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Background: Recent studies have shown that ovarian aging is strongly

associated with the risk of breast cancer, however, its prognostic impact on

breast cancer is not yet fully understood. In this study, we performed a

multicohort genetic analysis to explore its prognostic value and biological

features in breast cancer.

Methods: The gene expression and clinicopathological data of 3366 patients

from the The Cancer Genome Atlas (TCGA) cohort, the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) cohort and the GSE86166

cohort were analyzed. A total of 290 ovarian aging-related genes (OARGs) were

included in the establishment of the prognostic model. Furthermore, functional

mechanisms analysis, drug sensitivity, and immune cell infiltration were

investigated using bioinformatic methods.

Results: An eight OARG-based signature was established and validated using

independent cohorts. Two risk subgroups of patients with distinct survival

outcomes were identified by the OARG-based signature. A nomogram with

good predictive performance was developed by integrating the OARG risk score

with clinicopathological factors. Moreover, the OARG-based signature was

correlated with DNA damage repair, immune cell signaling pathways, and

immunomodulatory functions. The patients in the low-risk subgroup were

found to be sensitive to traditional chemotherapeutic, endocrine, and targeted

agents (doxorubicin, tamoxifen, lapatinib, etc.) and some novel targeted drugs

(sunitinib, pazopanib, etc.). Moreover, patients in the low-risk subgroup may be

more susceptible to immune escape and therefore respond less effectively to

immunotherapy.

Conclusions: In this study, we proposed a comprehensive analytical method for

breast cancer assessment based on OARG expression patterns, which could

precisely predict clinical outcomes and drug sensitivity of breast cancer patients.
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Introduction

Breast cancer is a hormone-sensitive tumor and its development

and progression are closely related to the host’s hormone levels (1,

2). The decline in ovarian function, known as ovarian aging, results

from a decrease in the quantity and quality of oocytes and is one of

the key intrinsic determinants of hormonal changes (3). Numerous

studies have shown that ovarian aging is strongly associated with

the risk of breast cancer, but its prognostic impact on breast cancer

is not yet fully understood. Therefore, it is of great significance to

explore the prognostic implications of ovarian aging and its

potential as an alternative individual therapeutic target for

breast cancer.

Menarche and menopause mark the origin and end points in

the process of ovarian ageing, as well as affect breast cancer risk.

It has been well-documented that women who experienced

menarche at an early age have an exponentially increased

risk of developing breast cancer (4–7). Large cohort studies

have also demonstrated that breast cancer incidence decreases

with an earlier onset of menopause (8–10). Ovarian aging is a

complex process with multi-linked genetic, etiological, or

influencing factors and its molecular mechanisms remains

largely unelucidated (3, 11). Fortunately, a new study in

Nature conducted a large-scale genome-wide association study

of ovarian ageing and identifies 290 genetic determinants of

ovarian aging (12). Therefore, a comprehensive understanding

of the relationship between the expression of the 290 ovarian

aging-related genes (OARGs) and survival outcomes in breast

cancer, would be important in determining the effects of ovarian

aging in breast cancer.

Herein, this study was conducted to evaluate the prognostic

profiles of OARGs in breast cancer. A novel ovarian aging-based

signature for evaluating breast cancer prognosis was developed and

validated in multiple cohorts. Furthermore, the present study aimed

to present the prognostic landscape of OARGs in breast cancer, and

screen for survival-related OARGs as biomarker candidates and

potential therapeutic targets.
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Methods

Data collection

RNA-sequencing (HTSeq-fragments per kilobase per million

[FPKM]), clinicopathological, and survival data were obtained from

three individual large breast cancer cohorts, namely The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/

repository, accessed in July 2022), The Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) (https://

www.cbioportal.org/, accessed in July 2022) and the GSE86166

dataset from Gene Expression Omnibus database (https://

www.ncbi.nlm.nih.gov/geo/, accessed in July 2022). Subjects who met

the following criteria were included in the study: (a) had a histologically

confirmed breast cancer without metastatic disease; (b) from post-

surgery; (c) with available follow-up data of overall survival (OS), and

anOS of not less than 30 days. The OSwas defined as the time from the

date of diagnosis to the date of death due to any cause or to the date of

the last follow-up. A total of 290 OARGs were identified from the study

of Ruth et al. (Table S1) (12). The overall workflow followed in this

study was presented in Figure 1.
Screening for prognostic genes

The Kaplan-Meier and univariate Cox regression analyses,

using OS as an outcome, were employed to estimate the

predictive values of the 290 OARGs and screen for prognostic

genes (with both P < 0.05) in the TCGA cohort.
The prognostic pattern of ovarian aging in
breast cancer

Consensus cluster analysis was carried out based on the

identified prognostic genes to classify patients into different

groups by a non-negative matrix factorization (NMF) algorithm
FIGURE 1

The flow chart detailing the comprehensive analysis of ovarian aging patterns in postoperative breast cancer patients.
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using the NMF package (13). This was done to ensure maximum

differences between the groups and minimum differences within the

groups. The samples were clustered using the Brunet criterion. The

K’s range was set at 2 to 10. According to cophenetic, dispersion,

and silhouette, the ideal K was found. The prognostic pattern of

ovarian aging in breast cancer
Development and validation of the
prognostic OARG signature

To further screen candidate genes for the prognostic model, the

identified prognostic genes were subjected to LASSO Cox regression

analysis to avoid potential co-linearity and simplify the number of

independent variables (14). Then, multivariate Cox regression

analysis was performed to evaluate the prognostic contributions

of the selected candidate genes from the LASSO Cox regression

analysis (hazard ratio, HR, 95% confidence interval, CI should not

cross HR 1; P < 0.05), and establish the OARG risk score using the

following formula: risk score = sum (each OARG normalized

expression level × corresponding coefficients). Based on this, we

calculated the OARG risk score for each patient and determined the

optimal cut-off value for the OARG risk score according to

maximally selected rank statistics method with OS for an

outcome (15). Thus, according to the cutoff value, we divided

each patient into different risk-stratified groups: the patient would

be assigned into high-risk group if the patient’s calculated OARG

risk score was larger than the cutoff value; otherwise assigned into

low-risk group. The survival differences between the two risk groups

were compared using Kaplan-Meier analyses with a log-rank test.

Furthermore, in the TCGA cohort, a nomogram was constructed,

which incorporated the OARG risk score and additional prognostic

clinicopathological characteristics identified from the multivariate

Cox regression analysis. Calibration curves for the survival

probability at one, three, and five years were also plotted to assess

the prognostic precision of this nomogram. The same procedures

and calculations were performed in the METABRIC and GSE86166

cohorts for validation.
Functional enrichment analysis of the
OARG signature

Gene Set Variation Analysis (GSVA) using the “GSVA” package

and Gene Set Enrichment Analysis (GSEA, https://www.gsea-

msigdb.org/gsea/index.jsp) were conducted to determine the

pathway and biological function differences between the two risk

groups (16, 17). We used the c2.cp.kegg.v7.4.symbols.gmt in the

Molecular Signatures Database (MSigDB) for board hallmarkers

(17). Gene sets with normal P < 0.05 and false discovery rate < 0.10

were considered to be significantly enriched. Gene ontology (GO)

enrichment analysis was performed using Metascape (https://

metascape.org/gp/index.html#/main/step1) and plotted using the

“ClusterProfiler” and “Cytoscape” package.
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Identification of potential target drugs for
high-risk group patients

The “pRRophetic” package, which was developed upon

statistical models calculated from huge collections of cancer cell

lines gene expression and drug sensitivity data (18), was used to

predict the drug sensitivity of the two risk groups. The half maximal

inhibitory concentrations (IC50) of potential target drugs were

compared between the two risk groups.
Estimation of the immune cell
infiltration landscape

The “GSVA” package with single-sample GSEA (ssGSEA) was

used to evaluate the infiltration scores of immune cell types and

immune-related pathways between the two risk groups. In addition,

the variations in the compositions of immune cell types between the

two risk groups were evaluated using the CIBERSORT method (19).

Then, the differences in the reported famous six immune subtypes

of wound healing (Immune C1), IFN-g dominant (Immune C2),

inflammatory (Immune C3), lymphocyte depleted (Immune C4),

immunologically quiet (Immune C5), and TGF-b dominant

(Immune C6) subtypes (20) were compared between the two

groups. We also estimated the immunogenicity and immunome

infiltration characteristics of breast cancer using the Estimation of

STromal and Immune cells in MAlignant Tumours using

Expression data (ESTIMATE) and Tumor Immune Dysfunction

and Exclusion (TIDE) approaches (21, 22), and further investigated

how well the risk signature performed in predicting the effects of

immunotherapy. More specifically, a higher TIDE score means a

higher likelihood of immune escape and a lower likelihood that the

patient will benefit from immunotherapy.
Statistical analysis

Continuous data were reported as medians with interquartile

ranges (IQR), while categorical data were reported as frequencies

with percentages, and compared using the Mann-Whitney U test,

chi-square test, continuity corrected chi-square test, or Fisher’s

exact test, whichever is appropriate. Disease-free survival (DFS) was

defined as the time from the date of diagnosis to the date of

recurrence/metastasis or to the date of death due to any cause or

to the last follow-up. Meanwhile, recurrence-free survival (RFS) was

defined as the time from the date of diagnosis to the date of

recurrence or to the date of death due to any cause or to the last

follow-up. The survival outcomes were estimated using the Kaplan-

Meier method and compared by the log-rank test. The Cox

proportional hazards model was performed to calculate the

adjusted HRs and corresponding 95% confidence intervals (CIs).

All statistical analyses were conducted with R version 4.1.2 (http://

www.r-project.org). Statistical significance was set at two‐sided

P < 0.05.
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Results

Screening for prognostic OARGs

A total of 1096 subjects from the TCGA cohort, 1904 subjects

from the METABRIC cohort, and 366 subjects from the GSE86166

cohort were included in this study. After filtering out subjects who

did not meet our selection criteria, a total of 3267 subjects were

enrolled in the final analysis, including 1017 subjects in the TCGA

cohort for training, as well as1888 subjects in the METABRIC

cohort and 362 subjects in the GSE86166 cohort for validation.

The Kaplan-Meier and univariate Cox regression analyses,

using OS as an outcome, were conducted to screen for prognostic

genes among the 290 OARGs. In total, the expression of 22 genes

was found to be significantly related to OS, with 11 genes having a

negative association and 11 genes with a positive association

(Figure S1).
The prognostic pattern of ovarian aging in
breast cancer

The selected 22 prognostic OARGs were subjected to cluster

analyses using the Brunet selection criterion for 50 iterations. The

classification of clusters (K) was limited to 2-10. Three were chosen

as the optimal cluster number based on the homogeneity,

discreteness, and silhouette (Figures S2A, B). The results show

that the OS (P < 0.001; Figure S2C) and DFS (P < 0.001; Figure S2E)

of C2 were worse than those of C1 and C3.
Development and validation of the
prognostic OARG signature

The selected 22 prognostic OARGs were also subjected to LASSO

Cox regression analysis to avoid potential co-linearity and simplify

the number of independent variables in the prognostic signature

(Figures 2A, B). Subsequently, the LASSO Cox analysis yielded a total

of 17 genes and therefore multivariate Cox regression analysis was

performed to establish the prognostic OARG signature (Figure 2C).

Finally, an 8-OARG risk signature was established in the TCGA

cohort. The corresponding risk score of each patient was calculated

using the following formula: risk score = HLA-B × (-0.24351) +

RBBP8 × (-0.34470) + SPRY4 × 0.31174 +WT1 × 0.29836 +WWOX

× 0.39556 + UPRT × 0.40719+ PELO × 0.43603+ ZNF208 ×

(-0.23972). The patients in the TCGA cohort were grouped into

risk-stratified groups (high-risk group, n = 337; low-risk group, n =

680) based on the cut-off value of 4.49 which was determined using

maximally selected rank statistics (Figure S2). The distributions of

patient risk score and survival status, as well as each patient’s 8-

OARGs expression levels, are summarized in Figures 3A, B,
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respectively. The Kaplan-Meier survival curves demonstrated that

the high-risk group patients had significantly worse survival OS (P <

0.001; Figure 3C) and DFS (P < 0.001; Figure 3D) than the low-risk

group patients. Moreover, the OARG risk signature remained

significantly associated with OS (HR = 3.79, 95% CI = 2.42-5.95,

P < 0.001; Figure 3E) and DFS (HR = 2.20, 95% CI = 1.28-

3.76, P = 0.004; Figure 3F) after adjusting for other

clinicopathological variables.

Using the same formula and the cut-off value from the TCGA

cohort, the risk scores and risk-stratified groupings weredetermined

for patients in the METABRIC and GSE86166 cohorts for

validation (Figures S3, S4). Consistently, the Kaplan-Meier

survival curves also showed that the high-risk group patients had

significantly worse OS (P < 0.001; Figure S3C) and RFS (P < 0.001;

Figure S3D) in the METABRIC cohort, and worse OS (P = 0.016;

Figure S4C) and RFS (P = 0.022; Figure S4D) in the GSE86166

cohort, respectively. Furthermore, after adjusting for other

clinicopathological variables, the OARG risk signature remained

associated with OS (HR = 1.35, 95% CI = 1.14-1.60, P < 0.001;

Figure S3E) and RFS (HR = 1.22, 95% CI = 1.00-1.49, P = 0.050;

Figure S3F) in the METABRIC cohort and OS (HR = 1.94, 95% CI =

1.05-3.60, P = 0.035; Figure S4E) and RFS (HR = 1.86, 95% CI =

0.91-3 .82 , P = 0.090; Figure S4F) in the GSE86166

cohort, respectively.
Establishment of a prognostic nomogram
based on the OARG signature

A risk score-based visualized nomogram, which integrates the

risk signature and three important clinicopathological factors (age,

stage and subtype) selected from the multivariate Cox regression

analysis, was established to individually quantify and assess the OS

probability at 1-, 3- and 5-years of breast cancer patients in TCGA

cohort (Figure 4A). We conducted a bootstrap validation and

calculated the nomogram’s C-index to be 0.812 (95% CI: 0.768-

0.856) in the TCGA cohort and 0.757 (95% CI: 0.734-0.779) in the

METABRIC cohort, respectively. To evaluate the predictive efficacy

and clinical application of the nomogram, calibration curves were

plotted for both the TCGA cohort (Figure 4B) and the METABRIC

cohort (Figure 4C). The calibration curves demonstrated

satisfactory consistency among the actual and anticipated OS

probabilities at 1-, 3- and 5-years.
Gene set variation analysis of
OARG signature

We performed GSVA to determine the potential biological

functions of the OARG signature in breast cancer. In the training

cohort of TCGA, the pathway sets DNA sensing, primary
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immunodeficiency, and nutrients metabolism were found to be

activated in the high-risk group (Figure S5A). Meanwhile, the

pathway sets with the immune network, autoimmune system, and

immune disease were activated in the low-risk group (Figure S6D).

GO enrichment analysis confirmed that the immune-related

biological processes were enriched in the low-risk group (Figure
Frontiers in Immunology 05
S6A). These results were further validated in the METABRIC

(Figures S5B, S6B, E) and GSE86166 (Figures S5C, S6C, F)

cohorts and similar functional results were found. These results

support the comprehensive DNA repair and immunomodulatory

function effects of the OARG signature in the development and

progression of breast cancer.
A B

C

FIGURE 2

Screening and identification of prognostic ovarian ageing-related genes (OARGs) in the TCGA cohort. (A) Selection of the optimal candidate genes in
the LASSO model. (B) LASSO coefficients of prognosis-associated OARGs, each curve represents a gene. (C) Forest plots showing results of
univariate Cox regression analysis between the candidate OARGs expression and overall survival.
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Clinical implications of the OARG signature
in predicting therapeutic effects

The potential intrinsic connections between the OARG

signature and therapeutic effects of chemotherapeutic,

endocrine, and targeted agents were further explored. In the
Frontiers in Immunology 06
training cohort of TCGA, the low-risk group had a lower IC50

for chemotherapeutics such as doxorubicin, etoposide,

gemcitabine, paclitaxel, vinorelbine and 5-fluorouracil ,

indicat ing the predict ive potent ia l of the model for

chemosensitivity (Figures 5A–F). For the endocrine and targeted

drugs, the low-risk patients had a lower IC50 for tamoxifen and
A B

D

E F

C

FIGURE 3

Estimate the prognostic value of ovarian ageing-related gene (OARG) signature model in TCGA cohort. (A) The distribution of risk scores in the TCGA
and patient distribution in the high- and low-risk group according to overall survival (OS) status. (B) The heatmap showing expression profiles of the
8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and low-risk groups. (D) Kaplan-Meier curves for the diseases-free survival (DFS)
of patients in the high- and low-risk groups. (E) Multivariate Cox regression analysis of OS. (F) Multivariate Cox regression analysis of DFS.
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fulvestrant (Figures 5G, H), as well as for lapatinib, sunitinib,

dasatinib, crizotinib, pazopanib, and ruxolitinib (Figures 5I–N).

Most of the results were validated in the METABRIC (except for

crizotinib; Figure S7) and the GSE86166 (except for vinorelbine,
Frontiers in Immunology 07
crizotinib, and ruxolitinib; Figure S8) cohorts. The better

prognosis for the low-risk group could be partially explained by

these findings. These findings also imply that the low-risk group

would benefit more from therapy with traditional and novel drugs.
A

B C

FIGURE 4

Development of a nomogram based on ovarian ageing-related genes (OARGs) signature for predicting overall survival (OS) of patients with breast
cancer. (A) The nomogram plot integrating OARG risk score, age, stage and subtype in the TCGA training cohort. (B) The calibration plot for the
probability of 1-, 3-, and 5-year OS in the TCGA training cohort. (C) The calibration plot for the probability of 1-, 3-, and 5-year OS in the METABRIC
validation cohort.
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Immunocyte infiltration profiling of the
OARG signature in breast cancer

The profiling of immune infiltration was performed using the

ssGSEA and CIBERSORT methods, and the outcomes showed

noticeably different immune infiltration landscapes between the

two r i sk ca tegor i e s . Spec ifica l l y , func t ions such as

APC_co_inhibition, APC_co_stimulation, CCR, Check-point,

Cytolytic_activity, HLA, Inflammation-promoting, MHC_class_I,

Parainflammation, T_cell_co-inhibition, T_cell_co-stimulation and

Type_I_IFN_Reponse were elevated in the low-risk group patients

(Figure 6A). Moreover, the patients in the low-risk group exhibited

a higher percentage of B cells naive, Macrophages M0 and
Frontiers in Immunology 08
Macrophages M2. In contrast, the percentages of B cells memory,

T cells CD8, T cells CD4 memory activated, T cells follicular helper,

NK cells activated, Monocytes, Macrophages M1, Dendritic cells

resting and Dendritic cells activated were all higher in high-risk

group individuals (Figure 6B). In addition, the high-risk group had

significantly lower immune and ESTIMATE scores than the low-

risk group (Figure 6C). There was no immune C5 subtype in our

cohort and the risk scores between the immune subtypes

significantly differed. The immune C4 subtype had the highest

risk score and the immune C2 subtype had the lowest risk score

(Figure 6D). In contrast, the low-risk group presented with higher

TIDE scores indicating that the low-risk group patients may be

more susceptible to immune escape (Figure 6E). The patients
A B D

E F G

I

H

J K L

M N

C

FIGURE 5

Analysis of the association between the risk model and chemotherapeutics, endocrine therapy, and targeted therapy. (A–F) The model predicting the
sensitivity to chemosensitivity. It was estimated that low-risk patients had lower IC50 for chemotherapeutics of doxorubicin, etoposide, gemcitabine,
paclitaxel, vinorelbine and 5-fluorouracil. (G, H) The model predicting the sensitivity to endocrine therapy. It was estimated that low-risk patients had
lower IC50 of tamoxifen and fulvestrant. (I–N) The model predicting the sensitivity to targeted therapy. It was estimated that low-risk patients had
lower IC50 of lapatinib, sunitinib, dasatinib, crizotinib, pazopanib and ruxolitinib.
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responding to immunotherapy also had higher risk scores than

those non-responding to immunotherapy (Figure 6F). We also

discovered that the proportion of patients responding to

immunotherapy in the high-risk group was higher than that in

the low-risk group (33.5% vs 18.5%, P < 0.001, Figure 6G). Overall,

these findings showed that the immune infiltration profiles in breast

cancer are linked with the risk stratification based on the OARG

signature, and the immunotherapy effects could be also predicted.
Discussion

The current multicohort genetic association research provided a

bioinformatics-based analysis model, which incorporated clinical

information collection, transcriptome profiling, survival analysis,

functional evaluation, and immune infiltration estimation to

interpret the possible molecular mechanisms of ovarian aging and

its implication in breast cancer. Moreover, this analysis model

proposes a comprehensive perspective to explore the ovarian

aging microenvironment in breast cancer and could reveal the

potential outcomes and mechanisms related to the prognostic

OARG signature.

Ovarian aging, involves complex genetic variants regulation and

elaborate biological mechanisms. It is linked to several unfavorable
Frontiers in Immunology 09
consequences of hormone-sensitive cancers (23, 24). In recent

years, increasing evidence suggests that ovarian aging is crucial in

the female reproductive longevity biological processes, which have

been demonstrated to be associated with the tumorigenesis and

development of endocrine tumors (25–29). This study developed a

signature featuring 8 OARGs (HLA-B, RBBP8, SPRY4, WT1,

WWOX, UPRT, PELO, ZNF208) and determined its prognostic

and functional implications in breast cancer patients. HLA-B has

been previously demonstrated to have significant immunogenic

involvement in breast cancer by supporting multiple downstream

immunogenic pathways (30, 31). Our research showed that a better

prognosis was related to a relatively higher expression of HLA-B.

On the other hand, RBBP8 functions as a tumor suppressor protein

in breast cancer by interacting with some distinct tumor-

suppressing factors, including BRCA1 and retinoblastoma (32,

33). Our findings also suggest that RBBP8 served as a protective

factor for breast cancer. An in vivo research revealed that SPRY4

may influence the characteristics of cancer stem cells, as well as

tumor cell migration and proliferation (34). Numerous studies have

demonstrated that WT1 plays an oncogenic role in various solid

cancers including breast cancer, by promoting epithelial-to-

mesenchymal transition and lowering chemotherapy efficacy (35,

36). Although previous studies found that WWOX expression was

reduced in various cancers, our study has shown that it may be a
A B

D E F GC

FIGURE 6

The landscape of immune function and immune cell infiltration between the high- and low-risk group in the TCGA cohort. Red represents high-risk
samples; blue represents low-risk samples. *P < 0.05, **P < 0.01, ***P < 0.001. (A) Barplot showing differences of immune functions between the
low- and the high-risk group. (B) Violin plot showing differences of infiltrating immune cell types between the low- and the high-risk group. (C)
Comparison of tumor microenvironment scores calculated by ESTIMATE between the low- and the high-risk group. (D) Comparison of risk scores
between different immune subgroups. (E) Comparison of tumor microenvironment scores calculated by TIDE between the low- and the high-risk
group. (F) Comparison of risk scores between different responder subgroups. (G) Comparison of the immunotherapy responding proportion
between the low- and the high-risk group.
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risk factor affecting the prognosis of breast cancer (37). Moreover,

the current study found that the overexpression of UPRT was

associated with a worse prognosis in breast cancer and is closely

related to cancer gene-therapy efficacy (38). PELO is a new HER-

signaling regulator and was suggested to play a role in inhibiting

tumor cell proliferation and metastasis (39, 40). ZNF208 is a

member of the zinc finger family of proteins and its mutations

were found in many cancers, such as pancreatic cancer, gastric

cancer, esophageal cancer and laryngeal cancer (41–43). We

discovered its prognostic significance for breast cancer in

our investigation.

The functional analysis results support the comprehensive

DNA damage repair and immunomodulatory functions of the

OARG signature in the development and progression of breast

cancer. DNA damage repair mechanisms can trigger an innate

immune response, resulting in a reduction in cell proliferation and

the production of interferon, which is a crucial mechanism for

promot ing immune regu la t ion (44–46) . The tumor

microenvironment enables tumor cells to avoid immune

monitoring and medication interference, which permits them to

survive (47). Previous studies have found that numerous pathways

and genes associated with DNA damage repair networks play a role

in genetic instability and immune activity (46, 48–50). Our results

revealed that patients in the low-risk group exhibited a higher

percentage of B cells naive, Macrophages M0 and Macrophages M2.

Macrophages M0 have been polarized into M1-like and M2-like

subtypes, both of these two macrophages are strongly linked to

inflammatory reactions. Specifically, M1-like macrophages are

primarily involved in pro-inflammatory reactions, while M2-like

macrophages primarily participate in anti-inflammatory reactions

(51). Ovarian aging activity is typically connected to the trigger of

the anti-inflammatory signal, which is consistent with our results.

Many studies have revealed that a better outcome is associated with

the abundance of M1-like macrophages, while a worse outcome is

suggested by the predominance of M2-like macrophages in breast

cancer (52, 53). Therefore, the increased enrichment of M2-like

macrophages that occurs with ovarian aging may be a possible

explanation for the poor prognosis and may serve as a novel

prognostic biomarker for breast cancer. Additionally, patients in

the low-risk group had lower IC50 values for chemotherapeutic

agents (doxorubicin, etoposide, gemcitabine, paclitaxel, vinorelbine,

and 5-fluorouracil), endocrine agents (tamoxifen and fulvestrant),

and targeted agent (lapatinib), which may have contributed to their

better prognosis, since they were more responsive to systemic

therapeutic drugs. Moreover, patients in the low-risk group have

a higher sensitivity to sunitinib, pazopanib, ruxolitinib and

crizotinib, which are currently being tested in ongoing clinical

trials and may be potential targets for breast cancer therapy.

Although the present study shows that the OARG signature has

an excellent performance in multicohort of breast cancer datasets,

the study also has some limitations. Firstly, the participants were

retrospectively enrolled, which may inevitably introduce bias to

some extent. Secondly, the functional results of OARG genes from

our bioinformatics analyses have not yet been confirmed in in vitro

and in vivo experimental studies. Thirdly, we recognize that it is

essential for well-designed clinical trials to investigate the
Frontiers in Immunology 10
prognostic significance of this model and its therapeutic

implications in selecting novel drugs for breast cancer.

In conclusion, the current multicohort genetic association

research comprehensively explored the OARGs in breast cancer

based on their biological functions, linked pathways, regulatory

immune infiltration, efficacy levels, and clinical implications. The

survival-related OARG signature proposed in the current study has

the potential to distinguish prognosis and may be clinically applied

as useful biomarker and candidate targets in breast cancer.
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SUPPLEMENTARY FIGURE 1

Screening of ovarian ageing related prognostic genes by univariate Cox

regression analysis.

SUPPLEMENTARY FIGURE 2

The prognostic pattern of ovarian aging in breast cancer and determination of

the optimal cutoff value of the vitamin C index according to maximally
selected rank statistics.

SUPPLEMENTARY FIGURE 3

Estimate the prognostic value of ovarian ageing-related gene (OARG)

signature model in METABRIC cohort. (A) The distribution of risk scores in
the TCGA and patient distribution in the high- and low-risk group according

to overall survival (OS) status. (B) The heatmap showing expression profiles of
the 8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and

low-risk groups. (D) Kaplan-Meier curves for the recurrence-free survival

(RFS) of patients in the high- and low-risk groups. (E) Multivariate Cox
regression analysis of OS. (F) Multivariate Cox regression analysis of RFS.

SUPPLEMENTARY FIGURE 4

Estimate the prognostic value of ovarian ageing-related gene (OARG)
signature model in GSE86166 cohort. (A) The distribution of risk scores in

the TCGA and patient distribution in the high- and low-risk group according

to overall survival (OS) status. (B) The heatmap showing expression profiles of
the 8 OARGs. (C) Kaplan-Meier curves for the OS of patients in the high- and

low-risk groups. (D) Kaplan-Meier curves for the recurrence-free survival
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(RFS) of patients in the high- and low-risk groups. (E) Multivariate Cox
regression analysis of OS. (F) Multivariate Cox regression analysis of RFS.

SUPPLEMENTARY FIGURE 5

Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment

analysis of ovarian ageing-related gene (OARG) signature. (A) TCGA cohort.
(B) METABRIC cohort. (B) GSE86166 cohort.

SUPPLEMENTARY FIGURE 6

Gene ontology (GO) and Gene set enrichment analysis (GSEA) functional

enrichment analysis functional enrichment analysis of ovarian ageing-related

gene (OARG) signature. GO functional enrichment analysis for (A) TCGA
cohort. (B) METABRIC cohort. (B) GSE86166 cohort; GSEA functional

enrichment analysis for (D) TCGA cohort. (E) METABRIC cohort. (F)
GSE86166 cohort.

SUPPLEMENTARY FIGURE 7

Analysis of the association between the risk model and chemotherapeutics,

endocrine therapy, and targeted therapy in the METABRIC cohort. (A–F) The
model predicting the sensitivity to chemosensitivity. It was estimated that

low-risk patients had lower IC50 for chemotherapeutics of doxorubicin,
etoposide, gemcitabine, paclitaxel, vinorelbine and 5-fluorouracil. (GH) The

model predicting the sensitivity to endocrine therapy. It was estimated that

low-risk patients had lower IC50 of tamoxifen and fulvestrant. (I–M) The
model predicting the sensitivity to targeted therapy. It was estimated that

low-risk patients had lower IC50 of lapatinib, sunitinib, dasatinib, pazopanib
and ruxolitinib.

SUPPLEMENTARY FIGURE 8

Analysis of the association between the risk model and chemotherapeutics,

endocrine therapy, and targeted therapy in the GSE86166 cohort. (A–E) The
model predicting the sensitivity to chemosensitivity. It was estimated that

low-risk patients had lower IC50 for chemotherapeutics of doxorubicin,
etoposide, gemcitabine, paclitaxel and 5-fluorouracil. (FG) The model

predicting the sensitivity to endocrine therapy. It was estimated that low-
risk patients had lower IC50 of tamoxifen and fulvestrant. (H–K) The model

predicting the sensitivity to targeted therapy. It was estimated that low-risk

patients had lower IC50 of lapatinib, sunitinib, dasatinib and pazopanib.
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