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Background: Dysregulation of chromatin regulators (CRs) can perturb the tumor

immune microenvironment, but the underlying mechanism remains unclear. We

focused on uterine corpus endometrial carcinoma (UCEC) and used gene

expression data from TCGA-UCEC to investigate this mechanism.

Methods: We used weighted gene co-expression network analysis (WGCNA) and

consensus clustering algorithm to classify UCEC patients into Cluster_L and

Cluster_H. TME-associated CRs were identified using WGCNA and differential

gene expression analysis. A CR risk score (CRRS) was constructed using univariate

Cox and LASSO-Cox regression analyses. A nomogram was developed based on

CRRS and clinicopathologic factors to predict patients' prognosis.

Results: Lower CRRS was associated with lower grade, more benign molecular

subtypes, and improved survival. Patients with low CRRS showed abundant

immune infiltration, a higher mutation burden, fewer CNVs, and better

response to immunotherapy. Moreover, low CRRS patients were more

sensitive to 24 chemotherapeutic agents.

Conclusion: A comprehensive assessment of CRRS could identify immune

activation and improve the efficacy of UCEC treatments.
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1 Introduction

With an estimated 417,000 new cases and 97,000 deaths in 2020,

uterine corpus endometrial carcinoma (UCEC) is the sixth most

common type of gynecological cancer worldwide (1). Over the past

30 years, the overall incidence has increased by 132%, although

advances in medical devices and treatments have led to a 15%

reduction in mortality rates over the same period (2). Most

endometrial cancers can be cured by hysterectomy if detected early

with postmenopausal bleeding, but those with advanced disease have

a poor prognosis. The combination of neoadjuvant chemotherapy

and interval cytoreductive surgery tends to result in less perioperative

morbidity and higher survival rates in advanced stages (3).

Unfortunately, not all patients benefit from these treatments.

Immunotherapy strategies have been made possible by advances

in our understanding of the molecular biology of endometrial cancer.

Immune checkpoint blockade (ICB) may be effective to some extent

in the treatment of advanced and metastatic endometrial cancer. For

patients with advanced or recurrent mismatch repair-deficient

(MMRd) disease, pembrolizumab, a humanized monoclonal

antibody targeting programmed cell death protein 1 (PD-1), has

been approved by the US Food and Drug Administration (FDA),

demonstrating a favorable safety profile and durable antitumor

activity in this subset of patients (4). Although the results are

promising, tolerability is a concern, with two-thirds of patients

experiencing adverse events (5). There are many factors that

influence the efficacy of immunotherapy, including the tumor

microenvironment (TME) and genomic mutagenesis. To improve

treatment success rates and reduce clinical stress and patient burden,

new prognostic predictors are urgently needed.

The transduction of cellular signals is required for cell identity,

differentiation, and stress response (6), with the majority of signals

converging on chromatin. Over the past decade, significant progress

has been made in the understanding of how factors that act on

chromatin regulate transcription to coordinate the establishment of

gene expression programs (7). Aberrant expression of chromatin

regulators (CRs) has a major impact on immune responses. For

example, HJURP has been associated with immune cell infiltration

and immune checkpoint expression in hepatocellular carcinoma

and clear cell renal cell carcinoma (8–10). HMGB3 was a member of

a family of chromatin-binding proteins that can modify DNA

structure to facilitate transcription factor binding (11, 12).

Previous studies suggested that HMGB3 facilitates the immune

escape of breast cancer cells (13). APOBEC3G inhibited HIV

replication by mediating extensive deamination of a cytosine
Abbreviations: CR, chromatin regulator; UCEC, uterine corpus endometrial

carcinoma; CRRS, CR risk score; WFCNA, weighted gene co-expression network

analysis; ICB, immune checkpoint blockade; MMRd, mismatch repair defects;

PD-1, programmed cell death protein 1; FDA, Food and Drug Administration;

TME, tumor microenvironment; TCGA: The Cancer Genome Atlas; CNV, copy

number variation; TOM: topological overlap matrix; GS, gene significance;

ssGSEA, single-sample gene set enrichment analysis; TIDE, Tumor Immune

Dysfunction and Exclusion; TCIA, The Cancer Immunome Atlas; IPS,

IPimmunophenoscore; GDSC, Genomics of Drug Sensitivity in Cancer; PCA,

principal component analysis; TMB, tumor mutation burden.
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residue in the minus strands of the virus, allowing the virus to

evade innate immunity (14). Furthermore, aberrant expression of

CRs has been shown to be associated with outcomes in a variety of

cancers (15). RAC3 was an understudied paralog of the canonical

RAC1 GTPase and was implicated in tumor cell proliferation and

invasion (16, 17).

Currently, although studies focusing on individual CR

aberrations have been widely investigated, whether or how CRs

orchestrate tumor cells and other components in the TME in UCEC

is largely unknown. In our study, by WGCNA and consensus

clustering algorithm, we identified two distinct CR clusters with

different clinical outcomes and TME related pathways.

Subsequently, we constructed a CR risk score (CRRS) using

Univariate Cox and LASSO-Cox regression analyses. The CRRS

can reflect the different clinicopathological parameters, clinical

outcomes, immune status, genomic alterations, DNA methylation

status of immune-related genes, and therapeutic response. The

results of this study may provide a prognostic and therapeutic

indicator for UCEC patients.
2 Materials and methods

2.1 Data collection and processing

The detailed workflow of this study is shown in Figure S1. The R

package “TCGAbiolinks” was used to download RNA-seq data

(TPM values), somatic mutations, and copy number variation

(CNV) data from the TCGA dataset for UCEC patients (18). The

TCGA-UCEC methylation profiling (HM450) datasets and pan-

cancer data of TCGA were obtained from UCSC Xena (https://

xenabrowser.net/datapage/). Clinicopathological data of UCEC

patients were obta ined from the cBioPorta l (http : / /

www.cbioportal.org/datasets). Patients with incomplete overall

survival information were excluded from the study, which

included 525 tumor tissues and 35 normal tissues. The term

“entire cohort” refers to the total number of UCEC patients.

Patients in the total cohort were then divided into two 1:1

cohorts, the training cohort and the validation cohort. The

expression data of GSE17025 was downloaded from the Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/),

consisting of 12 normal tissues and 91 tumor tissues. The

immune checkpoint blockade treatment cohort (IMvigor210

cohort) was obtained from http://research-pub.Gene.com/

imvigor210corebiologies. The R package “maftools” and the

“ComplexHeatmap” were used to analyze and visualize the

mutation data. GenePattern (https://www.genepattern.org/) was

used to investigate the CNV of UCEC patients by GISTIC 2.0. A

list of CRs was downloaded from a previously published article (19).
2.2 Weighted gene co-expression
network analysis

We calculated the enrichment score of TME related pathways in

TCGA-UCEC datasets using the ssGSEA method and the
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ESTIMATE algorithm (20, 21). Weighted gene co-expression

network analysis (WGCNA) was then used via the R package

“WGCNA” to better understand the relationships between CRs

and the TME (22). A standard scale-free network and a topological

overlap matrix (TOM), which is used to describe the similarity of

gene expression to divide the genes with similar expression levels

into different modules, were constructed using a soft threshold of b
= 9 (scale-free R2 = 0.853). Candidate modules related to the TME

were selected based on their high correlation coefficient. Gene

significance (GS) was defined as the absolute value of the

correlation between the gene and the TME. Gene significance

(GS) was defined as the absolute value of the correlation

coefficient between the gene expression and the estimated score

of TME related pathways.
2.3 Human tissue specimens

A total of 24 endometrial carcinoma samples were collected

from the Xiangya Hospital of Central South University.
2.4 RNA extraction and real-time PCR

Total RNA was obtained from cells using the FFPE RNA

Extraction Kits (AmoyDx, Xiamen, China) in accordance with the

manufacturer’s protocols. The quantity and quality of the extracted

RNA was determined using a NanoDrop 1000 Spectrophotometer

(Thermo Fisher, USA). The RNA samples were considered

acceptable if they had an OD260/OD280 ratio within the range of

1.8-2.0 and an OD260/230 ratio within the range of 2.0-2.2.

Following that, total RNA (1 mg) was used to inversely transcript

the first-strand cDNA using HiScript II Reverse Transcriptase

(Vazyme, Nanjing, China). Quantitative real-time PCR (qRT-

PCR) was conducted on an ABI Prism 700 thermal cycler

(Applied Biosystems, Foster City, CA, USA) as previously

described (23). For RNA quantification, GAPDH was used as a

normalizer. All experiments were performed in triplicate. Here are

the pr imer sequences : APOBEC3G (forward primer :

CCATCTTTGTTGCCCGCCTCTAC; reserve primer: GCAGG

ACCCAGGTGTCATTGTG); GAPDH (forward primer: AACGG

ATTTGGTCGTATTGG; reserve pr imer : TTGATTTT

GGAGGGATCTCG).
2.5 Consensus clustering analysis

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was selected to evaluate the module scores.

Unsupervised clustering analysis was applied to identify CR

patterns based on the ssGSEA score of four modules and to

classify patients for further analysis. The algorithm was

performed using the “ConsensuClusterPlus” R package and the

process was repeated 1,000 times to ensure the stability of the

classification (24).
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2.6 Construction and validation of a CR
risk score

First, the correlations between the CRs and ImmuneScore or

StromalScore were analyzed. A total of 369 genes were screened out

with the threshold of |GS| > 0.3. Subsequently, the “limma” package

was used to identify differentially expressed CRs between normal

and tumor samples using the criteria of |log2 fold change (FC)| > 0.5

and an adjusted p-value < 0.05. Using GS and differential gene

expression analysis, we discovered 86 TME-associated CRs. A cut-

off p-value < 0.05 was used to screen TME-associated CRs with

prognostic potential in the training cohort using a univariate Cox

analysis of the overall survival (OS) in UCEC patients. The

prognostic risk signatures of 9 TME-associated CRs were then

determined in the training cohort using the Least Absolute

Shrinkage and Selection Operator (LASSO) Cox regression

analysis. The risk score (CRRS) was determined as follows:

CRRS =o
n

i=1
Coefi � xi

(Coefi stands for coefficients, xi which are the expression levels

of each prognostic gene.)

The CRRS of each patient in the training and validation cohorts

was calculated separately using this formula. UCEC patients were

then divided into low and high CRRS groups based on the median

CRRS of the training cohort. The Kaplan-Meier method was used to

compare the survival differences between the two CRRS groups, and

the Log-rank test was used to determine statistical significance.

Univariate and multivariate Cox regression analyses were used to

confirm the prognostic value of the CRRS.
2.7 Construction of a predictive nomogram

Univariate and multivariate Cox regression confirmed that

CRRS and stage were independent prognostic variables. Based on

the CRRS and stage, a nomogram was developed using the “rms” R

package. Each patient had an integrated score based on their stage

and CRRS group. Using the integrated scores, we can predict the 1-/

3-/5-year OS. Calibration curves and decision curve analysis (DCA)

were used to demonstrate agreement between the practical outcome

and the model prediction of outcome and clinical benefit.
2.8 Functional enrichment analysis

Enrichment analyses for Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (25) were performed

using the R package “clusterProfiler”. The inclusion criteria were p-

value < 0.05 and q-value < 0.05. For gene set variation analysis

(GSVA) and gene set enrichment analysis (GSEA), the R packages

“GSVA” and “clusterProfiler” were used to reveal the differences in

biological functions and signaling pathways between the low and

high CRRS groups (20, 25, 26). As the reference molecular signature

dataset, the gene sets “h.all.v7.5.1”, “c2.cp.kegg.v7.5.1”,
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“c5.go.bp.v7.5.1”, and “c5.go.mf.v7.5.1” were retrieved from

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

The top 10 significant pathways that were activated or inhibited

(adjusted p-value < 0.05) were displayed.
2.9 Immune landscape analysis

As in our previous study, immune scores, stromal scores, estimate

scores, and tumor purity of each sample were calculated using the

ESTIMATE algorithm (21, 27). ssGSEA, CIBERSORT, IBERSORT-

ABS, EPIC, TIMER, QUANTISEQ, MCPCOUNTER, and CXCELL

were used to calculate the immune cell infiltration score (28–33).

Wherein the immune cell marker in the ssGSEA algorithm was

downloaded from the previous article (Table S1) (34). The TIP

(http://biocc.hrbmu.edu.cn/TIP/index.jsp) was also used to

download the cancer-immunity cycle of UCEC patients (35).
2.10 Immunotherapy/chemotherapy
response

The Tumor Immune Dysfunction and Exclusion (TIDE) score,

T cell exclusion level, and T cell dysfunction level were calculated

using the TIDE algorithm (36). The Cancer Immunome Atlas

(TCIA, https://tcia.at/home) provided the immunophenoscore

(IPS) of UCEC patients (37). The stronger the immunogenicity,

the higher the score. The submap analysis was used to predict anti-

PD-1 and anti-cytotoxic T-lymphocyte-associated antigen-4

(CTLA-4) responses in patients with low- or high-CRRS (38).

Based on the Genomics of Drug Sensitivity in Cancer (GDSC)

(https://www.cancerrxgene.org/), the R package “pRRophetic” was

used to predict the chemotherapy response of each sample (39). The

relationship between drug sensitivity and the CRRS was

investigated using a Spearman correlation analysis.
2.11 Statistical analysis

The continuous variables that were not normally distributed

were compared using the Wilcoxon test (two groups) and the

Kruskal-Wallis’s test (more than two groups). The chi-square

(c2) test was used to test categorical variables. The association

between two continuous variables was calculated using Spearman’s

correlation test. R software (version 4.0.5) was used to conduct all

analyses. The following is how statistical significance was defined:

ns stands for “not significant”, *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001.
3 Results

3.1 Identification of endometrial carcinoma
subtypes based on WGCNA and
consensus clustering

Aberrant expression of chromatin regulators tends to

dramatically remodel gene expression profiles dramatically. To
Frontiers in Immunology 04
investigate how CRs affect the TME of UCEC, we extracted the

transcriptome data of 870 chromatin regulators from TCGA-UCEC

dataset and performed WGCNA. b=9 was selected to construct a

standard scale-free network using the Pick Soft Threshold function,

and genes were subsequently assigned to four distinct modules using

a cluster dendrogram (Figures S2A, S2B). In an effort to uncover

potential modules that regulate the TME of UCEC, a correlation

analysis was performed between each module eigengene and features

assessing the TME or biological characteristics of malignant tumor

cells. The result showed that MEgreen, MEblue, MEbrown and

MEturquoise were negatively correlated with immune-related

pathways while positively correlated with cell proliferation and

tumor growth (Figure 1A). Specifically, the MEbrown was mainly

positively correlated with the cell cycle, DNA damage response

(DDR) and DNA replication, while negatively correlated with

ImmuneScore and StromalScore (Figure 1A, Figure S2C). MEblue

was negatively correlated with ImmuneScore, CD 8 T effector and

immune checkpoint (Figure 1A, Figure S2C).

To explore the value of these modules in the prognosis of UCEC

patients, we quantified the enrichment level of each module in each

UCEC patient by using the ssGSEAmethod based onmRNA levels of

genes from four modules, separately (Figure 1B). Kaplan-Meier

analyses and univariate Cox regression analyses showed that

patients with lower MEbrown had a more favorable OS than those

with higher MEbrown scores (Figures S2D, S2E). Furthermore,

MEbrown and MEturquoise scores were significantly positively

correlated with cell proliferation and survival signatures, while

negatively correlated with the ImmuneScore and StromalScore

(Figure S2F). Using the consensus clustering algorithm, we divided

TCGA-UCEC samples into two clusters based on the enrichment

levels of four modules (Figure 1B, Figures S2G, S2H). We named the

clusters with high ssGSEA scores “Cluster_H” and the clusters with

low ssGSEA scores “Cluster_L” (Figure 1B, Figure S2I). Kaplan-Meier

analyses showed that patients in Cluster_H had worse prognosis than

those in Cluster_L (Figure 1C). Principal component analysis (PCA)

displayed that the distributions of the two clusters were relatively

scattered (Figure 1D). Furthermore, GSVA and GSEA analysis

revealed that the cell proliferation and survival signatures were

prominently enriched in the Cluster_H, whereas immune-related

pathways were significantly enriched in the Cluster_L (Figures 1E, F).
3.2 Identifying immune-related CRs and
constructing a risk score

To further investigate the relationship between CRs and TME,

we examined the correlation between CRs and ImmuneScore or

StromalScore, and screened out 369 genes with the threshold set as

GS > 0.3. Subsequently, the mRNA expressions of these 369 CRs

were compared between UCEC and normal tissues, of which 34 CRs

were upregulated and 52 CRs were downregulated in UCEC

samples (Figure S3A). After WGCNA and differential gene

expression analysis, we identified 86 CRs, termed as TME-

associated CRs. Furthermore, potential biological functions of

TME-associated CRs were uncovered using GO and KEGG

analyses. Covalent chromatin modification, histone modification,
frontiersin.org
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chromosomal region, condensed chromosome, histone binding,

and transcriptional coregulator activity were found to be the

common GO terms for these TME -associated CRs (Figure S3B).

Furthermore, KEGG analysis revealed that these TME-associated

CRs were enriched in functions such as lysine degradation, human

immunodeficiency virus 1 infection, transcriptional misregulation

in cancer and viral life cycle-HIV-1 (Figure S3C).

Subsequently, individuals from the entire cohort of TCGA-

UCEC (n = 525) were randomly divided into the training cohort

(n = 263) and the validation cohort (n = 262) to investigate

the prognostic value of 86 TME-associated CRs. In the training

cohort, using Univariate Cox and LASSO-Cox regression

analyses, we constructed a CR risk score (CRRS) consisting of 9

TME-associated CRs: FOXP3, APOBEC3G, CUL4B, RAC3,

HJURP, SCML2, HMGB3, TSPYL5, and ZBTB16 (Figure 2A,

Figures S3D, S3E). The risk score formula was as follows:
Frontiers in Immunology 05
CRRS =-0.5456*FOXP3 - 0.2437*APOBEC3G + 0.0111*CUL4B +

0 .0772*RAC3 + 0 .1461*HJURP + 0 .2032*SCML2 +

0.2631*HMGB3 + 0.2847*TSPYL5 + 0.4682*ZBTB16 (Figure S3F).

We then summarised the expression levels, the incidence of

CNV, and somatic mutations of 9 genes were summarized in UCEC

samples. In the TCGA-UCEC dataset, APOBEC3G, CUL4B,

SCML2, TSPYL5, and ZBTB16 were significantly downregulated

in tumor samples, whereas FOXP3, HJURP, HMGB3, and RAC3

were significantly upregulated in tumor samples (Figure S4A),

which was generally consistent with the result observed in

GSE17025 (Figure S4B). In addition, the relatively low mRNA

levels of TSPYL5 and APOBEC3G in tumors might be related to

hypermethylation of promoters (Figure S4C). Widespread CNV

alterations might explain significantly upregulation of RAC3 in

TCGA-UCEC (Figure S4D). CUL4B and SCML2 had relatively high

mutation frequency (Figure S4E).
D
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FIGURE 1

Identification of endometrial carcinoma subtypes based on WGCNA and consensus clustering. (A). Heatmap of the correlation between module
eigengenes with tumor microenvironment-related signatures or biological characteristics of tumor cells. (B). Heatmap illustrating the expression
pattern of CRs and the ssGSEA scores of modules between different clusters. (C). Kaplan–Meier curve of OS between two TCGA-UCEC clusters.
(D). Principal component analysis to differentiate Cluster_H from Cluster_L. (E). GSVA analysis of Hallmark gene sets in Cluster_H and Cluster_L.
(F). GSEA analysis of KEGG pathway gene sets in Cluster_H and Cluster_L.
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3.3 Investigating associations between
the CRRS with clinicopathological
parameters and improving the prognostic
estimation system

In order to globally illustrate the relevance of CRRS in

clinicopathological characteristics and its practical value for

assessing the prognosis of UCEC patients, we first divided UCEC

patients into low- and high-CRRS groups based on the median CRRS

value in the training cohort, and this cut-off value was also applied in

the entire and the validation cohorts (Figure 2A). Patients in the low-

CRRS group were characterized by lower grade and stage, and

relatively benign molecular genetic features, which was consistent
Frontiers in Immunology 06
with the survival advantage shown by the log-rank test (Figures 2A,

B). Strikingly, patients with lower CRRS had an absolute prognostic

advantage, whether in the training, validation, or entire cohort, even

when more detailed clinicopathological characteristics including age,

grade, stage, and histological types were taken into consideration

(Figure 2B). The time-dependent AUC confirmed the predictive

accuracy of the CRRS (Figure 2C). Previous studies have revealed

that UCEC patients can be classified into four molecular subtypes

based on the characteristics of their tumors, including POLE ultra-

mutated, microsatellite instability hypermutated, copy-number low,

and copy-number high (CN-high) (40). These subtypes have been

shown to have prognostic significance, with the CN-high subtype

being associated with a relatively poor prognosis among the four
D
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G H
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FIGURE 2

Associations between CRRS and clinicopathological features. (A). Correlations between CRRS and 9 TME-associated CRs, clinicopathological features.
(B). Prognostic performance of the CRRS in different cohorts, age, grade, stage, and histological type. (C). Time-dependent AUC value in the training,
validation, and entire cohort. (D). The distribution of CRRS among different clinicopathological features in the entire cohort. (E). Univariate and
multivariate Cox regression analyses evaluating independently predictive ability of CRRS and other clinicopathological features for OS in the entire
cohort. (F). Multivariate Cox regression analysis nomogram for predicting EC patients’ 1-/3-/5-years overall survival. (G). Calibration curve for
predicting OS at 1, 3, and 5 years. (H). Decision curves for 5-year-OS in the entire cohort.
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subtypes (40). In terms of clinicopathological characteristics,

relatively high CRRS was observed in the higher grade and stage

groups, in the serous/mixed histological types, in Cluster_H and in

the copy number high (CN-high) molecular subtype (Figure 2D,

Figure S5A). To further evaluate the predictive performance of CRRS

in UCEC patients, we compared the CRRS with the Wang’s. sig and

the Yao’s. sig (41, 42), and discovered that the AUC of OS for the

CRRS is higher than that of other signatures (Figure S5B). We then

examined the relationship between CRRS and OS in the TCGA pan-

cancer dataset, and patients were divided into low- and high-CRRS

groups based on the best cut-off value for each cancer type. The CRRS

was identified as a risk factor in 11 cancer types (Figure S5C).

According to univariate and multivariate Cox regression

analyses, the CRRS was an independent prognostic indicator for

UCEC patients (Figure 2E, Figures S5D, S5E). To better assess the

prognosis of UCEC patients, we constructed a nomogram to predict

the 1-/3-/5-year survival probability in the entire cohort (Figure 2F).

The nomogram included three independent prognostic factors

including CRRS, grade, and stage (Figure 2F). There was excellent

agreement between nomogram prediction and actual observation in

the entire cohort at the 1-, 3-, and 5-year survival probabilities after

calibration (Figure 2G). The net decision curve demonstrated the

superiority of this nomogram in predicting the prognosis of UCEC

patients (Figure 2H). The above results suggest that the CRRS,

composed of TME-associated CRs, is indeed a prognostic indicator

and is associated with clinicopathological features of UCEC.
3.4 Illustration of biological characteristics
of different risk groups as determined by
the appropriate CRRS value

To depict the biological characteristics of UCEC samples from

different risk groups determined by the CRRS, we performed the
Frontiers in Immunology 07
GSVA and revealed that immune-related pathways such as allograft

rejection, interferon-gamma response, inflammatory response, and

interferon-alpha response were prominently enriched in the low-

CRRS group, whereas E2F targets, G2M checkpoint, and Myc

targets v1/v2 were markedly enriched in the high-CRRS group

(Figure 3A). In addition, the GSEA was carried out with KEGG and

GO gene set annotations. In the high-CRRS group, gene sets

involved in cell proliferation and tumor growth were activated,

but immune/inflammation-related pathways were suppressed

(Figures 3B, S6A, S6B). Based on the concordance between the

results of GSVA and GSEA, it was suggested that different immune

response states might contribute to the different prognosis of UCEC

patients in the two CRRS groups.
3.5 Uncovering the relevance of CRRS in
the tumor immune microenvironment

Immune/inflammation pathways were enriched or activated in

UCEC samples from the low-CRRS group. However, the potential

correlation between CRRS and the immune landscape of the UCEC

remains unclear (Figures 3A, B, S6A, S6B). Cytokines (including but

not limited to chemokines and interleukins) and their receptors

were preferentially expressed higher in the low-CRRS group

(Figure 4A). Using the ESTIMATE algorithm, we determined

significantly higher immune, stromal, and estimate scores while

lower tumor purity in the low-CRRS group (Figure 4B). By

evaluating the infiltration of immune cells in UCEC samples with

ssGSEA, we revealed that the low-CRRS group had more

enrichment of cytotoxic CD8+ T cells, dendritic cells (DC), and

natural killer (NK) cells (Figure 4C), which was confirmed by other

independent algorithms (Figure S7A). The relationship between

nine TME-associated CRS and CD8+ T cells was further confirmed

by a variety of algorithms, and the outcome demonstrated that CRs
A B

FIGURE 3

The biological characteristics of different risk groups. (A). GSVA analysis of Hallmark gene sets in the low and high CRRS groups. (B). GSEA analysis of
KEGG pathway gene sets in groups with low and high CRRS.
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were connected to CD8+ T cells (Figure S8A). Among them,

APOBEC3G was found to be positively correlated with CD8+ T

cells and the CD8+ T effector signature, and its high expression was

associated with the prognosis of patients (Figures S8A–S8C). We

further verified the relationship between APOBEC3G and CD8A/

GZMB by qRT-PCR, and the results demonstrated that the two

variables were positively correlated (Figure S8D). Then, we

investigated the heterogeneity expression pattern of APOBEC3G,

CD8A, and GZMB in different immune cells at a single-cell level

using TISCH2 (UCEC-GSE139555) (43), and found that they were

mainly expressed in CD8+ T cells (Figure S8E). Next, we explored
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associations between CRRS and signatures of antitumor immunity.

Relatively activated antitumor functions of immune cells were

revealed in the low-CRRS group (Figure 4D), and CRRS was

negatively correlated with most immune-related functions as well

as cancer immunity cycles (Figure 4E), which was consistent with

immune activation status and better prognosis of UCEC patients

with relatively low CRRS. In addition, significant upregulation of

immune checkpoint genes and HLA family genes in the low CRRS

group may indicate higher immune cell infiltration and more

potentially presented neo-antigens (Figure 4F). Furthermore,

CRRS was found to be negatively correlated with immune score,
D
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FIGURE 4

Associations between CRRS and the Tumor Microenvironment. (A). Heatmap illustrating the expression pattern of chemokines, interferons,
interleukins, other cytokines, and their receptors in different risk groups. (B). The correlation between the CRRS and immune score, stromal score,
ESTIMATE score, and tumor purity. (C, D). TME infiltrating cell (C) and immune-related functions (D) comparisons between low- and high-CRRS
groups. (E). The lower left panel shows the correlations between the CRRS and immunoregulation-related pathways. The upper right panel shows
the correlations between the CRRS and cancer immunity cycles. (F) Immune checkpoints and HLA family gene comparisons between low- and
high-CRRS groups.
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immune checkpoint, immune cells and immune-related pathways,

and positively correlated with tumor purity and tumor growth-

related pathways in the majority of cancers (Figures S9A, S9B).
3.6 Comprehensive genomic alterations
analyses in different CRRS groups

Previous research had supported that the response to ICB is

closely associated with somatic mutation that increases tumor-

specific neoantigens (40, 41). Firstly, the waterfall plot displayed

the top 20 genes with the highest mutation rates in TCGA-UCEC

datasets (Figure 5A). The gene with the highest mutation frequency

was PTEN (58%), followed by PIK3CA (48%) and TTN (44%).

When comparing the mutations in these genes between the different

groups, it was found that the low-CRRS group presented more

extensive somatic mutation, on the whole, than the high-CRRS

group. Specifically, most genes such as PTEN, TTN and ARID1A
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were more frequently mutated in the low-CRRS group, whereas

TP53 had a higher somatic mutation rate in the high-CRRS group

(Figure 5A). Additionally, the CRRS was significantly inversely

related to tumor mutation burden (TMB) (Figure 5B), and the

combination of CRRS and TMB could better predict the overall

survival of UCEC patients (Figure 5C). Microsatellite instability

hypermutated (MSI-H) tumors account for approximately 25% to

30% of endometrial carcinomas (42), which have DNA mismatch

repair defects, resulting in errors in repetitive DNA sequences

known as microsatellites (41, 43). As shown in Figure 5D, the

MSI-H subtype had a lower CRRS. Meanwhile, in the low-CRRS

group, the expressions of MLH1, MSH2, MSH6, and PMS2 were

significantly lower (Figure 5E). The UCEC patients with MSI-L/

MSS and high CRRS had the worst prognosis, as shown by the

Kaplan-Meier curves (Figure 5F). Previous studies (44) suggested

that CNVs play an important role in tumorigenesis. Resistance to

anti-CTLA-4 and anti-PD-1 blockade has been associated with a

higher burden of copy number loss (44). In our study, high-
D
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FIGURE 5

Comprehensive analyses of genomic alterations in different risk groups. (A). Oncoplots of the top 20 most frequently mutated genes in the TCGA-
UCEC dataset. Each column represents an individual patient. The small figure above shows the non-synonymous and synonymous mutation counts
(log2). The figure on the right shows the mutation rates of different groups. (B). Scatter plots showing the correlation between the CRRS and TMB.
The color indicates different survival statues. (C). Survival analyses for subgroup patients stratified by both CRRS and TMB. (D). The prevalence of
CRRS in the MSS, MSI-L, and MSI-H groups. (E). Comparisons of MLH1, MSH2, MSH6, and PMS2 between low- and high-CRRS groups. (F). Survival
analyses for the subgroup of patients stratified by both CRRS and MSI. (G). Gain and loss frequency in the low- and high-CRRS groups. (H). The CNV
of some representative oncogenes and tumor suppressors.
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frequency amplification or loss was discovered in the high-CRRS

group (Figure 5G). Some of them are shown in Figure 5H. For

example, recurrent amplification of oncogenes such as MYC,

ERBB2 (HER2), and FGFR1, and significant loss of tumor

suppressors such as CDKN2A and CDKN2B were observed in the

high-CRRS group.
3.7 Investigating connections between the
CRRS and DNA methylation of immune-
related genes

Essentially, CRs regulate events during gene transcription,

where DNA methylation in the promoter region strongly

influences the dysregulation of gene expression during tumor

development. Therefore, we investigated the associations between

CRRS and methylation levels in the promoters of genes involved in

signatures such as mismatch repair (MLH1, MSH2, MSH6, PMS2),

CD8+ T effector (CD8A, GZMA, GZMB, IFNG, CXCL10, PRF1,

TBX21), antigen presentation (HLA-DMA, HLA-DMB, HLA-

DPA1, HLA-DQB2, HLA-DRA, HLA-DRB5), and immune

checkpoint (CTLA4, PDCD1, CD274, TIGIT, SELPLG). Among
Frontiers in Immunology 10
them, the expression levels of MLH1, HLA-DMA, PRF1, SELPLG,

CTLA4 and GZMB in TCGA-UCEC were inversely correlated with

their methylation levels (Figure 6A). The estimated CRRS scores

showed a negative correlation with the methylation level of CpG

sites within the promoter regions of HLA-DMA, PRF1, SELPLG,

CTLA4, and GZMB (Figure 6B), and the methylation levels of these

genes were significantly higher in the high-CRRS group (Figure 6C).

Although PDCD1 expression was weakly negatively correlated with

its methylation level (R = -0.10, p = 0.042), the methylation levels of

PDCD1 were higher in the high-CRRS group (Figures 6A, C).
3.8 The role of the CRRS in the prediction
of immunotherapy benefits and the
selection of sensitive chemotherapeutic
agents

The high neoantigen load and immune activation implied that

ICB might be effective and beneficial to the treatment of UCEC

patients with relatively low CRRS. Firstly, we used the TIDE

algorithm to assess the value of CRRS in predicting the potential

clinical efficacy of immunotherapy. According to Figure 7A, the
A B

C

FIGURE 6

The Relationships Between CRRS and DNA methylation. (A). The bubble chart shows the correlation between expression levels and methylation
levels of the immune-related genes. The length of the vertical line indicates the degree of correlation, and the color indicates the p-value. (B) The
correlation between the CRRS and the methylation levels of CpG sites in the promoter region of the MLH1, HLA-DMA, PRF1, SELPLG, CTLA4, and
GZMB genes. (C). Comparisons of the methylation levels of immune-relation pathway genes (Mismatch Repair signature, CD8+ T effector signature,
Antigen presentation signature, and Immune Checkpoint signature) in low- and high-CRRS groups.
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low-CRRS group had a higher dysfunction score, a lower TIDE

score, and a lower exclusion score. Next, IPS was applied to assess

the immunogenicity of UCEC samples, and the low-CRRS group

had higher IPS, PD1-blocker, CTLA-blocker, and CTLA4-PD1-

blocker scores (Figure 7B). We also used SubMap algorithms to

investigate the response to immunotherapy targeting CTLA-4 and

PD-1 in the low and high CRRS groups. We found that patients

with low CRRS showed promising responses to anti-PD-1 therapy

(Figure 7C). Given the high correlation between CRRS and immune

response in UCEC, we further investigated whether CRRS could

predict patients’ response to ICI therapy in an independent

immunotherapy cohort. In the IMvigor210 cohort, the patients

with high CRRS indeed had a worse prognosis (Figure 7D). These

findings suggested that patients with low CRRS might have a better

response to ICB therapy. Meanwhile, we also analyzed correlations

between the CRRS and IC50 of drug candidates in the GDSC

dataset. The sensitivity of seven commonly used chemotherapy

drugs, including cisplatin, docetaxel, doxorubicin, etoposide,

gemcitabine, lapatinib and paclitaxel, was investigated, and the

estimated IC50 of cisplatin, docetaxel, doxorubicin, etoposide and

lapatinib was found to be significantly different between the two

groups (Figure 7E). Notably, the estimated IC50 of the 10 agents

showed negative correlations with CRRS, meaning that these agents

might benefit patients with high CRRS, while the other 24 drugs

showed the opposite (Figure 7F). Taken together, these results

suggested that the CRRS may be a promising biomarker for

guiding precision treatment strategies.
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4 Discussion

The TME not only plays a major role in tumor progression, but

also orchestrates immune components, thus affecting the

therapeutic efficacy of ICB and patient prognosis (44, 45). Recent

research suggests that epigenetic changes, usually caused by chronic

inflammation, occur in cancer cells and other TME components

(46, 47). These changes can influence and modulate a variety of

aspects of cancer progression, including tumor growth, metabolic

state, metastatic spread, immune escape, and the generation of

immunosuppressive or immunosupportive leukocytes (48). CRs

have been identified as critical elements consisting of chromatin

remodelers, DNA methylators and histone modifiers involved in

epigenetic regulation (19, 49, 50). Whether and how these CRs

manipulate the epigenetic variation of immune cells and shape the

unique TME of UCEC is currently unknown. If this is the case, the

therapeutic potential of immunotherapy such as ICB in

combination with chemotherapeutic agents determined by CRs

will be justified, considering that the combination of multiple

therapeutic agents has been shown to be a successful strategy in

oncology (7). Therefore, a comprehensive and in-depth study of

CRs and the relationship between CRs and the immune

microenvironment is required to identify patients who may

benefit from new therapeutic strategies.

In this study, we collected transcriptome files of CRs from the

TCGA-UCEC cohort and identified two subtypes based on

WGCNA and consensus clustering. Tumor proliferation and
D
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FIGURE 7

Predictive value of CRRS in immunotherapy and chemotherapy. (A). Scatter plots(left) and box diagrams (right) show the correlations between the
CRRS and the TIDE score, dysfunction score, and exclusion score. (B). The relationship between the CRRS and IPS. (C). The submap analysis predicts
the probability of anti-PD1 and anti-CTLA4 immunotherapy response in low- and high-CRRS groups in the entire cohort. (D). Kaplan-Meier curves
for the IMvigor210 cohort’s low- and high-CRRS groups. (E). Chemotherapeutic sensitivity of 7 common drugs (Cisplatin, Docetaxel, Doxorubicin,
Etoposide, Gemcitabine, Lapatinib, and paclitaxel) was estimated and compared. (F). The bubble chart shows the correlation between CRRS and
drug sensitivity. The length of the vertical line indicates the CRRS related to drug resistance (R > 0.3) or drug sensitivity (R < -0.3) to the CRRS.
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survival signatures were prominently enriched in Cluster_H with a

worse prognosis, whereas immune-related pathways were markedly

enriched in Cluster_L with longer survival. Univariate Cox

regression analyses and Kaplan-Meier analyses showed that

MEbrown was correlated with prognosis. The results were

particularly striking in the Cluster_H and Cluster_L groups,

suggesting that Cluster_H is primarily driven by MEbrown.

Meanwhile, we identified 86 TME-associated CRs by | GS | >0.3

and differential gene expression analyses, and created an immune-

related CRRS based on the expression of 9 genes (FOXP3,

APOBEC3G, CUL4B, RAC3, HJURP, SCML2, HMGB3, TSPYL5,

and ZBTB16) through univariate cox regression and LASSO cox

analyses. Since the risk score was determined as an independent

prognostic factor for UCEC patients, a nomogram based on the

CRRS and traditional clinicopathological characteristics was

constructed to predict the 1-/3-/5-year survival possibility. To

further explore the relationship between CRRS and cancer

prognosis, a pan-cancer study was conducted using data from

TCGA. Results of the study revealed that CRRS is a risk factor for

11 types of cancer, including cervical squamous cell carcinoma,

endocervical adenocarcinoma, ovarian serous cystadenocarcinoma,

breast invasive carcinoma, colon adenocarcinoma, stomach

adenocarcinoma, and bladder urothelial carcinoma.

In general, 9 TME-associated CR genes could be categorized

according to their essential functions. APOBEC3G is a DNA

methylator and CUL4B, HJURP and ZBTB16 are histone modifiers,

whereas the classification of FOXP3, HMGB3, RAC3, SCML2 and

TSPYL5 is still unknown (19). RAC3 was elevated in EC patients and

was associated with poor clinical outcome. A negative correlation was

observed between the expression of RAC3 and the infiltration levels of

B cells, CD8+ T cells, macrophages, and dendritic cells in EC (51).

The RAC3 gene was amplified in breast cancer and correlated with

tumor size and estrogen as well as progesterone receptor positivity

(52). In our study, RAC3 was significantly upregulated in tumor

samples and exhibited widespread CNV alterations. HMGB3 was

found to be overexpressed in a variety of cancers, including breast

invasive carcinoma, sarcoma, skin cutaneous melanoma, ovarian

serous cystadenocarcinoma, and acute myeloid leukemia (53, 54).

The upregulation of the HMGB3 gene has been implicated in

tumorigenesis and chemotherapy resistance via various mechanisms

(54). In UCEC, suppression of HMGB3 expression has been shown to

impede the proliferation, migration, and invasion of EC cell lines (55).

After the CRRS was constructed and verified, TCGA-UCEC

patients were divided into low - and high-CRRS groups according to

the median value, with the high-CRRS group having worse clinical

outcomes. Further analysis using GSVA and GSEA revealed that

pathways associated with cell proliferation and tumor growth were

activated in the high-CRRS group, whereas pathways related to

immune/inflammation were enriched in the low-CRRS group. These

results suggest that distinct immune response states may underlie

the varying prognoses of UCEC patients. The relationship between

CRRS and TME was further explored. Firstly, CRRS was inversely

associated with ImmuneScore, StromalScore and EstimateScore,

whereas it was positively associated with TumourPurity. We also

investigated the relationships between CRRS and immune

components and processes in the TME of UCEC. Recent studies
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suggest that chemokines can directly alter the tumor

microenvironment to promote tumor growth by regulating pro-

inflammatory signaling, immune cell infiltration and tumor

metastasis (56). In our data, the samples from the low-CRRS

group had higher levels of CCL20, CCR5, CCR7, CXCL10,

CXCL11, and CXCR3, which are responsible for attracting DCs

and CD8+ T cells (57, 58), supported by the finding that CRRS was

negatively correlated with infiltration of antitumor immune cells,

including CD8+ T cells, DC cells, and NK cells. Also, CRRS was

generally negatively correlated with cancer immunity cycles,

immune-related functions, and signatures associated with

antitumor immunity. These findings point to a noninflamed

phenotype of the high-CRRS group, implying a poor response to

ICB therapy. In addition, the CRRS was found to have negative

correlations with the immune score, immune checkpoint, immune

cells, and immune-related pathways, while positive correlations with

tumor purity and tumor growth-related pathways in most cancers.

Recently, epigenetic reprogramming of exhausted CD8+ T cells has

been identified as a limiting factor in long-term effective PD-1

blocker treatment (7, 59, 60). In particular, the role of DNA

methylation in the regulation of PD-1 expression after T-cell

receptor stimulation in an in vivo model of acute infection has

been demonstrated (61, 62). When compared with normal tissues,

CpG islands in the promoter regions of PD-1, CTLA-4, and TIM-3

were significantly hypomethylated in breast cancer (63).

Methylation levels of the CD8+ T effector signature (GZMA,

GZMB, IFNG, CXCL10, PRF1) and PD-1 were significantly lower

in the low-CRRS group, according to our study.

There are four TCGA molecular subtypes of endometrial

carcinomas: POLE mutated, MSI-H, copy-number low, and copy-

number high (40). POLE-mutated and MSI-H endometrial cancers

are linked to a high abundance of tumor-infiltrating lymphocytes

and neoantigen loads, implying a more effective outcome with

immunotherapy (64–66). MSI-H tumors have DNA MMRd, and

MMR can occur sporadically as a result of methylation of the MLH1

promoter or germline mutations in MMR genes, as shown in Lynch

syndrome (67). According to our study, there were significant

negative correlations between CRRS and TMB, and MMR genes

were expressed at a lower level (MLH1, MSH2, MSH6, and PMS2)

in the low-CRRS group. Generally, TMB could prompt the

production of mutation-derived neoantigens and thus enhance

tumor immunogenicity, which further leads to the activation of

cytotoxic T lymphocytes (68). In this study, we found that TMB was

significantly higher in the low CRRS group than in the high CRRS

group. In addition, immune-related CRRS showed better predictive

performance when combined with TMB/MSI. Recent research has

suggested that tumors with high CNV levels have a more severe

tumorigenic and immunosuppressive immune microenvironment

than tumors with low CNV levels (69). In this case, high frequency

gain or loss was detected in the high CRRS group.

In addition, the TIDE, IPS, and SubMap algorithms have been

used to predict patient response to ICB (36–38). The TIDE

algorithm integrates the expression signatures associated with two

major mechanisms of tumor immune evasion, namely T cell

dysfunction and T cell exclusion, to evaluate tumor immune

evasion and predict responsiveness to ICB therapy (36). This
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approach was designed to provide a more accurate biomarker for

ICB response compared to traditional biomarkers (36). A higher

TIDE score indicates a higher likelihood of tumor cells inducing

immune evasion and a lower response rate to ICB treatment (70). In

line with expectations, the low-CRRS group exhibited a significantly

lower TIDE score, T cell exclusion score, and a higher T cell

dysfunction score. The IPSs of UCEC patients were downloaded

from the TCIA dataset, which can predict the response to CTLA-4

and PD-1 blockers (37). Higher scores were associated with better

outcomes with ICB treatment (71). The low-CRRS group had a

higher IPS, indicating a better response to immunotherapy. The

SubMap algorithm was used to identify similarities in the

expression profiles between TCGA-UCEC and melanoma patients

treated with ICB (38, 72). This also confirmed that the low-CRRS

group may respond better to ICB treatment. All these findings

suggest that CRRS can be used as a promising predictor of response

to immunotherapy in UCEC, which was validated in the

IMvigor210 dataset. Notably, patients with a high CRRS did

indeed have a worse prognosis.

Our research still has some limitations. For starters, as this

study is primarily based on the TCGA dataset, which has a limited

number of samples, it requires additional external datasets, in

particular the immunotherapy chip for UCEC verification.

Secondly, only GSE17025 from the GEO datasets was used to

verify the results. Third, our research is based on bioinformatic

analysis of data from public datasets. Using WGCNA and

differential gene expression analysis, we discovered 86 CRs

associated with ImmuneScore/StromalScore, which we termed

TME-related CRs. However, further research is required to fully

understand the specific functions and associated mechanisms of

these genes, and additional clinical studies are needed to validate the

accuracy of our model. Finally, CRs may have different functions in

the TME of different tumors, and the immune-related CRRS we

developed is primarily used to predict immunotherapy in UCEC.
5 Conclusions

This comprehensive and in-depth study helps to elucidate the

role of chromatin regulators in the TME of UCEC. Two distinct CR

clusters were identified that were associated with different clinical

outcomes and biological characteristics. Meanwhile, we developed a

risk score based on CRs that predicts the prognosis of UCEC. Using

this prognostic score, we evaluated clinical outcomes, biological

characteristics, immune status, and genomic alterations in different

CRRS groups. The predictive value of CRRS in immunotherapy and

chemotherapy suggests that CRRS may be a promising biomarker

for the development of precision treatment strategies for UCEC.
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SUPPLEMENTARY FIGURE 1

Flow chart of this study.

SUPPLEMENTARY FIGURE 2

Identification of endometrial carcinoma subtypes based on WGCNA and
consensus clustering. (A). Scale-independence analysis(left) and mean

connectivity analysis (right) for various soft-thresholding power values. (B).
Dendrogram of all chromatin regulators clustered based on a dissimilarity

measure (1-TOM). (C). Module eigengene scatter plots in the brown and blue

modules. (D, E). Kaplan–Meier curves (D) and Univariate Cox regression
analyses (E) of OS between the different groups based on the ssGSEA

scores of modules. (F). The correlation between the ssGSEA scores of
modules with tumor microenvironment-related signatures or biological

characteristics of tumor cells. (G, H). CDF plot and Consensus matrices of
TCGA-UCEC for k = 2. (I). The ssGSEA scores of modules comparisons

between Cluster_H and Cluster_L

SUPPLEMENTARY FIGURE 3

Establishment of the immune-related chromatin regulator prognostic
signature. (A). Volcano plot showed differentially expressed 86 CRs in UCEC

compared with normal tissues. (B, C). Gene Ontology analysis (B) and KEGG
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pathway enrichment analysis (C) for immune-related CRs. (D). The LASSO
coefficient profile of TME-associated CRs was drawn via 10-fold cross-

validation. (E). The tuning parameters (log l) of TME-associated CRs were

selected to cross-verify the error curve. (F). Coefficients of 9 TME-associated
CRs were finally obtained in the prognostic signature.

SUPPLEMENTARY FIGURE 4

The expression and genetic alterations of 9 TME-associated CRs in
endometrial carcinoma. (A, B). The difference in mRNA expression levels of

9 TME-associated CRs between normal and endometrial carcinoma samples
in TCGA-UCEC (A) and GSE17025 (B). (C). The correlation between

expression levels and methylation of promoters of 9 TME-associated CRs.

(D, E). The CNV frequency (D) and the mutation frequency (E) of 9 TME-
associated CRs were prevalent.

SUPPLEMENTARY FIGURE 5

Associations between CRRS and clinicopathological features. (A). The
distribution of CRRS in TCGA-UCEC molecular subtypes in the entire

cohort. (B). The AUC for CRRS and other prognostic signatures in the entire
cohort. (C). Prognostic performance of the CRRS in the TCGA pan-cancer

dataset. (D, E). Univariate and multivariate Cox regression analyses were

performed in the training (D) and validation (E) cohorts to assess the
independent predictive ability of CRRS and other clinicopathological

features for OS.
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SUPPLEMENTARY FIGURE 6

The biological characteristics of different risk groups. (A). GSEA analysis of
biological process gene sets from the GO dataset. (B). GSEA analysis of

molecular function gene sets from the GO dataset.

SUPPLEMENTARY FIGURE 7

Relationships between CRRS and the Tumor Microenvironment. (A). Relative
cell abundance of CD8+ T cells, macrophages, DC cells, and NK cells were

calculated by different algorithms in the low- and high-CRRS groups.

SUPPLEMENTARY FIGURE 8

APOBEC3G was positively correlated with CD8+ T cells in UCEC. (A).
Multivariate analysis confirmed the correlation between the 9 TME-

associated CRs and the levels of infiltration of CD8+ T cells. (B) Kaplan–
Meier curve for OS between high- and low- APOBEC3G groups. (C)
Correlation between the APOBEC3G and CD8+ T effector signature in

TCGA-UCEC. (D) Validation of the correlation between APOBEC3G and
CD8/GZMB by qRT-PCR. (E) The results of APOBEC3G, CD8, GZMB

expression distribution in single cell dataset (UCEC-GSE139555).

SUPPLEMENTARY FIGURE 9

CRRS and Tumor Microenvironment associations in the TCGA pan-cancer

dataset. (A). The correlation between the CRRS and immune score, stromal

score, ESTIMATE score, and tumor purity. (B). Heatmap illustrating the
correlation between the CRRS and immune checkpoints, immune cells, and

tumor microenvironment-related signatures.
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