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Up to 50% of infertility is caused by the male side. Varicocele, orchitis, prostatitis,

oligospermia, asthenospermia, and azoospermia are common causes of

impaired male reproductive function and male infertility. In recent years, more

and more studies have shown that microorganisms play an increasingly

important role in the occurrence of these diseases. This review will discuss the

microbiological changes associated with male infertility from the perspective of

etiology, and how microorganisms affect the normal function of the male

reproductive system through immune mechanisms. Linking male infertility with

microbiome and immunomics can help us recognize the immune response

under different disease states, providing more targeted immune target therapy

for these diseases, and even the possibility of combined immunotherapy and

microbial therapy for male infertility.
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1 Introduction

Infertility has been defined as the inability to conceive after at least 12 months of

regular and unprotected sexual intercourse by WHO (1). It has brought substantial

economic and psychological burden to the society (2). Nearly 15% of couples are

affected by infertility, with male infertility contributing 50% among them (3). A review

published in Lancet summarized some common factors that may cause male infertility,

including varicocele, orchitis, prostatitis, oligospermia, asthenospermia, azoospermia and

other male diseases (4).

The human microbiome is an ecosystem composed of many kinds of microorganisms.

It is a relatively balanced state, not absolutely sterile, and mainly exists in external cavities

such as the reproductive tract, oral cavity, and gastrointestinal tract. External bacteria,

viruses, fungi, mycoplasma, chlamydia infection or opportunistic bacterial infection will

cause the occurrence and development of a variety of diseases, male reproductive-diseases

are also included (5). At present, more and more studies have been published on the

relationship between microorganisms and male infertility. Male infertility caused by
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microbial infection is mostly achieved through immune response,

and microorganisms induce the accumulation of immune cells and

proinflammatory cytokines and chemokines. And the production of

anti-sperm antibodies and biofilms also can damage germ cells and

destroy the normal spermatogenic function (6).

At present, there is no systematic review on the immune

mechanisms of several common diseases of male infertility

(varicocele, orchitis, prostatitis, oligozoospermia, asthenospermia,

azoospermia) caused by microbial infections. This review will fill

this gap, aiming to provide new ideas and targets for the treatment

of male infertility.
2 Varicocele

2.1 Varicocele and microbiology

Varicocele is an important cause of male infertility. A large

number of studies have shown that varicocele causes

spermatogenesis and sperm dysfunction through oxidative stress.

As for whether there are microbial colonization changes in the

semen of patients with varicocele, recent studies have shown that

the colonization of Ureaplasma urealyticum in patients with

varicocele is significantly higher than that in healthy men.

However, there is no direct evidence of the damage of

Ureaplasma urealyticum to sperm, the oxidative stress caused by

Ureaplasma urealyticum may have an adverse effect on semen

quality (7). It is also possible that the co-infection of Chlamydia

trachomatis, Ureaplasma urealyticum, and Mycoplasma hominis

with the inflammation of the varicocele may lead to the loss of

seminal ocilium, resulting in male infertility (8). Toxoplasma

patients complicated with varicocele also can lead to abnormal

sperm (9). In addition, varicocele may be associated with viral

infection, but the correlation may be weak and more studies still

needed to be explored. HSV was detected in 7% of 14 varicocele

patients at one time, while CMV was detected in only two of 29

infertile men with varicocele in another study (10). Vicari et al.

found that HBV and HCV were associated with varicocele. The

sperm-related parameters of infertile men with HBV and varicocele

were significantly lower than those of infertile men with only

varicocele or HCV combined with varicocele. Therefore, HBV

may aggravate the sperm damage of patients with varicocele (11).
2.2 The immune mechanism in the
varicocele microbiology

2.2.1 Immune cells and cytokines
Bacteria and viruses can interact with the host’s immune and

inflammatory systems through their unique structure to elevate the

polymorphonuclear leucocytes and granulocytes, resulting in

oxidative stress and impaired male fertility (12). Recent studies

have found that even though the concentration of white blood cells

is normal in VC patients, the subsets of white blood cells are

significantly changed, the proportion of CD8+ T cells and

macrophages is significantly reduced, while the level of CD4+ Th
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cells is significantly increased, leading to the increase of cytokine

levels in VC patients (13). Due to the increase of oxidative stress

level in VC patients, it can mediate the change of immune cells in

testis, further lead to irreversible damage of testis and affect normal

spermatogenesis (14).

By binding to. specific receptors on the surface of target cells,

cytokines control the intracellular response and expression of related

genes, the details are shown in Table 1. In the earlier study of Adel

et al., it was observed that the concentration of IL-6 was significantly

increased in cases of varicocele without inflammation, but it was not

found to be significant in cases of varicocele with inflammation, so

IL-6 was negatively correlated with sperm concentration and sperm

motility (26). Later, Nallella et al. found a significant increase in IL-6

in patients with varicocele (22). Sakamoto et al. also got the similar

result, they found that the IL-6 level in the varicocele group was

significantly higher than that in the control group (27). In recent

years, it has been further found that TNF-a impairs testis by

changing mitochondrial function, increasing NO production and

promoting oxidative stress. A recent study by Moretti et al. showed a

positive correlation between IL-6 levels and the level of

malondialdehyde (MDA) in semen. The levels of malondialdehyde

(MDA) in seminal plasma and semen were negatively correlated with

sperm parameters, which further confirmed that IL-6 was involved in

oxidative stress induced sperm damage (28). IL-1a and IL-1b are two
forms of IL-1, which are regulators of testicular function, but

increased expression of IL-1a and IL-1b in rats with varicocelectic

veins, especially in the 11 - and 13-week-old groups, disrupted the

balance of inflammation and immunity and had deleterious effects on

testicular tissue (15). Moreover, IL-37 and IL-18 were also found to be

upregulated in the seminal plasma of varicocele patients (15). These

elevations lead to inflammatory response activation, leucocyte

recruitment and ROS production, which are detrimental to normal

testicular functions (29). Importantly, ROS can disrupt the blood–

testis barrier, the sperm plasma membrane and DNA integrity and

then affected male fertility (30). The production of NO and

inflammatory factors can also promote the assembly of NLRP3

inflammasome complex through the differentiation of testis

macrophages, and the increase of inflammasome can in turn

promote the production of ROS and affect the normal

spermatogenic function of testis (31). In addition, studies have

demonstrated that down-regulation of inflammasome can reduce

the apoptosis of spermogenesis related cells in testicular tissue of VC

patients (32).
2.2.2 Anti-sperm antibody
Another important immunological factor contributing to

infertility in patients with varicocele is the presence of anti-sperm

antibodies (ASAs). ASAs are found in 5%-15% of men with

infertility (33). Animal experiments showed that the ASAs level of

VC model rats was higher than that of normal rats (25). Similarly,

studies in the population have further validated that. In varicocele

patients, the autoimmune anti-sperm reaction is accompanied by a

more significant decrease in the semen quality (33). ASAs can cause

sperm agglutination and reduce sperm motility, resulting in male

infertility, and even affect early implantation and pregnancy. In an
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139450
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1139450
earlier study, Golomb et al. observed that ASA was significantly

present in the serum and seminal plasma of infertile men with

varicocele, mainly IgA and IgM (34). Bozhedomov et al. showed an

association between the grade of varicose veins and ASA level by

direct current cytometry. Among ASA-positive patients, the more

severe the varicose veins, the lower the sperm concentration, sperm

density and sperm motility (33). For patients with varicose veins

undergoing venous ligation, Djaladat et al. obtained that varicose

vein surgery reduces ASA levels in some patients, but may also

increase them in some patients, and this positive conversion does

not adversely affect sperm parameters (35). A recent study found

that the number of patients with active sperm autoimmunity was

2.8 times lower than that before surgery, and the average MAR-IgG

level was 1.8 times lower in the group with improvement after

surgery, but the presence of ASA reduced the efficacy of

reproductive function recovery after varicocular surgery (36).

The pathogen interacts with the immune system of VC patients,

resulting in increased levels of polymorphonuclear leucocytes,

granulocytes and CD4+ Th, further increased levels of cytokines

and inflammasome, and increased oxidative stress (12, 13). It

changes the immune microenvironment in testis and affects male

normal fertility. IL-6 is involved in the process of oxidative stress

induced sperm damage, and can be considered as a biomarker (22,

26, 27). It is also very important to study the treatment of VC

patients with ASAs, which affects the subsequent recovery of

reproductive function (33–36).
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3 Orchitis

3.1 Orchitis and microbiology

In the early stage of SARS-induced orchitis, extensive

destruction of germ cells, few or no sperm in seminiferous

tubules, thickening of basement membranes and infiltration of

white blood cells are shown, affecting male reproductive function

(37). The recent epidemic of COVID-19 has a high degree of

sequence similarity with SARS. Studies in respiratory system have

shown that COVID-19 invades organs through ACE2 receptors, the

testicular Ledig and Sertoli cells highly express ACE2 receptors, so

that virus can also achieve its invasion into the testis through ACE2

receptors (38). The increase of immune cells in the testicular

interstitium and proinflammatory cytokines IL-6, TNF-a and

MCP-1 in the semen of patients with COVID-19 reduces the

concentration of sperm and impairs spermatogenesis. The

accumulation of inflammatory cells and their products caused by

the virus can activate an autoimmune response leading to

autoimmune orchitis, which damages spermatogenic epithelium.

In addition, persistent fever may also be the cause of germ cell

damage and degeneration in COVID-19 patients (39).

Mumps virus often causes patient orchitis and affects male

fertility function. Mumps orchitis usually occurs about a week after

the onset of mumps. It may start with systemic symptoms and later

manifest as swelling and pain in the testicles. MuV induces immune
TABLE 1 Cytokines and varicocele.

Cytokine Species Group Sample Type Regulation Reference

IL-1a Rats VC & Sham Testicular Tissue Up (15)

IL-1b Rats VC & Sham Testicular Tissue Up (15)

IL-6 Rats VC & Sham Testicular Tissue Up (16)

IL-6 Rats VC & Sham Serum Up (16)

IFN-g Rats VC & Sham Testicular Tissue Up (16)

IFN-g Rats VC & Sham Serum Up (16)

IFN-g Rats VC & Sham Serum Up (16)

IL-18 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (17)

IL-37 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (17)

IL-6 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (18)

TNF-a Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (18)

IL-8 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (19)

IL-8 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (20)

IL-1b Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (21)

IL-6 Homo Sapiens Infertility with VC & Normal Seminal Fluid Up (22)

TNF-a Homo Sapiens Infertility with VC & Normal Seminal Fluid NSS (23)

IFN-g Homo Sapiens Infertility with VC & Normal Seminal Fluid Down (24)

TGF-b Rats Infertility with VC & Normal Testicular Tissue Up (25)
f

VC, varicocele; Up, Up-regulation of cytokine levels; Down, Down-regulation of cytokine levels; NSS, No statistical significance.
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response with TLR2 and RIG-I signaling, resulting in an increase in

proinflammatory cytokines and chemokines (40). MuV can also

inhibit antiviral IFN signaling through AXL and MER receptors,

thereby promoting excess MuV replication in Leydig and Sertoli

cells, and may even induce anti-sperm antibodies with potentially

long-term adverse effects on patient fertility (6).

Chlamydia is also often considered as an important pathogen of

orchitis through the route of sexual transmission, of which

Chlamydia trachomatis and Neisseria gonorrhoeae are the most

common. During the period of Chlamydial infection, testicular cells

can be observed that DNA damage and the transcription of

epigenetic mediated disorder lead to abnormal sperm epigenome,

moreover also can increase the leukocyte infiltration, destroy the

blood-testis barrier, reduce the number of sperm cells and the

volume of seminiferous tubule, leading to low fertility and birth

defects (41).
3.2 The immune mechanism in the
orchitis microbiology

3.2.1 Immune cells
During the onset of autoimmune orchitis, the quantification

and phenotype of infiltrating cells in the testis showed an increase in

the number of T cell subsets, dendritic cells, and macrophages,

including both Th and Treg cells. However, the active effect of Th

cells exceeded that of accumulated Treg cells, and the presence of

inflammation limited the ability of Treg cells to eliminate tissue

damage. Treg cells usually prevent the induction of spontaneous

organ-specific autoimmunity by persistent endogenous danger

signals (42). Both CD4+ and CD8+ T cells increase in the initial

inflammatory process, while CD4+ T cells decrease and CD8+ T

numbers remain unchanged during the chronic maintenance of

EAO. Therefore, CD4+ and CD8+ T cells play an advantage in the

onset and chronic phase of EAO, respectively (43). For regulatory T

cells, both CD4+Foxp3+ and CD8+Foxp3+ Treg cells were

increased, and CD25+ cells were more common (43). In terms of

another classification of T cells, both ab and gdT cell subsets are

increased in orchitis. abT cells are the initiators of the

autoaggressive response, and gdT cells play a regulatory role in

infection-induced autoimmune orchitis (44).

Jing et al. found that cDC1 is necessary for the presence of T

cells in the testis, but cDC2 does not have any significance for the

maintenance of T cells, the depletion of T cells does not affect

normal spermatogenesis, and cDC1-dependent T cells play an

important role in chronic autoimmune orchitis (45).

Testicular macrophages are the major immune cells within the

mammalian testis and are important for organogenesis,

spermatogenesis, and androgen production, providing protection

to the developing male germ cells while also allowing adequate

response to inflammatory stimuli to produce proinflammatory

immunity and anti-infection protection against invading

pathogens. The ED1+ macrophage subsets are the main

pathogenic subsets in the occurrence of EAO. HMGB1 can
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stimulate macrophages and phosphorylate p38 mitogen-activated

protein kinase (MPPK) and p65 NF- kB, leading to increased TNF-

a and IL-6 and causing testicular injury (46). While S100A9 by

activating PI3K/Akt pathway to maintain the immunosuppressive

function of macrophages (47). The same effect was observed in the

macrophages of male genital tract infection caused by E. coli, which

could not only increase the anti-inflammatory cytokines regulated

by NFAT (calcium dependent nuclear factor), but also down-

regulate the expression of proinflammatory factors in peritoneal

macrophages (PM) inhibited by a-hemolysin. By LPS treated TM

was not sensitive to the activation of NF- kB, and the secretion of

proinflammatory factors was deficient. By this mechanism TM

initiates an anti-infective response while maintaining testicular

immune privilege and protecting spermatogenic cells (48).

3.2.2 Cytokines and chemokines
Cytokines play an important role in the pathogenesis of orchitis.

As shown in Table 2, some of the cytokines have changed in the

orchitis model. Multiple studies have demonstrated the significant

role of IL-6 in orchitis (50, 53, 54). Studies show that immune cells

affect the normal immunosuppressive microenvironment of the

testis by secreting cytokines such as TNF-a, IL-6, IL-12, IL-17 and

IL-23, and proinflammatory cytokines can also play an indirect role

by affecting the immunosuppressive effect of Treg cells (42). The

same phenomenon was also observed in the study of Nicolas et al.,

who found that the expression of TNF, MCP-1, and IL-10 also

increased as the increase of T cells (58). A large number of data on

acute orchitis show that the up-regulation of IL-1b, IL-a, IL-6 and

TNF-a can adversely affect germ cells, increasing germ cell

expression and promoting germ cell apoptosis through the TNF-

a/TNFR1, IL-6/IL-6R and Fas/FasL systems (59). Studies have

shown that uropathogenic Escherichia Coli (UPEC) orchitis

induces the activation of NLRP3 inflammasome through up-

regulation of CaSR, promotes the secretion and maturation of IL-

1b, and affects the synthesis of testosterone (56). IL-17A can

promote the focal inflammatory cell infiltration in the testicular

interstitium, resulting in the increased permeability of the blood-

testis barrier and the loss of germ cells in the adjacent seminiferous

tubules, thus affecting the spermatogenic function of the testis (52).

In addition, high doses of IL-18 from immune cells in vivo can

induce apoptosis of Leydig cells through the Fas pathway (60). The

increase in chemokines such as CCL2, CCL3 and CCL4 can also be

observed in EAO, inducing the attraction and extravasation of

immune cells (59).Guazzone et al. also showed that the highest

levels of CCL3 in the testis coincided with the onset of the

disease (61).

Based on our data and the other aforementioned studies, it is

reasonable to propose that Th1 cells are augmented at the onset of

orchitis, inducing anti-infection responses. However, in the chronic

phase, Th17 cells dominate the Th cell subsets and maintain the

inflammation state in the testes by inhibiting Tregs and crowding

out other effector T cells. Collectively, Th cells in orchitis are

involved in the impairment of the structure and spermatogenesis

of the testes (58). Immune cells in the testis affect the normal
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immunosuppressive microenvironment of the testis by secreting

cytokines and chemokines. The TNF-a/TNFR1, IL-6/IL-6R and

Fas/FasL systems promote the apoptosis of germ cells (42, 59).
4 Prostatitis

4.1 Prostatitis and microbiology

4.1.1 Bacteria
According to the internationally recognized National Institutes

of Health (NIH) classification, there are five types of prostatitis:

acute prostatitis type I, chronic bacterial prostatitis type II, chronic

prostatitis/chronic pelvic pain syndrome type III (CP/CPPS), and

asymptomatic prostatitis type IV. Chronic pelvic pain syndrome

type II is the most common type, accounting for 90-95% of all

prostatitis diagnoses. The prevalence of the disease in the general

population is 5-14.2%, and it is more common in people aged 35-45

years (62, 63).

The most common infections for acute bacterial prostatitis are

coliforms and enterococci, which are similar to other common

urogenital infections. Most of them can be cured in the acute phase,

and fewer of them will develop non-chronic prostatitis, which is

more complicated. Infection with viruses, fungi, mycoplasma and

chlamydia may also be involved.

Corynebacterium was found in the urine and semen of both

chronic prostatitis patients and healthy men, but it was evident that
Frontiers in Immunology 05
in prostatitis patients with severe leukoospermia, Corynebacterium

was found in more species and in higher concentration, and group

G Corynebacterium and Arthrobacter were more representative,

which has a higher correlation with inflammatory prostatitis (64). P.

acnes, a common skin microorganism, is also found in patients with

prostatitis. It induces the secretion of cytokines and chemokines,

and causes inflammation of the prostate and affecting sperm

function through the host protein vimentin expressed in the

prostate for bacterial erosion (65).

Patients with CP/CPPS had higher levels of Clostridium and

Burkholderia in their urine microbiota (66, 67). In addition, the

differences between CP/CPPS patients and controls were also

different according to the time of urine collection. Nickel et al.

found significant differences in overall species and genus

composition in the initial urine flow, whereas no significant

differences were observed at any level in urine samples from the

middle and late stages of prostate massage. Therefore, the results of

urinalysis are specific and time-sensitive, and do not represent the

overall level (67). Recent studies on CP/CPPS showed that

Achromobacter, Oligotrophomonas, and Brevibacterium were

more common, and the diversity of the microbial community was

also reduced in the patient group (68). The identification of various

dominant microorganisms in CP/CPPS will be more conducive to

the future development of microbiology in CP/CPPS and its

application in treatment.

The gut microbe is also an important aspect of microbial

research. Shoskes et al. showed that the diversity of the gut
TABLE 2 Cytokines and orchitis.

Cytokine Species Group Sample Type Regulation Reference

IL-1b Rats EAO&Normal Testicular Tissue Up (49)

IL-6 Rats EAO&Normal Testicular Tissue Up (50)

IL-6 Rats EAO&Normal Testicular Tissue Up (46)

TNF-a Rats EAO&Normal Testicular Tissue Up (46)

TNF-a Rats EAO&Normal Testicular Tissue Up (51)

IL-17A Rats EAO&Normal Testicular Tissue Up (52)

IL-17A Mice EAO&Normal Testicular Tissue Up (53)

IL-6 Mice EAO&Normal Testicular Tissue Up (53)

IFN-g Mice EAO&Normal Testicular Tissue Up (53)

TNF-a Mice EAO&Normal Testicular Tissue Up (53)

IL-1b Mice EAO&Normal Testicular Tissue NSS (53)

IL-6 Mice EAO&Normal Testicular Tissue Up (54)

TNF-a Mice EAO&Normal Testicular Tissue Up (54)

IL-1b Mice UPEC&Normal Testicular Tissue Up (55)

IL-1b Rats UPEC&Normal Testicular Tissue Up (56)

IL-1b Rats UPEC&Normal Testicular Tissue Up (57)

IL-6 Mice UPEC&Normal Testicular Tissue Up (55)

TNF-a Mice UPEC&Normal Testicular Tissue Up (55)
f

NSS, No statistical significance; EAO, Experimental Autoimmune Orchitis; UPEC, Uropathogenic Escherichia Coli-induced orchitis; Up, Up-regulation of cytokine levels.
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microbial community in patients with chronic pelvic pain

syndrome was significantly lower than that in the control group,

and the count of Prevotella in patients with CP/CPPS was

significantly lower than that in the control group (69). In

contrast, Konkol et al. found a significant increase in the gut

microbial population but a decrease in the levels of Bacteroides

homogenes, Lactobacilli and Lactobacilli in animal models with

prostatitis (70). By sequencing amplified polymerase chain

products, Mandar et al. found that patients with prostatitis had a

higher diversity of species than healthy men, as well as a higher

proportion of Proteobacteria and a lower proportion of

Lactobacillus (71). Therefore gut microbiota can be considered as

a biomarker of disease and as a target for future research

and treatment.

Murphy et al. injected a specific strain of S. epidermidis from

healthy men into mice with autoimmune prostatitis and found that

a cell wall component of NPI (lipoteichoic acid) mediated CTLA4-

like ligand on prostate antigen presenting cells, resulting in

increased expression of PDL1 and PDL2, decreasing the pain

response to pelvic tactile abnormalities (72).

Kogan’s latest study categorized chronic bacterial prostatitis

into aerobes dominant, anaerobes dominant, and both aerobes and

anaerobes dominant groups, and found that more severe clinical

conditions were observed in patients with both aerobes and

anaerobes and titers ≥103 CFU/ml. Relate aerobic - anaerobic

conditions to the degree of clinical status (73).

4.1.2 Sexually transmitted pathogens
The occurrence of prostatitis is partly caused by the infection of

sexually transmitted pathogens, such as Trichomonas vaginalis,

Mycoplasma, chlamydia, etc. Early studies by Skerk et al. detected

Chlamydia trachomatis, Trichomonas vaginalis, and Ureaplasma

urealyticumfrom from prostatic secretions or in urine samples

collected after prostatic massage (74). Though the detection rate

of Chlamydia trachomatis in subsequent studies is not high, we still

believe that when considering the possibility of chronic prostattis,

we should carry out routine detection of Chlamydia trachomatis

also should be carried out to confirm the pathogen (75). Proof may

be that IgA of Chlamydia trachomatis is closely related to sperm

concentration and normal morphology, Chlamydia trachomatis can

destroy germ cells through immune mediation and reduce male

fertility (76). Ureaplasma microtium, Ureaplasma urealyticum, and

Mycoplasma gendii are commonly detected in type IIa chronic

prostatitis, and recent studies have also found that Ureaplasma

urealyticum plays a role in promoting calcification formation and

high white sperm count in chronic prostate infection (77). Jang et al.

demonstrated that infection with Trichomonas vaginitis in rats can

lead to prostatitis, mainly manifested as pathological changes,

infiltration of mast cells and increased production of the

chemokine CCL2 (78).

4.1.3 Fungi
For prostatitis in HIV patients, except bacteria and viruses, the

most common infection is fungal pathogens, such as Candida,

Cryptococcus, Aspergillus, Blastobacter, Coccidioides and
Frontiers in Immunology 06
Histoplasmosis, which can lead to disseminated infection and

prostatitis in immunocompromised men (79).
4.2 The immune mechanism in the
prostatitis microbiology

4.2.1 Immune cells
Unlike the testis, the prostate is generally considered a non-

immune organ, but many immune cells can be found in it, such as

NK cells, mast cells, lymphocytes and macrophages. In the study

conducted by Vykhovanets et al., it was first found that the prostate

of normal healthy Sprague-Dawley rats contained an unusually high

proportion of NK and NKT cells (80). Subsequent studies

confirmed that the level of CD4(+) NKT cells decreased

significantly and CD45RC(+)CD49(+)abTCR(+) T cells increased

in elderly SPI and EPI patients compared with elderly NPI and

young patients (81). Therefore, identification of the phenotype of

NK cells and NKT cells and their proportional relationship with T

cells will be helpful for the diagnosis and treatment of chronic

prostatitis. NK and NKT cells can also kill cancer cells. Recently,

more research has been conducted on the relationship between

prostate cancer and NK cells, and how to use NK cells for the

treatment of prostate cancer. CP/CPPS are mainly characterized by

their pelvic pain, and studies by Done et al. and Roman et al. show

that the release of mast cell mediators is a key factor in pain. It can

be observed that there are degranulation products of mast cells in

the prostate and urine of CP/CPPS patients, mainly the increase of

tryptase-b and carboxypeptidase A3. The expression of the receptor

PAR2 of tryptase is increased in patients, which regulates the

phosphorylation of the kinase ERK1/2 and the influx of calcium

ions through extracellular signaling, leading to the occurrence of

pain. In addition, nerve growth factor also seems to play a role in the

induction of pain, but there are no definitive results (82, 83). The

study of the correlation of mast cells provides new ideas for treating

CP/CPPS patients, which can reduce pain in patients by inhibiting

the tryptase-PAR2 axis. However, the etiology of CP/CPPS is

currently unclear, and most studies believe that autoimmunity is

an important cause. In early studies of autoimmune prostatitis

induced in non-obese diabetic (NOD) mice, PSBP (steroid-binding

protein) was found to be an autoantigen recognized by the NOD

immune system, and CD4+ T cells played an important role in EAP

(84). In the mouse model of autoimmune prostatitis (EAP)

established by Motrich et al., prostatitis and chronic pelvic pain

were mainly induced by Th1-related immune responses after

prostate autoantigen-induced autoimmunity, and the deficiency of

Th1 or Th2 cytokines reduced or enhanced susceptibility to

autoimmune prostatitis, respectively. The adaptive immune

response mediated by Th1 and Th17 through the production of

cytokines is equally significant in CP/CPPS (85).
4.2.2 Cytokines and chemokines
Cytokine changes also play an important role in prostatitis.

Common cytokines and their changes are shown in Table 3. In the

study of Motrich et al., an increase of IFN-g and IL-12 was observed
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in the prostate of autoimmune animals, with a decrease in IL-10.

The mouse model lacking IFN-g signaling transcription factor had

no inflammatory response. IFN-g can also stimulate IL-15

production in the prostate by paracrine, thereby inducing the

proliferation of prostate T cells and participating in the

inflammatory process of the prostate, which proves that IFN-g is

involved in the pathogenesis of CP/CPPS (89). IFN-g and IF-17A

expression were found to be increased in mice with chronic

prostatitis (96). Through the detection of cytokines in CP/CPPS

patients, Penna et al. found that IL-8 may be the most reliable and

predictive marker for the diagnosis of prostatitis, and IL-8 was

significantly increased in type IIIa patients. In addition, the level of

IL-8 was positively correlated with the patient’s symptom score and

prostate specific antigen level (97). In addition to the measurement

of cytokines, Penna et al. found an increase of CCL1, CCL3 and

CCL4, CCL17 and CCL22, CXCL8 in the seminal plasma in patients

with CP/CPPS or benign prostate hyperplasia (97). Quick et al.

focused on the CCL2 and CCL3 pathways associated with pelvic

pain. The CCL2-CCR2 axis and CCL3 are important mediators of

pelvic pain, and only anti-CCL2 antibody is effective in the

treatment of autoimmune prostatitis (98).

4.2.3 Inflammasome
In the process of activation of inflammatory innate immune

system, in addition to cytokines playing an important role in the

inflammatory process, inflammasome is also indispensable in
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promoting the formation and transformation of cytokines.

Chronic bacterial prostatitis is through the upregulation of

inflammasomes NLRP1 and NLRP3, and the increased expression

of ASC and caspase-1, which together promote the conversion of

downstream IL-1b and IL-18 precursors, promote the release of

mature cytokines, and participate in the inflammatory and immune

processes (99–101). Therefore, considering the role of

inflammasome can provide a new target for the treatment

of prostatitis.

4.2.4 Biofilm
The generation of chronic bacterial prostatitis is associated with

a variety of bacterial infections. These bacteria escape the immune

by forming biofilms and have high tolerance to antibiotics, which

affects the treatment of bacterial prostatitis. Kanamaru et al. showed

that the possibility of biofilm formation from patients with

prostatitis was higher than that of acute cystitis and

pyelonephritis, and the isolates from prostatitis had higher optical

density values and more curli fimbriae, which further confirmed the

connection between biofilm and prostatitis (102).In addition, the

hemolysin produced by E. coli cooperates with the biofilm to lead to

the persistence of E. coli in the prostate (103). In a recent study, it

was found that patients with biofilm formation had higher NIH-

CPSI scores and less improvement in symptoms than patients

without biofilm formation, which had a negative impact on

antibiotic treatment (104).
TABLE 3 Cytokines and prostatitis.

Cytokine Species Group Sample Type Regulation Reference

CXCL-10 Mice EAP&Normal Prostate Tissue Up (86)

IL-1a Rats EAP&Normal Prostate Tissue Up (87)

IL-1b Rats EAP&Normal Prostate Tissue Up (87)

TNF-a Rats EAP&Normal Prostate Tissue Up (87)

IL-4 Rats EAP&Normal Prostate Tissue Up (87)

IL-13 Rats EAP&Normal Prostate Tissue Up (87)

IL-17 Mice EAP&Normal Prostate Tissue Up (88)

IL-12 Mice EAP&Normal Prostate Tissue Up (89)

IL-10 Homo Sapiens Chronic Bacterial Prostatitis infertile patients&Normal Seminal Fluid Down (90)

IL-6 Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Seminal Fluid Up (91)

IL-17 Rats EAP&Normal Prostate Tissue Up (92)

IL-17 Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Seminal Fluid Up (93)

IFN-g Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Seminal Fluid Up (93)

IL-1b Mice EAP&Normal Blood Up (94)

IL-8 Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Blood Up (95)

IL-2 Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Blood Up (95)

IL-6 Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Blood Up (95)

TNF-a Homo Sapiens Chronic Bacterial Prostatitis patients&Normal Blood Up (95)
f

EAP, Experimental Autoimmune Prostatitis; CBPP, Chronic Bacterial Prostatitis patients; Up, Up-regulation of cytokine levels; Down, Down-regulation of cytokine levels.
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The types of pathogens infected by different types of prostatitis

will be different, so the identification of dominant microorganisms

can be used as biomarkers to provide new targets and ideas for

future disease research and treatment. The study of abnormal

proportions of NK and NKT cells in patients with prostatitis, and

their association with T cells, will also contribute to the treatment of

chronic prostatitis and prostate cancer. The formation of cytokines

and inflammasome is involved in the inflammatory and immune

processes of prostate. The formation of cytokines promotes the

assembly of inflammasome complex, and the appearance of

inflammasome further promotes the release of mature cytokines,

promoting the development of prostatitis. In the treatment of

prostatitis, bacterial biofilm formation can affect the role of

antibiotics and immune system, so how to improve the treatment

of patients with prostatitis accompanied by biofilm is also

very important.
5 Oligozoospermia, asthenospermia,
azoospermia

5.1 Oligozoospermia, asthenospermia,
azoospermia and microbiology

5.1.1 Bacteria
Clinically, unilateral and bilateral infections of the testis and

epididymis often lead to azoospermia and severe oligozoospermia,

while gonadal infections are mostly caused by bacterial infections.

Yang et al. revealed that the microbiomes of asthenospermia and

oligozoospermia were significantly different in terms of b diversity,

with high relative abundances of Bacteroides, Anaerobic Cocci,

Spermicococcus, Lactobacillus and Acinetobacter Roche seen in

asthenospermia patients, and significantly higher relative

abundances of Lactobacillus in oligozoospermia patients (105).

However, other studies have linked oligoasthenozoospermia in

part to an increase in Neisseria, Klebsiella, and Pseudomonas

pathogens and a decrease in Lactobacillus probiotics, so whether

the effects of Lactobacillus on male fertility are beneficial or harmful

remains controversial (105). Mehta et al. studied the effects of

Streptococcus faecalis on oligozoospermia and teratozoospermia in

men. Compared with semen containing micrococcus or a-
Streptococcus hemolyticus and normal uninfected semen, the

incidence of oligozoospermia and teratozoospermia was

significantly higher, and the mean sperm concentration and the

mean percentage of normal spermatozoa in semen were

significantly lower (106).

5.1.2 Sexually transmitted pathogens
Human papillomavirus and herpesviridae frequently infect

epithelial cells and are considered to be considerable risk factors

for infertility. In an earlier study conducted by Lai et al.,

asthenospermia was found to be significantly more common in

HPV-infected patients (75%) than in men without HPV infection

(8%) (107). Nasseri et al. looked at HPV detection rates in patients

with oligozoospermia and azoospermia from another perspective
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and found significant differences in sperm counts and sperm

motility rates between positive and negative samples from

patients with oligozoospermia. In addition, HPV16, 45 genotypes

in the high-risk group and HPV6, 11, 42 genotypes in the low-risk

group were more common (108). HSV was found in 279 semen

samples collected by Kurscheidt et al., HSV-1 was significantly

associated with a lower mean sperm count, and HSV-2 infection

was significantly associated with hemospermia and lower mean

semen quality (109).

Ureurealyticum can damage sperm structure and function by

reducing motility and causing damage to the sperm membrane,

especially the lipid bilayer. In the analysis of various types and

subgroups of Ureaplasma, Yang et al. found that subgroups A and C

of Ureaplasma microgenesis and subgroup 1 of Ureaplasma

urealyticum were associated with oligozoospermia, and subgroup

2 of Ureaplasma urealyticum may have the ability to impair semen

motility (110).

Chlamydia trachomatis is also a common sexually transmitted

pathogen, previous studies have found reduced sperm

concentration, normal sperm morphology, sperm volume, sperm

motility, and sperm velocity in chlamydia-positive samples

compared with negative samples, and a 14-fold risk of reduced

semen volume when both couples were tested for Chlamydia

trachomatis (111).

5.1.3 Other viruses
COVID-19 not only affects the respiratory system, but also has a

certain impact on the reproductive function of patients. Thinning of

spermatogenic tubules, interstitial edema, hyperemia, infiltration of

inflammatory cells and inflammatory mediators can be observed in

necropsy testis and epididymis specimens of patients with COVID-19.

Compared with normal men, IL-6, TNF-a and MCP-1 in semen are

increased, leading to low testosterone level and affecting normal

spermatogenic function. 39.1% of the patients had oligozoospermia

(39). The same phenomenon was observed in the study by Apaydin

et al (112). In addition, after acute Zika virus infection, although there

may be only early semen changes, which will return to normal values

later, early pathological changesmay also affect sperm function through

testicular and epididymal pathological changes, thus affecting male

fertility (113). Adeno-associated virus AAV was significantly higher in

both oligoasthenospermia and oligozoospermia patients than in

normal semen, but not in asthenospermia and azoospermia. AAV

may cause oligoasthenospermia by infecting testes and interfering with

normal sperm development (114).
5.2 The immune mechanism in the
oligozoospermia, asthenospermia and
azoospermia microbiology

5.2.1 Immune cells and cytokines
In an earlier study of patients with azoospermia carried out by

Mahmoud et al., it was observed that although T cells, B cells,

macrophages and mast cells were all increased, only the increase in

mast cells was significant. Due to the increase of tryptase, the number
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of mast cells were increased resulting in the testicles collagen fibers

deposition obviously and affecting sperm production function (115).

At the same time, the bacteria infection of the reproductive system

may lead to leukopenia, which increases the number of anti-sperm

antibodies by enhancing the function of T helper cells and B cells, and

damages male fertility together with natural killer cells (116). In

addition to the immune cell changes described above,

proinflammatory factors are also changed in infertile men,

especially in infertile men with genital tract infections. A recent

study showed that for all cytokines measured in oligospermia,

asthenospermia, and oligoasthenospermia compared with controls,

only IL-5 levels were reduced, with significant reductions of 87%,

78%, and 87%, respectively (117).

5.2.2 Antibody and immune complexes
In a meta-analysis of male infertility, ASA antibody positive

patients had significantly lower sperm concentration and sperm

motility than ASA negative controls (118). In addition to

impairing sperm motility by activating the complement system,

Dimitrov et al. also found that 15 out of 28 infertile men with
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asthenospermia were positive for anti-sperm CMI (cell-mediated

immunity), thus ASA-mediated cellular immunity may be an

important cause of oligozoospermia and asthenospermia (119).

The immune complex also affects the male reproductive function.

Murakami et al . found 4 disease-specific antigens in

oligozoospermia patients and 5 disease-specific antigens in

asthenospermia patients. The formation and deposition of

immune complexes stimulate inflammation through the action

of the complement system, leading to reproductive organ fibrosis

and loss of related protein function, thus leading to spermatogenic

dysfunction (120).

5.2.3 HLA
Genes in HLA loci that play key roles in antigen presentation

and immune response are strongly associated with asthenospermia

and oligozoospermia. HLA-A*11:01 is associated with multiple

forms of male infertility; HLA-DQB1*03:02 and HLA-A*29:02 are

associated with oligozoospermia, and HLA-A*29:02 can also

interfere with sperm count with HPV, as well as risk genes

associated with oligozoospermia, they are HLA-DQA1*05:01,
FIGURE 1

Microbiology and immune mechanisms associated with male infertility.
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HLA-C*03:03, and HLA-DQB1*03:01.HLA was associated with

male infertility and HPV to further explore the multiple

influencing factors of male infertility (121).

The b diversity of microflora in oligospermia patients was

significant, and the infection of micrococcus or a-hemolytic

streptococcus was more (105, 106). The infection of sexually

transmitted pathogens and viruses also participated in the process

of sperm damage. Abnormal levels of IL-5 and specific gene locus

changes of HLA can be used as biomarkers for infertile men

(117, 121).
6 Conclusion

There is growing evidence linking male infertility to the

microbiome, and rapidly evolving microbial sequencing and analysis

methods will help us understand more potential pathogens associated

with male infertility in the future. In this review, we summarize the

current microorganisms affecting male fertility and summarize their

immunological mechanisms, providing certain ideas for the subsequent

treatment of male infertility in Figure 1. There are still some difficulties

that we have not yet overcome. Obtaining the microorganisms in the

research site without being affected is one of the most complex

difficulties. For example, the presence of pathogens in semen analysis

is extremely easy to be affected by the surrounding structure and is not

completely targeted. Therefore, the methods of microbial sampling

from different parts need to be further studied. In addition, by linking

male infertility with the microbiome and exploring the immune

mechanism in the microbiome, we can not only better understand

the immune response in vivo under different pathological conditions,

including the changes in the number and types of immune cells,

immune factors, and chemokines, etc., but also provide more targeted

immune target therapies for pathological conditions. It is also possible

to combine immunotherapy with microbiomes therapy, which may be

more effective in treating male infertility.
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