

oxaliplatin and cyclophosphamide induced a pro-inflammatory

tumor microenvironment and enhanced secretion of CCL5,

CXCL9, CXCL10, and CXCL16 by tumor-infi l t ra t ing

macrophages, leading to enhanced ROR1-CAR-T cell infiltration

(60). The combination was also able to increase CD8+ T cell

infi l t ra t ion and improved tumor contro l (47) . Thi s

immunomodulatory effect was not restricted to oxaliplatin, other

platinum-based drugs, such as carboplatin, have also increased

tumor CD8+ T cell populations and enhanced CCL5 and CXCL10

mRNA levels in lung cancer cells (46).

Taken together, certain chemotherapeutic drugs can alter the

immunosuppressive tumor microenvironment to facilitate CAR-T

cell trafficking, infiltration, expansion, and anti-tumor efficacy in

solid tumors. However, the evidence listed above also indicated the

choice of chemotherapeutic drugs, the dosage and the treatment

schedule must be taken into serious consideration when designed in

combination with CAR-T cell therapy.
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3 Challenges for the combination
of chemotherapy with CAR-T
cell therapy

Chemotherapy is well known for its cytotoxic effects, which may

also have a deleterious effect on CAR-T cell viability and function,

inducing apoptosis of immune cells, and often leading to

lymphopenia (6). The cytotoxic effect of chemotherapy is often

mediated via mechanisms such as DNA damage and cell cycle

arrest, and preferentially targets rapidly dividing cells such as

tumour cells and bone marrow stem cells. The effect is drug and

dosage dependent. Some drugs, such as cyclophosphamide and

fludarabine, are considered as non-myeloablative but

lymphodepleting. They may affect the transferred CAR-T cells

both in circulation and at tumor site. Thus, the systemic delivery

of chemotherapy may not only affect the endogenous T cell

population generated at bone marrow, but also induces

cytotoxicity on transferred CAR-T cells directly. Because CAR-T

cells are usually given in one dose or several doses in a short period

of time, the long persistence of the CAR-T cells and sustained anti-

tumor function are the keys to therapeutic success. Thus, any

adjuvant treatment post-CAR-T infusion may have an impact on

long-term CAR-T cell efficacy.
FIGURE 1

Chemotherapy overcomes the hurdles for CAR-T cells in solid tumors. (A) The effect of chemotherapy (Cyclophosphamide as an example) on the
depletion of immunosuppressive cells, including Tregs, tumor associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) in the
tumor microenvironment. (B) The effect of chemotherapy (Carboplatin as an example) on promoting a pro-inflammatory tumor microenvironment,
including polarisation of macrophages from an M2 to an M1 phenotype, and downregulation of immune checkpoint molecules including PD-L1 and
PD-L2 on tumor cells. (C) The effect of chemotherapy (Paclitaxel as an example) on the disruption of the tumor stroma, including removal of
cancer-associated fibroblasts (CAFs) and their associated extracellular matrix (ECM) from the tumor barrier, allowing increased T-cell infiltration into
the tumor. (D) The effect of chemotherapy (Dacarbazine as an example) on enhanced T-cell trafficking to the tumor, including the increased
chemokine CCL5, CXCL9, and CXCL10 secretion by tumor cells and macrophages. Created with BioRender.com.
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After chemotherapy regimens, T cell numbers decrease, which

gradually recovers over time (74). Notably, chemotherapy may

preferentially deplete certain T-cell populations over others. In

glioblastoma patients treated with combined radiotherapy and

temozolomide, an increased effector memory T-cell (TEM)

population and a decreased CD45RA-expressing effector memory

T-cell population (TEMRA) population was observed (75).

Additionally, cyclophosphamide treatment was found to decrease

the mitochondrial function of naïve T-cells significantly more than

central memory (TCM) and effector memory (TEM) T cells (76). The

evidence indicated that certain chemotherapeutic drugs might

significantly impair the CAR-T cell function when used

in combination.

Chemotherapy may also negatively regulate the CD4+ T-cell

population. Compared with CD8+ T cells, naïve CD4+ T cells did

not recover to pre-treatment numbers in breast cancer patients

following chemotherapy (77). Another study found that naïve CD4+

T cells were preferentially depleted after chemotherapy, with

memory CD4+ T cells forming the majority of the CD4+ T cell

population instead (78). This preferential depletion of naïve CD4+ T

cells may negatively affect CAR-T cell efficacy, given the importance

of CD4+ T cells in achieving long-term remission (79).

In CAR-T cell therapy, less differentiated T-cell subsets,

including naïve T-cells and TCM cells, have shown greater efficacy

compared to more differentiated effector T-cell and TEM cells (80).

Thus, the susceptibility of naïve T-cells towards chemotherapy may

decrease CAR-T cell efficacy when the chemotherapy is used as an

adjuvant treatment.

Besides the effect on T-cell subsets, chemotherapy, such as

carboplatin and taxane, may also induce the expression of

immune checkpoint molecules on T cells, including PD-1 and

CTLA4 i n b r e a s t c a n c e r p a t i e n t s , a s a f e e d b a c k

immunosuppressive pathway following immune activation (45).

This effect was also seen in other drugs, such as the oxaliplatin

plus cyclophosphamide combination (47). Although combining

with checkpoint blockades such as anti-PD1 or anti-CTLA4 may

overcome this issue, the potential chemotherapy-induced early T-

cell exhaustion should be considered for combination treatments.

Despite these challenges, the heterogenous response between

studies highlights the multitude of factors affecting chemotherapy

efficacy in combination with CAR-T therapy, including the type of

drugs, treatment dose, regimen schedule, and cancer types. Thus, a

successful combination of chemotherapy and CAR-T cell therapy

relies greatly on the design of the treatment. To achieve this, the

treatment plan must be optimised to allow long-term CAR-T cell

persistence and anti-tumor function to provide the best clinical

outcomes. In addition, CAR-T cells can also be engineered to resist

these drugs, making it easier to optimise this combination. Such

engineering may take inspirations from the chemo-resistance

mechanisms observed in cancers, such as the upregulation of

detoxifying molecules in response to plat inum-based

chemotherapies (81). The engineered expression chemo-resistance

proteins such as platinum transporters and chelators may confer

CAR-T cell resistance against platinum-based drugs. The CRISPR

drug screening technology can also be used to select potential

targets for drug resistance in CAR-T cells. Such candidates can
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then be conditionally expressed in CAR-T cells to gain chemo-

resistance. In addition, chemotherapeutic drugs targeting DNA

damage and the cell cycle also induce apoptosis in CAR-T cells.

Thus, engineering mutated apoptotic machinery, such as the BCL-2

family proteins, may facilitate resistance to this drug-induced

apoptosis in CAR-T cells. However, engineering CAR-T cells to

make them resistant to apoptosis should be viewed with caution to

avoid unexpected uncontrolled CAR-T cell proliferation.

Moreover, clinical strategies for combining chemotherapy with

CAR-T cell therapy need to be evaluated. This combination therapy

could be performed via two approaches. Chemotherapy’s anti-

tumor effect and immunomodulatory properties are traditionally

studied in the context of specific tumor types. Thus,

chemotherapeutic drugs could be selected based on the patient’s

tumor type. However, given the significant heterogeneity between

tumor subtypes, such as in breast cancer, different drugs may be

needed for different patients with the same cancer (82).

Alternatively, a more personalised approach where drug choices

are tailored to the patient’s TME may be used. By testing patient

samples, the TME components can be revealed. This information

can be used to select the best chemotherapeutic drugs to facilitate

the CAR-T cell attack. For instance, if poor T cell trafficking is due

to immunosuppressive cells such as MDSCs and Tregs,

cyclophosphamide may be used. If the immune exclusion is

caused by CAFs, paclitaxel could be used instead. In addition, it

should be noted that many chemotherapeutic drugs, including

paclitaxel, have a wide range of effects on the TME, e.g., depleting

MDSCs, Tregs and CAFs at the same time, as outlined in Table 1.

These personalised strategies focus more on the challenges for

CAR-T cells in each individual patient’s tumor microenvironment

and will be more likely to achieve better clinical outcomes for the

‘chemo plus CAR-T’ combination therapy.
4 Conclusion

Although a limited number of clinical trials have been

performed, the combination treatment of chemotherapy and

CAR-T cell therapy has significant capacity to improve the

current clinical outcomes. It is a promising option for patients

with advanced solid tumors, and further studies on the dose,

treatment schedule, immune context, tumor types, and CAR-T

cell engineering should be investigated to achieve best clinical

outcomes. In addition, more mechanistic studies are still needed

to understand how these therapies will best work together. Our

increased understanding of the immunomodulatory effects of

chemotherapy, together with the engineering of novel CAR-T

cells, will further facilitate this combination strategy in the clinic

and benefit more cancer patients.
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