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Gastric cancer is one of the top causes of cancer-related death globally.

Although novel treatment strategies have been developed, attempts to

eradicate gastric cancer have been proven insufficient. Oxidative stress is

continually produced and continually present in the human body. Increasing

evidences show that oxidative stress contributes significantly to the development

of gastric cancer, either through initiation, promotion, and progression of cancer

cells or causing cell death. As a result, the purpose of this article is to review the

role of oxidative stress response and the subsequent signaling pathways as well

as potential oxidative stress-related therapeutic targets in gastric cancer.

Understanding the pathophysiology of gastric cancer and developing new

therapies for gastric cancer depends on more researches focusing on the

potential contributors to oxidative stress and gastric carcinogenesis.

KEYWORDS
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1 Introduction

Gastric cancer is the third most frequent cause of cancer-related death, and the fifth

most diagnosed malignancy around the world (1). Gastric cancer is the major burden in

male, accounting for 20% globally, only to lung and liver cancers (2). Anatomically, true

gastric adenocarcinomas (non-cardia gastric tumors) and gastro-oesophageal junction
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adenocarcinomas (cardia gastric cancers) are two types of gastric

cancer (3). The early stages of gastric cancer are frequently clinically

unconscious, and patients are typically diagnosed at an advanced

stage. The prognosis is poor once the neoplastic cells invade the

muscularis propria, with the 5-year survival is almost 25% in

Europe and US (4–6). With the development of economy and

living standards, the prevalence of Helicobacter pylori (H. pylori)

which is the key risk factor of non-cardia gastric cancer has

decreased (7). Despite a consistent decrease in the rates of

morbidity and mortality, more cases of gastric cancer can be seen

in the future because of ageing populations (8). The disease’s late

diagnosis and high mortality rate reveal a lack of knowledge

regarding its etiology and pathology, as well as the absence of

efficient treatments. Generally, gastric cancer is a consequence of

the multifactorial interplay between host genetics, microbial factors,

nutrition, and environmental milieu (9), where it is thought that

oxidative stress plays a crucial role in the occurrence and

development of gastric cancer.

Oxidative stress is the result of an imbalance of reactive oxygen

species (ROS) production and natural antioxidant defenses, which

can damage biological molecules and cells, with possible effects on

the entire organism (10). Numerous studies demonstrate the tight

relationship between ROS and cancer, indicating that cancer cells

produced more ROS than healthy cells did (11). Increased ROS

levels are thought to have an oncogenic effect, inducing DNA

damage and chromosomal instability to activate proto-oncogenes

and inactivate tumor suppressor genes (12, 13). Additionally, ROS

also serve as signaling molecules in cancer, which affect receptor

and oncogene activity, as well as alter several signaling pathways or

oxidizing enzymes, facilitating tumorigenesis, angiogenesis, cellular

proliferation, invasiveness, and metastasis (14). However, excessive

intracellular levels of ROS may promote cell death by damaging

proteins, lipid bilayers, and chromosomes. Therefore, cancer cells

must fight against high level of ROS to strive for progression and
Frontiers in Immunology 02
develop resistance to apoptosis through antioxidant defense

systems, especially at early stages (15). For this reason, both

eliminating and elevating ROS production are potentially effective

cancer therapies despite the fact that it is a challenging notion.

According to studies, increased levels of oxidative stress are

found in individuals with gastric cancer, and this contributes to the

development of gastric cancer (16). The significance of the link

between oxidative stress and gastric cancer is becoming increasingly

clear. This article reviews the current knowledge on the roles of

oxidative stress in gastric cancer and the potential therapeutic

applications of manipulating related signaling pathways in

oxidative stress.
2 ROS production and quench

The human body continuously produces ROS which are

oxygen-containing oxidants with reactive properties, represented

as oxygen radicals including superoxide anions ( O−
2 ), hydroxyl

(HO·), alkoxyl (RO·), peroxyl (RO2·), and certain nonradicals either

oxidizing agents and/or easily converted to radical including

hydrogen peroxide (H2O2), hypochlorous acid (HOCl), singlet

oxygen (1O2) and ozone (O3) (17). Reactive nitrogen species

(RNS) are nitrogen-containing chemical species, which can

damage cells via nitrosative stress. Reactive nitrogen species

(RNS) include nitric oxide (·NO), nonradical compounds,

peroxynitrite (ONOO–), nitrogen dioxide (·NO2) and dinitrogen

trioxide (N2O3) (18) (Table 1). Most of these molecules are

produced from oxygen in numerous metabolic processes

occurring throughout the body, which primarily take place in the

mitochondria, endoplasmic reticulum (ER) and peroxisomes.

Approximately 2% of the oxygen consumed by the mitochondria

is converted into superoxide, making it one of the largest sources of

endogenous ROS (19). Peroxisomes mediate the production of ROS
TABLE 1 Formation of major oxidants.

Oxidant Formula Equation

Superoxide anion O2· − NADPH + 2O2 ! 2O2· − + NADP+ + H+

Xanthine + 2O2 + NAD(P)H ! Uric acid + 2O2· − + NAD(P) + + H+

Hypoxanthine + 2O2 + NAD(P)H ! Xanthine + 2O2· − + NAD(P) + + H+

Hydrogen peroxide H2O2 Hypoxantine + H2O + O2 ! Xanthine+ H2O2

Xanthine + H2O + O2 ! Uric acid+ H2O2

Hydroxyl radical OH− Fe2+ + H2O2 ! Fe3++OH− + OH

Singlet oxygen 1O2 HOCl ! 1O2 + H+ + Cl−

Peroxyl radicals ROO R + O2 ! ROO

Hypochlorous
acid

HOCl H2O2 + Cl− + H+! HOCl + H2O

Hydroperoxyl
radical

HOO· O−
2 + H2O ↔ HOO· + OH−

Nitric oxide ·NO L-arginine + O2!·NO + citrulline + 2H2O

Nitrogen dioxide ·NO2 RNH2 ! ·NO ! NO−
2 ! ·NO2 ! NO−

3

Peroxynitrite anion ONOO− NO· + O−
2! ONOO−
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via b-oxidation of fatty acid and flavin oxidase reaction and

degrading ROS via catalase-mediated breakdown of H2O2 (20).

The ER provides an oxidizing environment, which promotes the

protein folding and acts as a source of ROS (21).

Enzymatic and non-enzymatic reactions are both necessary for

ROS and RNS production. The main enzymes involved in

enzymatic reactions are uncoupled endothelial nitric oxide

synthase (eNOS), NADPH oxidase (NOX), xanthine oxidase

(XO), arachidonic acid (ARA), peroxidase, and metabolic

enzymes such the cytochrome P450 system, cyclooxygenase, and

lipoxygenase. The major source of ROS comes from non-enzymatic

processes in the mitochondrial respiratory chain (22). Generally,

ROS are by-products of biological metabolism in healthy

organisms, though at lower amounts, which activate different

signaling pathways to promote survival, proliferation, or

resistance to oxidative stress (15). However, numerous factors,

including hypoxia, ER stress, infection, inflammation,

environmental toxins, nutrition, and mitochondrial respiration,

all participate in the excessive ROS generation in cells.

Everything has two sides, and it is crucial for cell to regulate

ROS levels to avoid oxidative stress. Cells have developed

antioxidant defense mechanisms to scavenge ROS in maintaining

homeostasis. A number of nonenzymatic and enzymatic

antioxidant defense mechanisms are responsible for neutralizing

ROS. The nonenzymatic defense system includes glutathione

(GSH), flavonoids, dietary antioxidants such as vitamins A, C,

and E, selenium and b−carotene (23). The enzymatic antioxidant

system includes superoxide dismutase (SOD), glutathione

peroxidase (GPX), catalase (CAT), peroxiredoxin (PRX),

glutathione S-transferases (GST), glutathione reductase (GSR) and
Frontiers in Immunology 03
thioredoxin reductase (TRX) (24–26). It is important for cells to use

these antioxidant defense mechanisms to regulate ROS levels to

avoid oxidative stress. However, oxidative stress happens when the

antioxidant defense system of body is overwhelmed by the

production of ROS (Figure 1). Oxidative stress is involved in

numerous human diseases, such as neurodegenerative disease,

cancer, cardiovascular disease, inflammatory disease, immune

system dysfunctions, allergy, diabetes, aging. For instance,

inflammatory cells release chemical mediators of inflammation,

particularly ROS. Due to their high reactivity, ROS typically oxidize

targets with or adjacent to the intracellular compartment where

they are produced, affecting surrounding neighboring cells.
3 Factors causing oxidative stress in
gastric cancer

3.1 H. pylori and oxidative stress

A gram-negative, microaerophilic bacteria called H. pylori infects

over 4.4 billion (or 59% of) people worldwide (7). The human gastric

mucosa is selectively colonized by H. pylori, which can cause

gastroduodenal diseases including chronic gastritis, mucosa-

associated lymphoid tissue (MALT) lymphoma, peptic ulcers, and

gastric adenocarcinoma (27). Sinus gastritis affects 10%-15% of H.

pylori-infected patients andmay potentially be connected to their own

concurrent hypergastrinemia (28). Potential long-term complications

for the patients include duodenal ulcers, intestinal metaplasia with

dysplasia, gastric adenocarcinoma (non-cardia intestinal-type), and

spontaneous diffuse gastric cancer (29). H. pylori can cause gastric
FIGURE 1

The major oxidant and antioxidant systems. NOX, NADPH oxidase; XO, xanthine oxidase; SOD, superoxide dismutase; CAT, catalase; GPX,
glutathione peroxidase; GSH, glutathione; GSSG, reduced glutathione; GST, glutathione S-transferase; H2O2, hydrogen peroxide; ONOO−,
peroxynitrite; HO·, hydroxyl radical; O−

2 , superoxide;
1O2, singlet oxygen; Fe

2+, Iron (II); Fe3+, Iron(III); ROS, reactive oxygen species; RNS, reactive
nitrogen species.
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lymphoma adenocarcinoma or gastric MALT lymphoma when it

clings to the underlying epithelium (30, 31).

The principal producers of ROS and RNS in the body are

neutrophils, macrophages and gastric epithelial cells (32)

(Figure 2). In order to kill bacteria, NOX on the neutrophil

membrane catalyzes the production of ROS (33). In an effort to

eradicate the infection, phagocytic cells flood the area whereH. pylori

is present. In an effort to eliminate the bacteria, both neutrophils and

macrophages phagocytose produce ROS. Additionally, the inducible

nitric oxide synthase (iNOS), a crucial enzyme producing Nitric

oxide, is expressed in the host neutrophils and epithelial cells (34).

Despite the fact that H. pylori activates a strong innate and adaptive

response, the human immune system is typically unable to

completely eliminate the infection (35). DNA damage, oxidative

stress, and chronic inflammation are all directly caused by this

inadequate immune response (36). Patients with H. pylori

infections exhibit higher amounts of ROS and NO-derived

metabolites, which show that iNOS has been activated (37).

Compared with phagocytic cells, the epithelial cells produce ROS at

a much lower, which are involved in redox-sensitive signaling

pathways but may not directly eradicate H. pylori (38). It is also

known that the dual oxidases on the gastric epithelial cells produce

H2O2 in response to infection, which likewise increases the levels of

ROS (39). The environment of oxidative stress is available by the

interaction of ROS generated by phagocytic and epithelial cell, which

result in the growth of gastric cancer. On the one hand, one of the

main causes of gastric cancer is oxidative stress byH. pylori infection.

The main cause is oxidative stress by H. pylori infection in

gastric cancer. Tumor forms by H. pylori water extract via ROS

production (40). Reactive oxygen metabolites are terminated by H.

pylori treatment to eliminate the infections (41). It was feasible to

ascertain the impact of bacterial eradication on oxidative stress of

mucosal by contrasting the levels of nitrotyrosine and 8-hydroxy-2’-

deoxyguanosine (8-oxo-dG) in antral biopsies from patients with

peptic ulcer and chronic atrophic gastritis before and after
Frontiers in Immunology 04
eradication. Human gastric mucosa experiences less oxidative

stress when H. pylori is removed (42). The infection of H. pylori

can be cured by prescribed vitamins E and C with antibody therapy

(43). According to recent studies, H. pylori-infected gastric

epithelial cells produce more ROS than healthy cells do. This

increased ROS production may contribute to the infection-related

apoptosis (44). Furthermore, numerous virulence factors in H.

pylori strains may lead to oxidative stress in the host. There is a

higher risk of gastric carcinogenesis in patients infected with CagA-

positive compared to CagA-negative strains (45). Elevated

hydrogen peroxide levels and oxidative DNA damage are shown

in CagA positive strains (46). IL8 and tumor necrosis factor (TNF),

markers of oxidative stress and inflammation, are also increasing

(47). Despite the fact that the exact mechanism by which CagA

causes carcinogenesis is still unknown, it is evident that these

actions can contribute to raising the chance of developing gastric

cancer (48). On the other hand, gastric cells can protect themselves

against oxidative stress by producing scavenger molecules.

Gastric cells can protect themselves against oxidative stress by

producing scavenger molecules. Metallothioneins are important

components in preventing H. pylori-induced gastric erosive

lesions in the animal model (49). Other antioxidant systems

include those that control energy metabolism globally, such as

AMP-activated protein kinase (AMPK) (50) and the

cytoprotective activity of nuclear factor (erythroid-derived 2)-like

2 (Nrf2) (51). At the same time, H. Pylori has also developed

oxidative stress defense mechanisms that might encourage the

acquisition of potentially cancerous traits and accelerate the

development of the condition into gastric cancer (52). For

example, NO levels and superoxide dismutase activity were found

to have a relevant and reverse association in gastric juice of patients

suffering from H. pylori (53). Isogenic mutants deficient in the

activities of thioredoxin (54), catalase (KatA) (55), NADPH

quinone reductase (56), and superoxide dismutase (46) are

sensitive to host colonization and susceptible to oxidative damage.
FIGURE 2

The Various pathways of ROS production and DNA damage by the epithelial and immune cells. CagA, cytotoxin-associated gene A; SMO, spermine
oxidase; H2O2, hydrogen peroxide; VacA, vacuolating cytotoxin A; HO-1, heme oxygenase 1; ROS, reactive oxygen species.
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Besides, it is interesting to note that the bacteria also produce

ROS (32).
3.2 Smoking and oxidative stress in
gastric cancer

Tobacco smoke from tar and gas phases maintain a variety of

compounds, including unstable free radicals and ROS, which can

harm organism through oxidative stress. The burning of tobacco

produces ROS in the gas phase inhaled by smokers, as part of the

mainstream smoke (57). Several rather stable free radicals in the tar

phase are included in the tarry matrix, such as the quinone/

hydroquinone (Q/QH2) complex (58). This Q/QH2 polymer may

act as the redox system by converting pulmonary O2 to O−
2 or

additional free radicals like H2O2 and ·OH (59). Another crucial

point is that, when an individual’s antioxidant defense system is

weak or saturated, inhaling additional ROS or other reactive

metabolites produced by the biotransformation of chemicals in

tobacco smoke can increase the amount of oxidative stress

caused by the gas-phase and tar-phase derived ROS (60). In

addition, tar builds up in the lungs from cigarette smoke particles

and processes, producing an aqueous solution that goes through

redox cycling to produce different reactive species, causing damage

subsequently (61).

Increasing data indicate that the release of ROS from smoking

and the subsequent oxidative stress have a substantial impact on

inflammation and carcinogenesis. Estimates suggest that tobacco

use causes about 80,000 cases of gastric cancer annually (11% of all

estimated cases) (62). Despite the decline among population-

attributable fractions, smoking remained the main risk factor for
Frontiers in Immunology 05
men’s gastric cancer in 2012, where the incidence is substantially

higher in 2020 (63). Healthy smokers may be more susceptible to

oxidant-mediated tissue damage and gastric cancer because of their

poor antioxidant level. The levels of thiobarbituric acid reactive

substances (TBARS) are higher in smokers than in non-smokers

with gastric cancer, and smokers have lower levels of SOD, CAT,

GPX, GST, GSR and decreased vitamins A, E, and C (64). Low-

density lipoprotein cholesterol, high-density lipoprotein cholesterol

and total cholesterol all dramatically rise in non-smokers while

falling in smokers, whereas these reduced in smokers (65). It has

been discovered that antioxidant-rich diet significantly influenced

smokers’ cellular stress protection (66). Plasma levels of

malondialdehyde (MDA) were substantially higher and melatonin

levels were substantially lower in smokers than non-smokers, which

appears that melatonin can lessen the respiratory system damage

caused by free radicals brought on by cigarette smoke (67).
4 Oxidative stress in gastric cancer

4.1 Gastric carcinogenesis

Under oxidative stress, increased ROS in cells may harm tissues

and trigger carcinogenesis, especially in the gastrointestinal system

(Figure 3). ROS are initiating factor in gastric carcinogenesis in both

humans and mice. Serum and tissue samples from the human

gastrointestinal have dysregulated ROS levels (41). In mice gastric

cancer models induced by H. pylori and N-methyl-N’nitro-

N’nitrosoguanidine (MNNG), the downstream pathways P53,

Wnt, Ras, and mTOR are activated by ROS (70, 71). Proviral

insertion in murine lymphomas 2 (PIM2) is reported to act as an
FIGURE 3

ROS and its pathophysiological effects in gastric carcinogenesis. At low to moderate concentrations, ROS function as signaling molecules that
support cellular differentiation and proliferation and activate survival pathways in response to stress. Excessive ROS harms lipids, proteins, and DNA,
causing mucosal injury and trigger carcinogenesis. Reactive aldehydes include 4-hydroxynonenal and other aldehydes (68). The mutator phenotype
is shown by the self-directed arrow at mutation (69).
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oncogene in gastric cancer, controlling apoptosis via ROS-triggered

ER stress, and promoting the development of gastric cancer (72). 13

biomarkers including b-catenin, C-MYC, GATA-4, CXCL13,

DAPK1, TIMP3, DC-SIGN, EGFR, PIM2, GRIN2B, SLC5A8,

VCAM-1 and CDH1 are related to the development of gastric

cancer, and six of them including b-catenin, DC-SIGN, C-MYC,

EGFR, CXCL13 and PIM2 have been reported overexpressed in

gastric tissue from infected children and gastric cancer patients (73).

Moreover, it has been shown that stomach cancer is more likely to

develop as a result of the oxidative stress brought on by CagA-

positive bacteria (74), in which H pylori CagA produces cells with

oxidative DNA damage by inducing spermine oxidase (SMO), and a

portion of these cells are apoptosis-resistant and therefore highly

susceptible to developing cancer (75). Oxidative stress can cause

DNA damage caused by H pylori infection. In vitro investigations

have demonstrated that cells infected with H pylori that have

defective DNA repair systems experience increased oxidative

stress and DNA damage (76). In vivo studies using mice lacking a

component of the base excision repair process revealed significant

stomach lesions after H pylori infection (46). H. pylori’s propensity

to generate DNA strand breaks undoubtedly contributes to genomic

instability and may aid in carcinogenesis (77). NO can block 8-

oxoguanine glycosylase from removing DNA mutations. Research

has revealed that H. pylori infection increases phosphohistone

H2AX, a marker of repair for double-strand DNA breaks (46). It

has been reported that 8-hydroxy-2’deoxyguanosine buildup causes

DNA damage. The loss of a base following damage would create an

abasic site, which could result in a single-strand break in the DNA.

Inadequate repair or continuous damage may cause double-strand

breaks in the DNA, though DNA strands can be produced in

various ways (46). If a cell does not heal enough fractures, it

may die.

Tumor hypoxia is well recognized in oncology as a major cause

of therapy resistance and poor prognosis. Hypoxia promotes the

production of several gene products implicated in tumor

development, invasion, and metastasis formation of gastric

cancer. Hypoxia causes the production of ROS, which inhibit the

degradation of the hypoxia-inducible factor 1 (HIF-1) (78).

Subsequently, HIF-1a influences the expression of numerous

genes that are crucial for gastric carcinogenesis. For instance,

Angiogenesis is promoted by HIF-1 to stimulate the vascular

endothelial growth factor (VEGF) pathway in gastric cancer (79).

Caveolin-1 (Cav-1) is expressed less while induced by HIF-1, which

regulates E-cadherin to cause the epithelial-mesenchymal transition

(EMT) in gastric cancer (80). On the other hand, as a signaling

molecule, ROS activates vital signaling pathways that are crucial to

promote the onset and progression of gastric cancer. ROS, also as a

second messenger, can activate tyrosine kinases and MAPK which

promote cell development (81), and the protein kinase-B (Akt)/

mTOR signaling pathway which promotes cell growth of gastric

cancer (82). Additionally, ROS activates nuclear factor-B (NF-kB),
facilitating invasion of gastric cancer (83).

Furthermore, H. pylori-colonized mucosal cells with deficient

DNA repair systems are more vulnerable to oxidative stress and

DNA damage (84). Spermine oxidase (SMOX) is activated in H.
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pylori in gastric epithelial cells, leading to oxidative stress (85). DNA

damage promotes mutations of suppressor in tumor such as

calcium/calmodulin dependent serine protein kinase (CASK),

p53, as well as stimulation of the epidermal growth factor

receptor (EFGR) signaling pathway, which are important early

events in gastric carcinogenesis (86, 87). H. pylori colonization

also negatively affects the expression of antioxidant proteins, along

with epigenetic modifications and DNA methylation, such as

GATA-4, GATA-5 and TWIST-1 (88), as well as miRNAs

dysregulation, such as mir-21, mir-92a, mir-27a, mir-146a, mir-

326, mir-155 and mir-663 (73, 89). It has been demonstrated that

the expression of the purine-free/pyrimidine-free nucleic acid

endonuclease 1 (APE1) is downregulated in gastric host cells

infected with H. pylori, which ultimately reduces T-cell capacity

for repair, increasing the likelihood of DNA carboxy-terminal

genetic alterations. The oxidative stress defensive factors such as

FOXO1, are known to be inhibited by miR-27a, which is recognized

as an oncogenic miRNA in gastric cancer (90). miR-328 is

downregulated in H. pylori -infected gastritis (90), and the low

level of miR-328 activates CD44 to promote the differentiation of

gastric stem cell (68). H. pylori increases the expression of miR-210

by controlling its methylation, which in turn suppressed dimethyl

adenosine transferase 1 (DIMT1) and oncoprotein 18 or

metablastic (STMN1), which promotes the proliferation of gastric

epithelial cells (69). Due to the methylation of the gene promoter

region by ROS, H. pylori infection may change the expression of

miRNAs in oxidative stress, interfering with the methylation of

miRNAs, which may contribute to the mechanism triggering the

onset of gastric carcinogenesis.
4.2 Gastric adenocarcinoma and
gastric cancer

The process of developing gastric cancer involves several stages,

beginning with the change from normal mucosa to chronic

superficial gastritis (non-atrophic gastritis). Atrophic gastritis,

intestinal metaplasia, dysplasia and adenocarcinoma, among other

conditions can be caused by gastritis (91). Gastritis caused by H.

pylori is the only condition that always precedes diffuse gastric

cancer. According to Correa’s idea, a series of events initiating with

chronic superficial gastritis and progressing from atrophic gastritis,

intestinal metaplasia, and dysplasia to gastric cancer (92). The

especially high risk of cancer exists in people who have antibodies

to the CagA protein, which is a marker for the more inflammatory

and virulent strain of H. pylori that carries a pathogenicity island of

genes. According to a meta-analysis of research, CagA-positive

strains are two times more likely than CagA-negative strains to

cause noncardia gastric cancer (93). The cag+ H. pylori strains have

a stronger connection to gastric carcinogenesis than strains without

cag (94). ROS or RNS production is substantially increased in

vascular endothelium, gastric mucosa infected with H. pylori, and

neutrophils aggregated in inflammatory mucosa (93). Following H.

pylori infection, phagocytes that have gathered in the stomach

mucosa produce O2·, HO·, and HOCl (95). Rat gastric mucosal
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cells have been shown to undergo apoptosis when exposed to

NH2Cl (96).

Epstein-Barr virus (EBV) is recognized as a pathogen that

causes stomach cancer. Nearly 10% of cases of gastric cancer are

EBV-associated gastric cancer, which is the monoclonal

proliferation of epithelial cells infected with EBV that only

express a few EBV-latent genes (Latency I program) (97). The

production of NH2Cl by infiltrating neutrophils can convert latent

EBV into lytic EBV in the H. pylori-infected gastric, which may

further contribute to gastric carcinogenesis (98). Although the

function of the ROS generated by infected gastric epithelial cells

is not fully known, it is thought that these ROS trigger signaling

processes that control how H. pylori pathogenesis develops.

H. pylori infection directly causes oxidative stress in gastric

epithelial cells by the production of ROS, and it also stimulates host

responses that result in ROS and controls the production of

proinflammatory cytokines, inflammation, and cell death (99).

Continuous ROS production results in oncogene and tumor

suppressor gene changes, as well as chromosomal abnormalities

by oxidative genome damage, which includes the oxidation of

guanine to form 8-OhdG and 8-oxo,7,8-dihydroguanosine (8-

OHG) in RNA and DNA (100).

When compared to normal mucosa, gastric adenoma and H.

pylori-infected or uninfected cancer tissues express ROS and APE1/

Ref1 more mucosally (101). As a result of H. pylori infection, both

the gastrointestinal lumen and gastric juice ascorbic acid content

decrease. This antioxidant lessens the effects of carcinogens by

lowering carcinogenic substances including nitrosamines and ROS.

Depleting cellular antioxidants makes ROS more effective at killing

cancer cells because this is the traditional treatment strategy for

doing so. Perhaps, the disease can be regulated by blocking different

antioxidant systems during neoadjuvant treatments.
4.3 Gastric lymphoma

Gastric MALT lymphomas are a slow-growing type of non-

Hodgkins lymphoma, developed from the extranodal marginal zone

of lymphoid follicles (102). Gastric MALT lymphoma is an

illustration of the intimate pathogenetic relationship between

chronic inflammation and tumor development. Approximately

92% of gastric MALT lymphomas have a tight connection to H.

pylori infection which makes H. pylori easier to develop and diffuse

(103). The H. pylori strains linked to gastric MALT lymphoma are

less virulent than those linked to gastric adenocarcinoma. The latter

strains may have the VacA m2 gene without the CagPAI, which

could make H. pylori carriers easier to develop diffuse large B-cell

lymphoma (104). H. pylori infection increased the incidence of low-

grade gastric MALT lymphoma by an odds ratio of 2.8 times

compared with H. pylori-negative individuals (105). Within

gastric MALT lymphomas, T lymphocytes activated by H. pylori

are responsible for B-cell proliferation (106).
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Most individuals with early-stage H. pylori disease have been in

durable remission for more than ten years after completing a single

brief course of combination antibiotic therapy. A meta-analysis of

more than 30 trials found that the overall remission rate of MALT

lymphomas with a low histological grade that is restricted to the

perigastric lymph nodes or the gastric wall (stage I or stage IIe1
illness) was 78% (107). Therefore, preventive removal of H. pylori is

particularly helpful in reversing MALT lymphoma either in the

early MALT stage or in the late bone marrow-involved stage.

However, the recurring possibility of MALT lymphoma should

not be ignored because it frequently returns several years following

surgery, which may due to risk factors for gastric cancer have not

been totally blocked.

Gastric MALT lymphoma is regarded as one of the greatest

models for understanding how genetic events contribute to

oncogenesis, influence tumor biology, govern clinical behavior,

and represent feasible treatment targets. Genetic aberrations arise

through the release of ROS, H. pylori-induced endonucleases, and

other effects. Stronger oxidative stress is caused by H. pylori strains

originating from gastric cancer in the host, and these strains may

have suppressive effects on the host’s GSH-related defensive

mechanisms (108). Surprisingly, the nucleotide-binding

oligomerization domain protein 2 (NOD2) functions as a

receptor for pattern recognition. H. pylori activates NF-kB
signaling via NOD2. However, the NF-kB signaling is

uncontrolled when the R702W gene is mutated, protecting the

organism against the harm caused by oxidative stress induced by H.

pylori (109). Thus, it is essential to consider how the gastric MALT

lymphoma is influenced by the NOD2 gene (110) (Table 2).
5 Potential oxidative stress-related
therapeutic targets in gastric cancer

Regulation of redox homeostasis is crucial because increasing

oxidative stress has a role in all stages of carcinogenesis either

initiating/stimulating tumorigenesis and promoting cancer cells

transformation/proliferation or leading to cell death. Enhancing

antioxidant defense capability decreases ROS as a result of one

strategy (Table 3). However, utilizing antioxidants has been shown

to change the effectiveness of treatment and, in some cases, even

speed up the development of tumors.

According to a recent study, the garlic compound S-allyl

cysteine has anti-inflammatory and antioxidant properties, which

greatly raises the GSH levels in the liver, gastric tissue, and serum of

rat models of gastric cancer, and lowers the risk of developing

gastric cancer (156). In experimental settings using AGS cells

infected with H. pylori strains, GSH levels are lower in individuals

with gastric cancer than in those with duodenal ulcers, indicating a

more severe oxidative stress response to gastric cancer with H.

pylori infection (157). The level of GSH and the ratio of GSSG/GSH
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significantly decline in patients of gastric cancer with H. pylori

infection, and glutamine levels are also low. Additionally, the

production of hydrogen peroxide is encouraged, aggravating the

effects of oxidative stress. However, GSH therapy is proved

successful in alleviating the high ROS buildup (158). In

conclusion, intestinalization in the gastric host cells is caused by

low GSH levels. Therefore, the risk of H. pylori-induced

carcinogenesis of gastric mucosal may be ameliorated in rats by

raising their GSH levels, which may also prevent oxidative stress

damage (108).

Antioxidants, such as vitamin E and selenium, have been the

subject of numerous research in this context. In 1993, the first large,

randomized, double-blind, primary prevention trial to investigate

the potential cancer prevention benefits of supplementing with

vitamin E, selenium and b-carotene was conducted, and the

cocktail has been found to dramatically lower mortality from

gastric cancer (159). Interestingly, the protective effects of these

antioxidants can still be noticeable ten years after the end of

supplementation (160). Clinical studies have shown that

consistent oral dose of b-carotene is advantageous for lowering
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bacterial colonization by 48% (151). It has been proposed that

intake of diet rich in vitamin C, carotenoids, and alpha-lipoic acid

(a-LA) may lessen the morbidity of gastric disease linked to H.

pylori infection. a-LA, a naturally occurring dithiol with

antioxidant and anti-inflammatory function, can decrease the

interaction between Nrf2 and Keap1, inhibit the pro-

inflammatory cytokine IL-8 production and minimize the

infection via the Nrf2/HO-1 pathway in the AGS cells (161). It is

reported that omega-3 fatty acids inhibit the oxidation of

polyunsaturated long-chain fatty acids and boost the antioxidant

and anti-inflammatory effects of other nutrients (162). However,

omega-3 may result in oxidative stress, and the process is associated

with the suppression of the production of antioxidant enzymes.

Therefore, antibiotics such clarithromycin, metronidazole,

quinolones, amoxicillin, and tetracycline to counteract the

oxidative effects of omega-3 is recommended (74). The expression

of SOD2 (Mn-SOD), superoxide anion scavenger, is elevated, but

the expression of SOD1 (copper/zincSOD) is decreased while

comparing gastric cancer tissues with their matching normal

mucosa. In specifically, the Mn-SOD ratio (levels in normal and

malignant tissue) is demonstrated as an independent predictive

indicator in patients of gastric cancer, and it appears to be

therapeutically relevant for the survival of patients, the higher the

ratio, the poorer overall survival (163). MnSOD is elevated in

primary tumors with lymph node metastases while comparing

gastric cancer patients with and without metastasis, indicating

that MnSOD and ROS are involved in metastasis (164).

More importantly, it is necessary to block oxidative stress

completely sometimes. For instance, HsrA, the in vivo exclusive

regulator for epsilon proteobacteria, is involved in altering redox

homeostasis and protein expression. Consequently, it may serve as a

potential therapeutic target to eradicate H. pylori (153, 165). The

increased expression of apoptosis-regulated gene in the gastric host

cells of patients with H. pylori infection, such as BID, ZMAT3,

PMAIP1 and FAS, can also be successfully controlled by the

combination of curcumin and Res, which causes apoptosis to

decline (166, 167).
TABLE 3 Antioxidant therapy.

Compound Target Reference

GSK2606414
(GlaxoSmithKline)

PERK (147)

Statins Autophagy (148)

Gastrin Autophagy (149)

S-allyl cysteine GSH (150)

b-carotene NADPH oxidase (151)

Omega-3 fatty acids Inflammatory and antioxidant (152)

HsrA Protein expression
and redox homeostasis

(153, 154)

Curcumin and Res Apoptosis-regulated genes (155)
f

TABLE 2 A partial list of signaling pathways linked to oxidative stress in
gastric cancer.

Signaling pathways Reference

Cell cycle regulators: Cyclin D and Cyclin E;
p53, p21Waf1/Cip1 and p27Kip1

(111, 112)
(113, 114)

COX-2/PGE2 and LOX/leukotrienes signaling (115–118)

E-cadherin and Wnt/b-catenin signaling (119, 120)

EGFR, HER2 and Ras/MAPK signaling (121, 122)

FAK signaling (123, 124)

Grb2/HER2 signaling (125)

Hedgehog signaling (126)

HIF-1a signaling pathway (127, 128)

Hippo signaling Pathway (129, 130)

JAK/STAT signaling (131)

Matrix metalloproteinase and plasminogen activator system (132, 133)

MUC1 mucin-mediated signaling pathways (134)

NF-kB signaling (135)

Notch signaling (136)

PI3K/AKT/mTOR signaling (137, 138)

PGD2/PTGDR2 signaling (139)

STAT3 pathway (140, 141)

TLR4 signaling (142)

TGFb, bone morphogenetic protein and activin signaling (143, 144)

VEGFR‐3 signaling (145)

WNT-b-catenin-TCF signaling pathway (146)
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6 Conclusion

Gastric cancer is the third leading cause of cancer-related death

worldwide. Free radicals and oxidative stress are continuously

imposed upon cells in tissues and organs on a regular basis. More

and more evidences show that ROS functions an essential role in the

gastric cancer. Despite a number of mechanisms have been

discussed in this review, most of the ROS-induced signaling

targets are yet unknown. The elevated ROS production in gastric

cancer can initiate genotoxic consequences, contributing to genetic

instability, DNA damage, metabolic adaptation, drug resistance and

occasional cell death. However, certain amounts of ROS can be

advantageous because they trigger the antioxidant defense system

and shield cells. There is an urgent need to find selective and readily

available therapeutic therapies for gastric cancer and gastric cancer-

predisposed patients. In order to treat and prevent ROS in gastric

cancer, it may be crucial to focus on the enhancement of ROS by

neutralizing antioxidants to induce cancer cell death, and the

inhibition of ROS activity or increase of antioxidant capacity to

regulate pro-tumorigenic signaling pathways. Nevertheless,

considering that multiple studies have connected some dietary

antioxidants with a rise in cancer incidence, it will be crucial to

thoroughly investigate all biochemical reactions within cancer cells,

including their precise targets and downstream effects while

boosting antioxidant capacity. More researches are needed to put

on the agenda to explore the function of elevated ROS and identify

the exact ROS target pathways that will be most beneficial in

treating gastric cancer.
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