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Background: Liver zonation is a unique phenomenon in which the liver exhibits

distinct functions among hepatocytes along the radial axis of the lobule. This

phenomenon can cause the sectionalized initiation of several liver diseases,

including hepatocellular carcinoma (HCC). However, few studies have explored

the zonation features of HCC.

Methods: Four single-cell RNA sequencing datasets were used to identify

hepatocyte-specific zonation markers. Integrative analysis was then performed

with a training RNA-seq cohort (616 HCC samples) and an external validating

microarray cohort (285 HCC samples) from the International Cancer Genome

Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, and EMBL’s

European Bioinformatics Institute for clustering using non-negative matrix

factorization consensus clustering based on zonation genes. Afterward, we

evaluated the prognostic value, clinical characteristics, transcriptome and

mutation features, immune infiltration, and immunotherapy response of the

HCC subclasses.

Results: A total of 94 human hepatocyte-specific zonation markers (39 central

markers and 55 portal markers) were identified for the first time. Subsequently,

three subgroups of HCC, namely Cluster1, Cluster2, and Cluster3 were identified.

Cluster1 exhibited a non-zonational-like signature with the worst prognosis.

Cluster2 was intensively associated with a central-like signature and exhibited

low immune infiltration and sensitivity toward immune blockade therapy.

Cluster3 was intensively correlated with a portal-like signature with the best

prognosis. Finally, we identified candidate therapeutic targets and agents for

Cluster1 HCC samples.

Conclusion: The current study established a novel HCC classification based on

liver zonation signature. By classifying HCC into three clusters with non-

zonational-like (Cluster1), central-like (Cluster2), and portal-like (Cluster3)
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features, this study provided new perspectives on the heterogeneity of HCC and

shed new light on delivering precision medicine for HCC patients.
KEYWORDS
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1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

types of cancer worldwide (1). Despite the rapid progression of new

diagnostic methods and therapeutic strategies for HCC, its

prognosis is still unfavorable due to its high heterogeneity.

Therefore, uncovering the molecular mechanisms underlying

HCC diversity is essential for the development of targeted and

effective therapies.

The liver is a central organ that maintains physiological

homeostasis. Liver lobules are the functional units of the liver and

are hexagonal in shape. Hepatocytes are organized in a cord-like

arrangement along the liver lobule, extending from portal nodes

(PN) to the central vein (CV) (2). According to the location of

hepatocytes, the liver lobule can be divided into three zones: zone 1

(periportal area) is the region near the portal triad, zone 3

(pericentral zone) is near the CV, and the region between these

zones is zone 2 (mid-lobular) (3). The liver shows functional

partition along the lobule radial axis, a phenomenon known as

“liver zonation”. Hepatocytes in different zonations perform various

functions, allowing multiple of functions to proceed in parallel.

Most of the liver’s metabolic functions take place in zone 1

hepatocytes, such as b-oxidation, gluconeogenesis, and lipid

metabolism. On the contrary, zone 3 hepatocytes play central

roles in glycolysis, xenobiotic biotransformation reactions, and

glutamine synthesis (4).

Zonation is a dynamic process that plays essential roles in

regulating liver disease phenotypes and progression. For example,

since fatty acid synthesis and lipid accumulation occur

predominantly in zone 3, whereas fatty acid oxidation occurs in

zone 1. Patients with non-alcoholic fatty liver disease (NAFLD)

often (approximately 37%) exibit perivenous dominant steatosis (5).

In addition, patients with HCC exhibit impaired Wnt/b-catenin
signaling (6), which stands out as a major regulator of liver

zonation, regulating about a third of liver zonated genes (7).

In the past decades, genome-wide analyses have been devoted to

deciphering the molecular mechanisms of HCC diversity (8–12).

However, few studies have explored the molecular classification of

HCC associated with liver zonation characteristics (11). In the

present study, we constructed a novel molecular classification

associated with liver zonation phenotype, and 3 subgroups of

HCC, namely Cluster1, Cluster2, and Cluster3 were identified.

We then evaluated the prognostic value, clinical characteristics,

transcriptome and mutation features, immune infiltration, and
02
immunotherapy response of the HCC subclasses. Finally, we

identified candidate therapeutic targets and agents for Cluster1

HCC samples, which have the worst prognosis among the

three clusters.
2 Materials and methods

2.1 Patients and samples

HCC patient cohorts with survival data were retrieved from

several databases, including GEO (Gene Expression Omnibus),

ICGC (International Cancer Genome Consortium), TCGA (The

Cancer Genome Atlas), EMBL-EBI (EMBL ’s European

Bioinformatics Institute), and CPTAC (Clinical Proteomic Tumor

Analysis Consortium). In total, five cohorts were enrolled, including

TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC), ICGC-

Liver Cancer-RIKEN-Japan (LIRI-JP), GSE14520, E-TABM-36,

and CPTAC-HCC cohorts.

RNA sequencing data (counts) of 374 and 242 HCC human

samples with available clinical information were obtained from the

TCGA-LIHC cohort (https://xenabrowser.net/datapages/) and the

LIRI-JP cohort (https://dcc.icgc.org/projects/LIRI-JP), respectively.

The SVA R package was utilized to merge and remove the batch

effects of the two RNA-seq datasets to create one metadata cohort

using the Sangerbox online tool (13). Additional microarray data of

225 and 60 HCC samples f rom GSE14520 (ht tps : / /

www.ncbi.nlm.nih.gov/geo/) and E-TABM-36 (https://

www.ebi.ac.uk/arrayexpress/files/E-TABM-36) based on the HG-

U133A platform, were used for external validation. A metadata

cohort was also created by merging the two microarray datasets,

and batch effects were removed using the combat function in SVA R

package. A boxplot before and after batch effect correction is shown

in Supplementary figure S1.

We downloaded proteogenomics and clinical information from

the CPTAC database (https://cptac-data-portal.georgetown.edu/)

for 165 HCC tissues and 165 corresponding normal tissues.

Moreover, gene somatic mutation data (MAF files) of the

TCGA-LIHC and LIRI-JP cohorts were obtained from TCGA and

ICGC databases, respectively. Additionally, copy number data of

GISTIC2 for the TCGA-LIHC cohort were accessed from the UCSC

Xena (https://xenabrowser.net/datapages/).

Furthermore, the gene expression data and drug sensitivity data

(AUC values) of hepatocellular carcinoma cell lines were
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downloaded from the DepMap database (https://depmap.org/

portal/download/).

Additionally, 10x single-nuclei RNA-seq (snRNA-seq) data

from 14 mouse and 9 human liver samples were retrieved from

GSE192742 (https://www.ncbi.nlm.nih.gov/geo/).
2.2 Identification of hepatocyte-specified
liver zonation markers

The procedure for identifying hepatocyte-specified liver

zonation markers was shown in Figure 1. Halpern et al. and

Moshe et al. combined single-molecule fluorescence in situ

hybridization (smFISH) or fluorescence-activated cell sorting

(FACS) of liver zonation surface markers with scRNA-seq to

reveal the zonation patterns of hepatocyte gene expression (14,

15). Genes that were overexpressed in the PN area in both Halpern

et al. and Moshe et al. cohorts were defined as portal markers.

Meanwhile, genes that were overexpressed in the CV area in both

Halpern et al.’s and Moshe et al.’s cohorts were defined as

central markers.

To identify hepatocyte markers in both mice and humans, we

utilized the Seurat R package (16) and applied standard

downstream processing to mouse and human liver snRNA-seq

data obtained from GSE192742 (17). Firstly, the LogNormalize

method was applied for data normalization. Then, the

“FindVariableFeatures” function (selection.method = “vst”,

nfeatures = 3000) and the “FindIntegrationAnchors” function

were using to select features and anchors for further integration.

After integration, we eliminated low-quality cells with ≤ 500 genes
Frontiers in Immunology 03
or a mitochondrial gene ratio ≥ 5%. Finally, 25470 human liver cells

and 25335 mouse liver cells that were deemed to be of good quality

underwent further analysis. Following data integration and scaling,

Seurat’s “RunPCA” function and “FindClusters” function were

employed to perform principal component analysis and

clustering. Dimensionality reduction was conducted utilizing the

“RunUMAP” function, which utilized the top 30 calculated

dimensions and a resolution of 0.5. Subsequently, the

“FindAllMarkers” function was used to identify marker genes for

each cluster (adjusted P < 0.05). Afterward, ToppGeneSuit (https://

toppgene.cchmc.org/), CellMarker (http://xteam.xbio.top/

CellMarker/), and PanglaoDB (https://panglaodb.se/search.html)

databases were employed for the annotation of cell types. Finally,

the “FindAllMarkers” function was employed to identify hepatocyte

markers by comparing hepatocytes and other cell types (adjusted

P < 0.05 and |logFC| > 0.25).
2.3 Identification of HCC subclasses

HCC samples of training and validating cohorts were classified

using non-negative matrix factorization (NMF) clustering based on

94 liver zonation markers (18). And then, the prognosis of different

subclasses in the training and validation cohorts was evaluated

using the Kaplan-Meier log-rank test. Moreover, subclass mapping

(SubMap) analysis (19) (Gene Pattern), a method for assessing the

comparability of molecular classes between different patient cohorts

based on their expression patterns, was then employed to verify

whether the subclusters identified in the two cohorts

were associated.
A B

FIGURE 1

Design overview. (A) The procedure of the identification of hepatocyte-specified zonation markers. (B) The flowchart of the study.
ICGC, International Cancer Genome Consortium; TCGA, The Cancer Genome Atlas; HCC, Hepatocellular carcinoma.
frontiersin.org

https://depmap.org/portal/download/
https://depmap.org/portal/download/
https://www.ncbi.nlm.nih.gov/geo/
https://toppgene.cchmc.org/
https://toppgene.cchmc.org/
http://xteam.xbio.top/CellMarker/
http://xteam.xbio.top/CellMarker/
https://panglaodb.se/search.html
https://doi.org/10.3389/fimmu.2023.1140201
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1140201
2.4 Molecular characteristics of
HCC subclasses

The differentially expressed genes (DEGs) among the three

clusters were identified using the “limma” package in R with

cutoff criteria of |log2 fold change (FC)| > 1 and an adjusted P

value < 0.05. Only genes that showed substantial differences in

expression across all three comparisons were designated cluster-

specific DEGs. Functional enrichment analysis of cluster-specific

DEGs was conducted by the Metascape database (https://

metascape.org/). P<0.05 was considered statistically significant.

Gene set variation analysis (GSVA) was then employed to

estimate the score of the 50 hallmark gene sets that were achieved

from the MsigDB database (http://www.gsea-msigdb.org/gsea/

msigdb/index.jsp) (20). After that, we used the “ComplexHeatmap”

R package to display distinct pathways among the three

HCC clusters.

Moreover, Nearest template prediction (NTP) analysis (Gene

Pattern modules) was used to predict the correlation between

previously published HCC molecular classifications and

our classification.
2.5 Estimation of immune infiltration and
prediction of the immunotherapy response

To further explore the difference in immune cell infiltration

among the clusters, the CIBERSORT algorithm (18) was used to

estimate the fraction of 22 immune cell types in the HCC samples

using Sangerbox online tool (13). In addition, single-sample GSEA

(ssGSEA) was also used to estimate immune infiltration, which

computed an enrichment score representing the degree to which

genes in 28 immune cell gene sets were coordinately up or

downregulated within a single sample (21).

To predict the response of immunotherapy in our subclasses,

SubMap analysis (Gene Pattern) was employed to compare the

similarity of gene expression profiles between our subclusters and a

cohort of melanoma patients with programmed cell death protein-1

(PD1) inhibitor or cytotoxic T-lymphocyte-associated protein-4

(CTLA-4) inhibitor treatment (22).
2.6 Identification of potential drug targets
and therapeutic agents for Cluster1 of HCC

The cluster1-specific DEGs with overexpression (log2FC > 1

and adjusted P < 0.05) in HCC tissues and low CERES scores (<

-0.5) were defined as potential drug targets. The CERES scores were

acquired from the dependency map (DepMap) portal (https://

depmap.org/portal/). The CERES score is utilized to evaluate the

dependency of the interest gene in a certain cancer cell lines, and a

lower score suggests a higher likelihood that the gene is crucial for

cell growth and survival of a given cancer cell line.

The Genomics of Drug Sensitivity in Cancer (GDSC) (23), and

PRISM (24) databases contain information on drug sensitivity and
Frontiers in Immunology 04
gene expression profiles of cancer cells, which can be employed to

establish a prediction model of drug response. The oncoPredict R

package is used for predicting drug response through a ridge

regression model to calculate sensitivity scores (low sensitivity

score indicates high drug sensitivity) (25).
2.7 Statistical analysis

All computational and statistical analyses were performed using

R programming (https://www.r-project.org/) and SPSS 22.0 (IBM

Corp., Armonk, NY, USA). To compare two or three groups with

normally distributed variables, the unpaired Student’s t-test and

one-way ANOVA were utilized, respectively. Kruskal–Wallis tests

were employed to compare three groups with non-normal

distribution parameters. The chi-square test or Fisher’s exact tests

were used for analyzing contingency table variables. Survival

analysis was performed using Kaplan–Meier methods with the

log-rank test. A two-tailed P value < 0.05 was statistically significant.
3 Results

3.1 Identification of hepatocyte-specified
zonation markers

A flowchart was depicted to systematically describe the

processes of identifying hepatocyte-specified zonation markers

(Figure 1A). Firstly, we identified 1467 liver zonation-associated

genes that were overexpressed in the CV or PN area in Halpern

et al.’s cohort (Table S1). Moreover, 1034 liver zonation-associated

genes were screened in Moshe et al.’s cohort (Table S2). Then, 91

central markers and 87 portal markers were identified, which were

overexpressed in the CV and PN areas in both Halpern et al.’s and

Moshe et al.’s cohorts, respectively (Figures 2A, B). Furthermore, we

identified 1515 and 1281 mouse and human hepatocyte markers

(Tables S3, S4). Afterward, 105 mouse hepatocyte-specified

zonation markers were identified (Figure 2C). Finally, after

transferring the 105 mouse zonation markers to human

homologous genes, we screened 94 human hepatocyte-specified

zonation markers, including 39 central markers and 55 portal

markers (Figure 2D, Table S5). The expression pattern of the

hepatocyte-specified zonation markers in the liver lobule was

shown in Figures 2E, F. Moreover, the expression of the

hepatocyte-specified zonation markers in different cell types of

mouse and human liver was shown in Figures 2G–J.

Consistent with previous studies, functional enrichment

analysis of these zonation markers indicated that central markers

were mainly significantly enriched in processes of fatty acid

metabolism, bile secretion, cholestasis, xenobiotic transport,

glucose metabolism, and lipid localization. However, portal

markers were mainly significantly enriched in processes of amino

acid metabolism, complement and coagulation cascades, the urea

cycle, regulation of proteolysis, gluconeogenesis, and the response

to metal ion (Table S6).
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3.2 NMF identifies three clusters in HCC

The procedure of our bioinformatics analyses is shown in

Figure 1B. The RNA-seq cohort comprising 616 HCC samples

from TCGA-LIHC and ICGC-LIRI-JP were clustered based on the

expression profile of 94 liver zonation markers using NMF

consensus clustering. As shown in Figure 3A, three distinct

clusters were identified in the RNA-seq cohort: Cluster 1 with 123

cases, Cluster 2 with 244 cases, and Cluster 3 with 249 cases.

Moreover, a significant prognostic difference was observed among

the three clusters in the RNA-seq cohort. Patients in Cluster1 had

the worst prognosis, while patients in Cluster3 had the best

prognosis (Overall log-rank test P = 1.041×10-6, Cluster1 vs 2 P

= 1.189×10-2, Cluster1 vs 3 P = 4.275×10-6, Cluster2 vs 3 P =

4.234×10-3; Figure 3B). Subsequently, we explored the differences

in the expression patterns of liver zonation markers among these
Frontiers in Immunology 05
clusters. As shown in Figure 3C, Cluster3 had the highest expression

level of portal markers, while Cluster1 had the lowest expression

level of both central and portal markers. Moreover, we performed

GSVA analysis of gene sets based on central and portal markers to

depict the zonation characteristics of each cluster. As shown in

Figure 3D, consistent with gene expression level, Cluster3 had the

highest GSVA score for portal markers, while Cluster1 had the

lowest GSVA scores for both central and portal markers.

Subsequently, we conducted another independent analysis on a

microarray cohort with 285 HCC samples from GSE14520 and E-

TABM-36, the results of which also showed that there were three

distinct clusters of HCC: Cluster 1 with 85 cases, Cluster 2 with 106

cases, and Cluster 3 with 94 cases (Supplementary figure S2A).

Moreover, consistent with the RNA-seq cohort, a significant

prognostic difference was observed among the three clusters in

the microarray cohort, which patients in Cluster1 had the worst
D

A

B
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FIGURE 2

Identification of 94 human hepatocyte-specified zonation markers. Venn plots of central markers (A), portal markers (B), mouse hepatocyte-
specified zonation markers (C), and human hepatocyte-specified zonation markers (D). Heatmap plots of the expression patterns of the 94 human
hepatocyte-specified zonation markers in different areas of liver lobule in Halpern’s (E) and Moshe’s (F) cohorts. UMAP visualization of different cell
types from human liver (25470 cells) by snRNA-seq (G). Heatmap plot shows the expression of 94 hepatocyte-specified zonation markers in
different cell types from the human liver (H). UMAP visualization of different cell types from the mouse liver (25335 cells) by snRNA-seq (I). Heatmap
plot shows the expression of 94 hepatocyte-specified zonation markers in different cell types from mouse liver (J). CV, Central venous; PN, Portal
node; UMAP, Uniform Manifold Approximation and Projection; ECs, Endothelial cells; KCs, Kupffer cells; NK cells, Natural killer cells; HSCs, Hepatic
stellate cells.
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prognosis, and patients in Cluster2 and Cluster3 had better

prognoses (Overall Survival: Overall log-rank test P = 1.394×10-4,

Cluster1 vs 2 P = 1.394×10-4, Cluster1 vs 3 P = 7.750×10-4, Cluster2

vs 3 P = 5.242×10-1; Figure 3E; Recurrence Free Survival: Overall

log-rank test P = 3.616×10-4, Cluster1 vs 2 P = 2.201×10-3, Cluster1

vs 3 P = 3.367×10-3, Cluster2 vs 3 P = 9.369×10-1; Figure 3F).

Furthermore, as shown in Supplementary figure S2C, consistent

with the RNA-seq cohort, Cluster3 in the microarray cohort had the

highest expression level and GSVA score for portal markers, while
Frontiers in Immunology 06
Cluster1 had the lowest expression level and GSVA scores for both

central and portal markers.

Finally, a SubMap analysis was performed to determine whether

the clusters identified in the two above datasets were associated, and

the result showed that Cluster1, Cluster2, and Cluster3 in the RNA-

seq cohort were highly associated with corresponding clusters in the

microarray cohort (P = 0.009), indicating there were three distinct

molecular subclasses of HCC with different gene expression

patterns (Supplementary figure S2D).
D
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FIGURE 3

Identification of zonation marker-associated HCC subclasses using NMF clustering. (A) Heatmap plot shows the consensus matrix of NMF clustering
results using the gene expression data of 94 zonation markers in the RNA-seq cohort (TCGA-LIHC+ICGC-LIRI-JP), colored by three HCC subclasses
(Cluster1, Cluster2, and Cluster3). (B) Kaplan-Meier survival analysis of OS of the three clusters. (C) Heatmap plot shows the expression pattern of the
zonation markers of the three clusters. (D) The difference of the GSVA scores of the portal and central signatures among the three clusters.
Comparison between central and portal by Student’s t-test; Comparison among three clusters by ANOVA -Tukey test. (E, F) Kaplan-Meier survival
analysis of OS and RFS of the three clusters from in microarray cohort (GSE14520+E-TABM-36). OS, Overall survival; RFS, Recurrence-free survival;
GSVA, Gene set variation analysis.
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3.3 Correlation of the zonation-associated
clusters with clinical characteristics and
molecular subclasses of HCC
published previously

We then explored the association between HCC-related

clinicopathological variables and our classification based on the

RNA-seq (Figure 4A and Table S7) and microarray cohorts

(Supplementary figure S3A and Table S8). The chi-square and

ANOVA tests indicated significant relationships between

clinicopathological characteristics and HCC subtypes in the RNA-

seq cohort. Favorable survival status (P < 0.001), longer survival

time (P < 0.001), lower serum AFP level (P < 0.001), bigger BMI

(P=0.027), lack of vascular invasion (P = 0.004), early TNM stage (P

< 0.001), early histologic grade (P < 0.001), were associated with

Cluster3, while worse survival status, shorter survival time (P <

0.001), smaller BMI, presence of vascular invasion, advanced

histologic grade, advanced TNM stage, and high serum AFP level

were associated with Cluster1. Similarly, in the microarray cohort,

Cluster3 was correlated with favorable survival and recurrence

status (P = 0.009, P = 0.045), longer survival and recurrence time

(P < 0.001, P < 0.001), lower serum AFP level (P < 0.001), smaller

tumor size (P = 0.01), and early TNM and BCLC staging (P = 0.005,

P = 0.041). However, worse survival and recurrence status, shorter

survival and recurrence time, smaller BMI, presence of vascular

invasion, advanced histologic grade, advanced TNM stage, and high

serum AFP level were associated with Cluster1.
Frontiers in Immunology 07
In addition, we compared our categorization to previously

identified HCC molecular subgroups, including Boyault’s

classification (G1–G6) (8), Chiang’s classification (Chr 7

polysomy class, CTNNB1 class, Interferon class, Proliferation

class, and Unannotated class) (9), Hoshida’s classification (S1, S2,

and S3) (10), and Désert’s classification (ECM/STEM, Periportal,

and Perivenous type) (11). In the RNA-seq cohort, the Cluster1

subclass was significantly associated with Boyault’s G3, Chiang’s

Interferon class, Désert’s ECM/STEM type, and Hoshida’s S1. The

Cluster2 subclass was linked to Désert’s Perivenous type and

Hoshida’s S2. The Cluster3 subclass was associated with Chiang’s

Proliferation class, Désert’s Periportal type, and Hoshida’s S3

(Figure 4B and Table S7). Similarly, in the microarray cohort,

Cluster1 was linked to Chiang’s Interferon class, and Désert’s

ECM/STEM type. Cluster2 was linked to Boyault’s G5-6, and

Désert’s Perivenous type. Cluster3 was enriched in Boyault’s G5-

6, Chiang’s Proliferation class, Désert’s Periportal, and Hoshida’s S3

(Supplementary figure S3B and Table S8).
3.4 Transcriptomes of the zonation-
associated HCC clusters

Differential analyses were carried out to comprehend the

distinctions in the molecular and biological processes among the

three HCC subclasses. Significant differences in gene expression

were defined as |log2FC| > 1 and the adjusted P-value < 0.05. Only
A

B

FIGURE 4

Clinical characteristics of zonation marker-associated HCC subclasses in the RNA-seq cohort. (A) Difference of clinical characteristics among the
three clusters in the RNA-seq cohort by chi-square test (The comparison of survival time among the three clusters by ANOVA). (B) Correlation of the
three clusters with HCC subclasses published previously in RNA-seq cohort by chi-square test.
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genes that showed substantial differences in expression across all

three comparisons were designated cluster-specific DEGs. Finally,

2682 specific DEGs (1868 upregulated and 814 downregulated) for

Cluster1, 993 specific DEGs (118 upregulated and 875

downregulated) for Cluster2, and 405 specific DEGs (321

upregulated and 84 downregulated) for Cluster3 were identified

(Table S9).

Next, functional enrichment analysis of the cluster-specific

DEGs was performed utilizing the Metascape database, and

remarkably enriched biological processes or pathways are shown

in Table S9. The specific DEGs of the three clusters showed distinct

enrichment of biological processes. Cluster1 was enriched in some

differentiation and development-relevant processes. However,

multiple metabolism-related biological processes and pathways

were significantly enriched for Cluster3. For Cluster2, it was

enriched in the processes associated with molecular transport and

the WNT signaling pathway (Table S10).

Moreover, to further investigate the molecular characteristics of

the zonation marker-related subclasses, hallmark gene sets were

chosen and quantified using the GSVA algorithm. Hallmark gene

sets consist of eight process categories, including development,

immune, signaling, cellular component, pathway, metabolic, DNA

damage, and proliferation, which effectively condense the majority

of the pertinent data from the initial sets and offer more precise and

succinct inputs for gene set enrichment analysis (26). The result was

presented in a heatmap (Figure 5A). Cluster1 exhibited high

expression for proliferation relevant processes (e.g., G2M
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checkpoint, Mitotic spindle, and E2F targets), low expression for

metabolic relevant processes (e.g., fatty acid metabolism, bile acid

metabolism, and xenobiotic metabolism) (Figure 5B). Cluster2

exhibited low expression for immune (e.g., IL6-JAK-STAT3

signaling, Allograft rejection, and inflammatory response),

development (e.g., Angiogenesis, Myogenesis, and Epithelial-

mesenchymal transition), and signaling (e.g., IL2-STAT5

signaling, TNFA signaling via NFKB, TGFb signaling, KRAS

signaling up, Notch signaling, and Hedgehog signaling) relevant

processes (Figure 5C). Cluster3 exhibited high expression for

immune (e.g., Coagulation, Complement, Interferon-a response,

and IL6-JAK-STAT3 signaling) and metabolic (e.g., Xenobiotic

metabolism) relevant processes, low expression for proliferation

relevant processes (e.g., G2M checkpoint, MYC targets, Mitotic

spindle, and E2F targets) (Figure 5D).
3.5 The gene mutation profile of the
zonation-associated HCC clusters

To further investigate the different patterns of gene mutations

among HCC clusters, somatic mutation data from the RNA-seq

cohort was analyzed. The top 25 genes with the highest mutation

rates in all three clusters were shown in Figures 6A–C. In Cluster1,

TP53 exhibited the highest somatic mutation rate (42%), followed

by TTN (27%), MUC16 (17%), PCLO (14%), RYR2 (13%), and

LRP1B (12%). In Cluster2, CTNNB1 exhibited the highest somatic
D

A

B C

FIGURE 5

Difference of 50 hallmark gene sets among the three clusters. (A) Heatmap plot shows the GSVA score of 50 hallmark gene sets of the three clusters
in RNA-seq cohort. The hyperactive and hypoactive processes or pathways in Cluster1 (B), Cluster2 (C), and Cluster3 (D). Red represents hyperactive
process or pathway and blue represents hypoactive process or pathway.
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mutation rate (49%), followed by TP53 (29%), TTN (16%), MUC16

(14%), ALB (14%), ARID1A (11%), and PCLO (11%). For Cluster3,

TTN exhibited the highest somatic mutation rate (26%), followed

by TP53 (23%), ALB (13%), APOB (13%), PCLO (12%), CTNNB1

(10%), and MUC16 (10%).

A previous study identified 161 HCC driver genes that may play

critical roles in the treatment of HCC (27). Therefore, we further

explored the mutation profile of these driver genes. The top 20

driver genes with the highest mutation rates in all three clusters

were shown in Figure 6D. TP53 exhibited the highest somatic

mutation rate (29%), followed by CTNNB1 (25%), ALB (12%),

APOB (10%), ARID1A (8%), ARID2 (8%), and AXIN1 (6%).

Moreover, we compared the tumor mutation burden (TMB) of

HCC driver genes among the three clusters. The results showed that

Cluster2 exhibited a higher TMB level than the other two

clusters (Figure 6E).
3.6 Correlation of the zonation-associated
HCC clusters with immune infiltration and
immunotherapy response

Given the significant differences in immune processes among

clusters, immune infiltration was examined to characterize their

immunological landscape. As shown in Figure 7A, the abundance of

immune cell types was calculated using CIBERSORT and ssGSEA
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algorithms. As shown in Figure 7B, compared with the other two

subclasses, Cluster2 presented the lowest abundance of 24 immune

cell types, including B cells memory, macrophages M2, neutrophils,

activated B cells, central memory CD4 T cell, central memory CD8

T cell, effector memory CD4 T cell, effector memory CD8 T cell,

immature B cell, T follicular helper cell, regulatory T cell, Type 1/2/

17 helper cell, activated dendritic cell, CD56dim natural killer cell,

immature natural killer cell, macrophage, mast cell, MDSC,

monocyte, natural killer T cell, natural killer cell, and

Plasmacytoid dendritic cell. We further investigated the

differences in the expression of 47 immune checkpoint genes

among the three subclasses. Consistent with immune infiltration,

Cluster2 exhibited the lowest expression for 44 immune checkpoint

genes (except for ICOS, NRP1, and TNFSF14) compared to

Cluster1 and Cluster3 (Figure 7C).

Different immune infiltration and immune checkpoint gene

expression patterns among HCC clusters indicate that the

immunotherapy response among the clusters may be different.

Therefore, we compared the expression profiles of the three

clusters (Cluster1, Cluster2, and Cluster3) with another published

melanoma cohort containing 47 patients who received PD1

inhibitor or CTLA-4 inhibitor using SubMap analysis. As shown

in Figure 7D, the expression profile of Cluster2 was correlated with

the CTLA4 response group (P = 0.05), while Cluster3 was associated

with the PD1 response group (P = 0.003), suggesting that patients

within the Cluster1 group were more likely to respond to the anti-
D

A B

E

C

FIGURE 6

Gene mutation profile of zonation marker associated HCC clusters. Oncoplots of the top 25 somatic mutation genes in Cluster1 (A), Cluster2 (B),
and Cluster3 (C). Red represents HCC driver genes. Oncoplot of the top 20 somatic mutations of HCC driver genes (D). Difference of TMB of HCC
driver genes among the three clusters by Kruskal–Wallis test (E). TMB, Tumor mutation burden.
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CTLA4 therapy and Cluster3 group was more likely to respond to

anti-PD1 therapy.
3.7 Identification of potential drug
targets and candidate therapeutic
agents for Cluster1

Since patients in Cluster1 have the worst prognosis, we further

identified the potential drug targets for Cluster1. The cluster1-

specific DEGs with overexpression (log2FC > 1 and adjusted P <

0.05) in HCC tissues and low CERES score (< -0.5) were defined as

potential drug targets. Eventually, a total of 34 potential drug targets

were identified (Figure 8A, Table S11). Among them, drugs

(compounds) that target AURKB, BIRC5, KIF11, PLK1, PLK4,

RAD51, TOP2A, TTK, and TUBB3 were identified (Figure 8A,

Table S11).

To further identify the potential therapeutic agents for Cluster1,

the oncoPredict R package was used to calculate the sensitivity score

of the drugs (compounds) for potential drug targets of Cluster1 based

on the drug sensitivity and gene expression profiles of HCC cell lines

from GDSC and PRISM databases. As shown in Figures 8B, C, eleven
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PRISM-derived compounds (including Teniposide, K-858, TAK-901,

Dexrazoxane, Mitoxantrone, AT-9283, Axitinib, Podophyllotoxin,

Amonafide, Amsacrine, and Idarubicin) and six GDSC-derived

compounds (including Axitinib, Doxorubicin, Etoposide,

GSK1070916, YM−155, and Alisertib) were found to be more

sensitive in Cluster1 HCC patients.
4 Discussion

Liver zonation is a unique phenomenon that exhibits a distinct

division of functions among hepatocytes along the lobule radial axis,

optimizing overall liver function, and playing a central role in

regulating liver disease phenotypes and progression, including

HCC (28). Therefore, obtaining a better understanding of the

characteristics of liver zonation in HCC may help us unveil the

mechanisms of HCC heterogeneity and develop more effective

therapeutics for HCC. With the breakthrough of RNA-

sequencing technology, scRNA-seq coupled with spatial mapping

has demonstrated previously unknown molecular patterns of

hepatocytes, shedding new light on the functional features of

hepatocytes across different zones of the liver lobule in both
A

B

C D

FIGURE 7

Immune cells infiltration landscape and immune checkpoint genes expression profile of three clusters. (A) Heatmap plot shows the abundance of
immune cell infiltration in three clusters by CIBERSORT and ssGSEA. (B) Difference of the abundance of immune cells infiltration among different
clusters by ANOVA. (C) Difference of the level of immune checkpoint genes among different clusters by ANOVA. *P<0.05; **P<0.01; ***P<0.001.
(D) The SubMap matrix shows Cluster1 may be more sensitive to the CTLA-4 inhibitor (nominal P = 0.05) and Cluster3 may be more sensitive to the
PD-1 inhibitor (nominal P = 0.003).
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humans and mice, facilitating a better understanding of the form

and regulation of zonation (29).

In the present study, we identified 94 hepatocyte-specified

zonation markers (39 central markers and 55 portal markers) by

combining four scRNA-seq cohorts for the first time. Based on the

zonation markers, we identified three HCC subclasses. Cluster1 was

barely involved in zonation-related signature, with a bad prognosis,

high recurrence, high AFP level, and advanced TNM stage and

histologic grade. Cluster2 was associated with a central signature,

with a middle prognosis, AFP level, TNM stage, and histologic

grade. Cluster3 exhibited a portal-associated signature, with

favorable prognosis, low recurrence, low AFP level, and early

TNM stage and histologic grade. In general, this study

investigated the zonation characteristics of HCC, and identified

three types of HCC with non-zonational-like (Cluster1), central-like

(Cluster2), and portal-like (Cluster3) features, respectively.

Moreover, the transcriptome and mutation features, immune

infiltration, and immunotherapy response of the subclasses were

investigated. Cluster1 (non-zonational-like type) was mainly

enriched in differentiation and development-relevant processes,

with a high rate of TP53 mutation (42%), a high level of immune

cell infiltration, a high expression level of immune checkpoint

genes, and may be more sensitive to the CTLA4 inhibitor.

Moreover, Cluster2 (central-like type) was mainly enriched in the

processes associated with molecular transport and WNT signaling

pathway, with a high rate of CTNNB1 mutation (49%), a low level

of immune cell infiltration, and a low expression level of immune

checkpoint genes. Cluster3 (portal-like type) was enriched in

numerous metabolism-associated biological processes and

pathways, with low rates of both TP53 (26%) and CTNNB1
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(10%), a high level of immune cell infiltration, a high expression

level of immune checkpoint genes, and may be more sensitive to the

PD1 inhibitor.

Furthermore, we compared the correlation between our clusters

and previously published HCC subclasses, which provided us with

abundant characteristic information related to our novel zonation-

associated clusters, leading to a deeper understanding of our

clusters. The results from both RNA-seq and microarray cohorts

demonstrated that Cluster1 was associated with the HCC type of

Chiang’s Interferon class and Désert’s ECM/STEM type. Chiang’s

Interferon class is featured by the overexpression of several

interferon-stimulated genes, with a low mutation rate of

CTNNB1 and low expression of IGF2 and CTNNB1 target genes

(9). Désert’s ECM/STEM type is the collective name for the ECM

type and STEM type. ECM type is characterized by ECM modeling,

integrin signaling, and epithelial-mesenchymal transition. STEM

type is typified by up-regulation of cell cycle progression and p53

mutation. ECM/STEM-type HCCs share high tumor cell

proliferation and a bad prognosis (11). Cluster2 was linked to

Désert’s Perivenous type. Désert’s Perivenous type is defined by a

high level of perivenous hepatocyte signatures, such as fatty acid

and bile salt metabolism, with a high rate of CTNNB1 mutations

(11). Cluster3 was associated with Chiang’s Proliferation class,

Désert’s Periportal type, and Hoshida’s S3. Chiang’s Proliferation

class is characterized by high proliferation, chromosomal instability,

activation of IGF and Akt/mTOR signaling, and reduced

frequencies of CTNNB1 mutation (9). Désert’s Periportal type is

featured by the enrichment of differentiated periportal hepatocyte

signatures (gluconeogenesis, amino acid catabolism, hepatocyte

nuclear factor 4A (HNF4A) induced genes) and TP53 mutation
A B

C

FIGURE 8

Identification of potential drug targets and candidate agents for Cluster1 HCC patients. (A) The 34 potential drug targets identified for Cluster1 HCC
patients. (B and C) The sensitivity score, phase, and targets of candidate agents (eleven PRISM-derived compounds and seven GDSC-derived
compounds) for Cluster1 HCC patients. **P<0.01; ***P<0.001.
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rates, with good prognosis, low recurrence, early-stage tumors by

BCLC, TNM staging systems, and no macrovascular invasion (11).

Hoshida’s S3 is notable for a well-differentiated hepatocyte

signature with a good prognosis, and preserved TP53 function

(10). In general, the clusters we constructed validated the findings of

previously published HCC subclasses but also preserved their

own characteristics.

HCC tumors are highly heterogeneous among individuals, and

finding targeted therapeutic strategies for specific groups is of vital

importance to maximize the therapeutic effect. In the present study,

a total of 34 potential drug targets and 16 agents for Cluster1 HCC

patients were identified. Among the potential drug targets, AURKB,

BIRC5, KIF11, PLK1, PLK4, RAD51, TOP2A, TTK, and TUBB3

have targeted agents. Numerous studies have demonstrated the vital

oncogenic role of AURKB (30), BIRC5 (31), KIF11 (32), PLK1 (33),

PLK4 (34), RAD51 (35), TOP2A (36), TTK (37), and TUBB3 (38)

in various cancers, including HCC. Therefore, multiple compounds

have been designed for these therapeutic targets (Table S11).

Among these compounds, Teniposide, K-858, TAK-901,

Dexrazoxane, Mitoxantrone, AT-9283, Axitinib, Podophyllotoxin,

Amonafide, Amsacrine, Idarubicin, Doxorubicin, Etoposide,

GSK1070916, YM−155, and Alisertib were found to be more

sensitive for Cluster1 HCC patients.

Teniposide, Dexrazoxane, Mitoxantrone, Podophyllotoxin,

Amsacrine, Doxorubicin, and Etoposide are topoisomerase

inhibitors that have been widely employed as chemotherapy in

multiple cancer therapies. Amonafide is also a topoisomerase II

inhibitor and DNA intercalator that has been found to have marked

antineoplastic efficacy in preclinical models of cancer. Phase I and II

studies revealed that Amonafide might be a promising drug for

treating older patients, including those with multidrug-resistant,

cytogenetically unfavorable secondary and treatment-associated

acute myeloid leukemia (AML) (39).

TAK-901, AT-9283, GSK1070916, and Alisertib are Aurora

kinase inhibitors. Human Aurora kinases, including Aurora

kinase A (AURKA), B (AURKB), and C (AURKC), play critical

roles in monitoring the mitotic checkpoint, bipolar mitotic spindle

creation, and centrosome alignment, and also participate in

regulating the separation of centrosome, bio-orientation of

chromosomes, and cytokinesis. AURKB is a key regulator of

mitosis and centrosome through polymerizing microfilaments and

regulating chromatid segregation (40). Preclinical studies and Phase

I/II/III trials have shown favorable pharmacokinetic properties and

markedly antitumor effects of these agents (41–44).

K-858 is an inhibitor of the mitotic kinesin KIF11 (also known

as Eg5). K-858 induces cell mitotic arrest with the formation of

monopolar spindles by blocking centrosome separation, and

activating the spindle checkpoint (45). K-858 has shown potent

anti-proliferative and pro-apoptotic effects in multiple types of

cancer cell lines (46, 47).

Axitinib is a potent and specific inhibitor of tyrosine kinase,

specifically with high affinity for VEGFRs 1, 2, and 3, which was

approved by the FDA for use in renal cell carcinoma in 2012 (48).
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In addition, Axitinib was also found to inhibit PLK4 with an IC50

value of 4.2 nM (49). Clinical trials have been performed to treat

HCC patients with Axitinib. In a phase II trial, second-line

treatment with Axitinib combined with the best supportive care

led to a remarkably longer PFS and a higher clinical benefit rate

than patients with only best supportive care in advanced HCC (50).

Moreover, another multicenter phase II trial in advanced HCC

revealed that second-line Axitinib treatment resulted in a 62.2%

disease control rate and a 6.7% response rate for advanced HCC

after failing the first-line sorafenib therapy (51).

YM-155 is an imidazolium-based compound that has selective

activity against BIRC5 (also known as Survivin) (52). Several phase

I/II clinical trials have demonstrated that YM-155 has a safe profile

and anti-tumor capacity in multiple types of tumors (53, 54).

Preclinical studies found that YM155 substantially suppressed the

proliferation and induced cell cycle arrest and apoptosis of HCC cell

lines. Moreover, in a mouse model using patient-derived HCC

xenografts with overexpressed BIRC5 and p-BIRC5, YM155

exhibited stronger anti-proliferative efficacy than sorafenib (55).
5 Conclusion

In conclusion, the current study established a novel HCC

classification based on liver zonation signature. By classifying

HCC into three clusters with non-zonational-like (Cluster1),

central-like (Cluster2), and portal-like (Cluster3) features, this

study shed new lights on the heterogeneity of HCC. Cluster3 was

intensively correlated with portal-like signature with a good

prognosis. Cluster2 was intensively associated with a central-like

signature and exhibited low immune infiltration and sensitivity

towards immune blockade therapy. Cluster1 exhibited a non-

zonational-like signature with the worst prognosis. Moreover, we

identified potential drug targets and agents for Cluster1 HCC,

which provided new insights into delivering precision medicine

for HCC patients and shed new light on improving the therapeutic

effect of anti-tumor drugs by selecting potentially sensitive patients.
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SUPPLEMENTARY FIGURE 1

The Venn plot shows the common genes for TCGA-LIHC and ICGC-LIRI-JP

cohorts (A). The box plot shows the gene expression before and after batch

effect correction of the RNA-seq cohort (B). The Venn plot shows the common
genes for GSE14520 and E-TABM-36 cohorts (C). The box plot shows the gene

expression before and after batch effect correction of themicroarray cohort (D)

SUPPLEMENTARY FIGURE 2

Identification of zonation marker-associated HCC subclasses using NMF

clustering. (A) Heatmap plot shows the consensus matrix of NMF clustering
results using the gene expression data of 94 zonation markers in the

microarray cohort (GSE14520+E-TABM-36), colored by three HCC

subclasses (Cluster1, Cluster2, and Cluster3). (B) Heatmap plot shows the
expression pattern of the zonation markers of the three clusters. (C) The
difference of the GSVA scores of the portal and central signatures among the
three clusters. Comparison between central and portal by Student’s t-test;

Comparison among three clusters by ANOVA -Tukey test. (D) The SubMap
matrix shows a significant correlation between HCC classification from RNA-

seq and microarray cohorts. GSVA: Gene set variation analysis.

SUPPLEMENTARY FIGURE 3

Clinical characteristics of zonation marker associated HCC subclasses in the
microarray cohort. (A) Difference of clinical characteristics among the three

clusters in microarray cohort by chi-square test (The comparison of survival
time among the three clusters by ANOVA). (B) Correlation of the three clusters

withHCC subclasses published previously inmicroarray cohort by chi-square test.
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