
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Daniele Maria-Ferreira,
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Background: Immune checkpoint inhibitor (ICI)-related pneumonitis (IRP) is a

common and potentially fatal clinical adverse event. The identification and

prediction of the risk of ICI-related IRP is a major clinical issue. The objective

of this study was to apply a machine learning method to explore risk factors and

establish a prediction model.

Methods: We retrospectively analyzed 48 patients with IRP (IRP group) and 142

patients without IRP (control group) who were treated with ICIs. An Elastic Net

model was constructed using a repeated k-fold cross-validation framework

(repeat = 10; k = 3). The prediction models were validated internally and the

final prediction model was built on the entire training set using hyperparameters

with the best interval validation performance. The generalizability of the final

prediction model was assessed by applying it to an independent test set. The

overall performance, discrimination, and calibration of the prediction model

were evaluated.

Results: Eleven predictors were included in the final predictive model:

sindillizumab, number of ≥2 underlying diseases, history of lung diseases,

tirelizumab, non-small cell lung cancer (NSCLC), percentage of CD4+

lymphocytes, body temperature, KPS score ≤70, hemoglobin, cancer stage IV,

and history of antitumor therapy. The external validation of the risk prediction

model on an independent test set of 37 patients and showed good discrimination

and acceptable calibration ability: with AUC of 0.81 (95% CI 0.58–0.90), AP of

0.76, scaled Brier score of 0.31, and Spiegelhalter-z of −0.29 (P-value:0.77). We

also designed an online IRP risk calculator for use in clinical practice.
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Conclusion: The prediction model of ICI-related IRP provides a tool for

accurately predicting the occurrence of IRP in patients with cancer who

received ICIs.
KEYWORDS

immune checkpoint inhibitors, pneumonitis, risk prediction, machine learning,
risk factors
1 Introduction

Immune checkpoint inhibitors (ICIs) are a new class of

anticancer drugs that activate T-cell-mediated immune responses

against tumor cells (1). Therapeutically blocking inhibitory

molecules include cytotoxic T-lymphocyte antigen 4 (CTLA4)

inhibitors, programmed cell death 1 (PD1) inhibitors, and

programmed cell death 1 ligand (PD-L1) inhibitors (2). Trials

have confirmed the clinical efficacy of ICIs in various advanced

malignancies (2), and ICIs are emerging as a first-line treatment for

some advanced cancers (2, 3). ICIs can result in a special set of

adverse events termed immune-related adverse events (irAEs) (4,

5). IrAEs occur in all tissues and organs, most commonly in the

lungs, skin, and liver. Common fatal irAEs are pneumonitis,

myocarditis, colitis, hepatitis, and neurological effects (6, 7).

Immune-related pneumonitis (IRP) is a clinically common,

serious, and potentially lethal irAE, which develops in

approximately 3.5%–19% of ICI therapy cases and accounts for

35% of ICI-related deaths (7). IRP can result in a high rate of

treatment discontinuation (8) and cause a major economic burden

on cancer patients (9). IRP is difficult to diagnose and there is no

gold standard for clinical diagnosis (7).

ICI-related IRP requires significant attention given its clinical

severity and diagnostic challenges (10). Previous studies have

demonstrated that identification and prediction of the risk of ICI-

related IRP are major issues (7, 11). Early prediction of the risk of

IRP would reduce safety risks and improve clinical benefits.

Establishing a prediction model is an effective way to achieve

early prediction of the IRP. Machine learning is a new artificial

intelligence method, which has been widely used to explore

predictive factors and establish prediction models (12, 13).

However, to date, no study has attempted to develop predictive

models for IRP. In this study, we aimed to establish a prediction

model to quantify individuals’ IRP risk and provide an IRP risk

prediction online calculator for clinical practice.
2 Materials and methods

2.1 Study data

We extracted electronic medical records from the Scientific

Research Data Platform of patients discharged from Chongqing

University Cancer Hospital between 1 January 2010, and 31
02
December 2021. Two clinicians were assigned to review the

extracted electronic medical records independently and determine

each patient’s IRP status (IRP or non-IRP) and eligibility for this

study. The diagnosis of IRP or non-IRP was based on the patient’s

clinical symptoms, laboratory test results, and the physician’s clinical

experience. Patients with a confirmed IRP diagnosis were classified

into the IRP group. Patients who were diagnosed with pneumonitis

but were not associated with an immune reaction or did not develop

pneumonitis were classified into the non-IRP group. We first

identified and included IRP cases, after which we randomly

sampled non-IRP cases using a sample size four times the number

of IRP cases. Patients were included in the IRP and non-IRP groups

at a ratio of 1:4. The included patients were:1) aged 18 or above; 2)

male and female; 3) diagnosed with cancer according to the

pathological and clinical diagnosis; 4) treated with ICIs (only mono

immunotherapy) in-hospital; and 5) never developed IRP before ICIs

treatment. We excluded patients 1) whose treatment option was not

ICIs and 2) patients receiving combination ICIs therapies.

This was a retrospective study and informed consent was not

required. This study was approved by the Ethics Committee of the

Chongqing University Cancer Hospital (CZLS2021042-A).
2.2 Study outcome and variables

The outcome of interest was IRP, defined as the manifestation

of pneumonitis after ICI therapies related to immune reactions (14).

Candidate predictors included the patients’ demographic

information (sex, age, height, weight, etc., which were measured

before the assignment of ICI treatment), body temperature (refers

to the forehead temperature measured by an Infrared Thermometer

or armpit temperature measured by a Mercury Thermometer, and

we selected the most recent result prior to ICIs initiation), disease

situation (cancer types and cancer stage, etc.), treatment

information (ICI drugs type, ICI dosage, number of combined

drugs, previous treatment, etc.), and laboratory test data (blood

routine examination, inflammatory, arterial blood gas, etc.), which

were collected from the most recent laboratory test performed after

cancer treatment and before the onset of IRP.

A complete list of the variables is provided in detail in

Supplemental Appendix 1 (Table S1). Variables with a missing

rate less than 15% were included. The handling of missing data is

described in detail in Supplemental Appendix 2 (Table S3) and the

preprocessing section in Supplemental Appendix 3.
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2.3 Statistical analysis

All potential predictors were summarized and stratified

according to the IRP status. Continuous and categorical variables

were described as median (IQR) and frequency (percentage),

respectively. Univariate analyses of each predictor between the

IRP and non-IRP groups were conducted, continuous variables

were assessed using the Kruskal–Wallis test, and categorical

variables were analyzed using the chi-squared test or Fisher’s

exact test, as appropriate. The median or mode was used to

impute missing data. Stratified sampling was used to divide the

working dataset into two parts at a ratio of 8:2 (called the training

and test sets, respectively). Subsequently, a multivariable risk

prediction model was developed on the training set using the

Elastic Net under a repeated k-fold cross-validation (repeats = 10;

k = 3) framework. Specifically, for each combination of

hyperparameters, the training set was randomly partitioned into

three roughly equal sized parts; one part was left as the validation

set, and the model was built on the remaining parts. The leave-out

modeling process was conducted recursively until each part was

treated as a validation set. The cross-validation modeling process

was repeated 10 times, and the performance was evaluated on 30

validation sets. This procedure was repeated using different

hyperparameter settings (we tuned 100 combinations of

hyperparameters; the values are provided in Supplemental

Appendix 3). The final prediction model was built on the entire

training set using hyperparameters that yielded the best internal

validation performance. Furthermore, the final prediction model

was applied to external data (i.e., the test set) for external validation.

The detailed modeling process is provided in Supplemental

Appendix 3 (Figure S2).

The overall performance of the model was evaluated using the

scaled Brier scores (SBrSs). Model discrimination was assessed using
Frontiers in Immunology 03
the area under the ROC curve (AUC), whose 95% confidence interval

was obtained using bootstrapping, and calibration was evaluated

using average precision (AP, the area under the precision-recall

curve) and Spiegelhalter-z statistics. SHAP (Shapley Additive

exPlanations) values was utilized to visualize the variable

importance. Calibration plots and risk stratification results were

generated to examine model performance in different sub-risk

groups. An online calculator was developed using R shiny, which

allows clinicians and cancer survivors to calculate personalized IRP

risks. All performance matrices were computed on the validation and

test sets, and the metrics reported in the Results section were cross-

validated (Figure 1).

Statistical analyses were conducted in R (version 4.1.2) and P-

values less than 0.05 were considered statistically significant, and all

tests were two-tailed.

The code generating all results is publicly available [https://

github.com/gongli0707/IRP-prediction].
3 Results

3.1 Study patients

According to the inclusion and exclusion criteria, 190 cases

were identified from the Scientific Research Data Platform of

Chongqing University Cancer Hospital, which included 48 IRP

cases and 142 non-IRP cases. The screening flow is illustrated

in Figure 2.

The median ages of IRP and non-IRP patients were 61.00 [IQR:

54.75–67.00] years and 58.00 [IQR: 52.00, 67.00] years, respectively.

The number of males was higher than that of females in both the

groups. The baseline body temperature showed a statistical

difference between the IRP and non-IRP groups (the distribution
FIGURE 1

The workflow of the IRP prediction model building.
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features are provided in Supplemental Appendix 1; Figure S1). The

most common stage of cancer was stage IV, followed by stage III in

all cohorts. Karnofsky performance status (KPS) score was median

in 80. The relationship between these factors and the occurrence of

IRP are further screened in the following sections. We did not find

significant differences in underlying diseases (hypertension,

diabetes, CHD, viral hepatitis, and lung-related diseases) between

the IRP and non-IRP groups. However, the number of underlying

diseases was statistically significant (P <0.05). IRP risk was

statistically different in patients treated with PD-1 and PD-L1.

Patients in the PD-1 group were less likely to develop IRP than

those in the PD-L1 group. Moreover, the combination of non-

antitumor drugs, history of radiation therapy, T lymphocyte count,

and percentage of basophils might have contributed to IRP outcome

(P <0.05) (Table 1).
3.2 IRP risk prediction

Eighteen variables (a list can be found in Table 1) were found

associated with ICI-related IRP in the univariate analyses. Under

the repeated cross-validation framework, we tuned the

hyperparameters and finally determined that the model with an

alpha of 1.000 and lambda of 0.026 generated the best model

performance. The final prediction model was trained on the full

training set by using these parameters. The final prediction model
Frontiers in Immunology 04
included 11 predictors: sindillizumab, ≥2 underlying diseases,

history of lung diseases, tirelizumab, NSCLC, percentage of CD4+

lymphocytes, body temperature, KPS score ≤70, hemoglobin,

cancer stage IV, and history of antitumor therapy. The

coefficients of the 11 predictors are presented in Supplemental

Appendix 3 (Table S5). An online ICI-related IRP risk calculator

was developed using our final predicted model and can be accessed

through https://lin-yu.shinyapps.io/IRPcalculator/.

3.2.1 Model performance
The final prediction model had adequate discrimination, with a

cross-validated AUC of 0.81 (95% CI: 0.79–0.84) over the validation

sets. The AP value was considerably higher than the event rate (AP =

0.58; event rate = 25%), and the Spiegelhalter-z was 0.34 (P-value: 0.74),

indicating good calibration. A predictive model was applied to the test

set for external validation. The AUC estimate was 0.81 (95% CI: 0.55–

0.90), the AP was 0.68, and the Spiegelhalter-z was −0.29 (P-value:

0.77) (Table 2). Therefore, we conclude that our predictive model has

the potential for IRP risk prediction.

3.2.2 Variable importance
We used feature importance and SHAP plots to visualize the

variable importance (Figure 3). Predictors are shown in order of

global feature importance, with the first being the most important

and the last being the least important. We also used the SHAP value

to visualize the variable importance and direction of the association
FIGURE 2

The flow chart of this study.
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TABLE 1 The results of characteristics of patients by univariate analysis.

IRP (n = 48) Non-IRP (N = 142) P-value

Sex 0.331

Male 41 (85.4) 110 (77.5)

Female 7 (14.6) 32 (22.5)

Age (y) 61.00 [54.75, 67.00] 58.00 [52.00, 67.00] 0.358

BMI 22.98 [20.82, 25.38] 23.56 [21.48, 25.08] 0.592

Body Temperature (°C) 36.60 [36.50, 36.80] 36.50 [36.30, 36.70] 0.045

Systolic blood pressure 121.50 [108.25, 129.00] 124.00 [112.25, 133.75] 0.346

Diastolic blood pressure 77.00 [70.00, 83.75] 79.50 [71.00, 85.00] 0.442

Smoking (yes) 31 (64.6) 72 (50.7) 0.133

Drinking (yes) 13 (27.1) 27 (19.0) 0.327

KPS score 0.169

≤70 17 (35.4) 31 (21.8)

80 88 (62.0) 24 (50.0)

≥90 7 (14.6) 23 (16.2)

Cancer stage 0.708

I 0 (0.0) 1 (0.7)

II 1 (2.1) 3 (2.1)

III 18 (37.5) 42 (29.8)

IV 29 (60.4) 95 (67.4)

Cancer category 0.013

NSCLC 42 (87.5) 96 (67.6)

Non NSCLC1 6 46

Type of underlying diseases

Hypertension 11 (22.9) 20 (14.1) 0.228

Diabetes 10 (20.8) 16 (11.3) 0.154

Coronary Heart Disease 4 (8.3) 7 (4.9) 0.474

Viral Hepatitis 3 (6.2) 13 (9.2) 0.765

Lung-related disease 8 (16.7) 18 (12.7) 0.651

Number of underlying diseases <0.001

0 6 (12.5) 62 (43.7)

1 15 (31.2) 52 (36.6)

≥2 27 (56.2) 28 (19.7)

History of lung diseases 2 (4.2) 35 (32.7) 0.004

ICI drugs 0.047

PD-L1 5 (10.4) 4 (2.8)

PD-1 43 (89.6) 138 (97.2)

ICIs drugs <0.001

Attilizumab 2 (4.2) 3 (2.1)

Carrilizumab 19 (39.6) 36 (25.4)

(Continued)
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TABLE 1 Continued

IRP (n = 48) Non-IRP (N = 142) P-value

Tirelizumab 3 (6.2) 31 (21.8)

Nevirumab 2 (4.2) 6 (4.2)

Perbolizumab 11 (22.9) 12 (8.5)

Toripalimab 5 (10.4) 18 (12.7)

Sindillizumab 0 (0.0) 33 (23.2)

others 6 (12.5) 2 (1.4)

ICIs drug dosage (mg)
200.00

[200.00, 200.00]
200.00

[200.00, 200.00] 0.158

First time for immunotherapy (yes) 45 (93.8) 129 (90.8) 0.765

Course of cancer treatment 4.00 [3.00, 7.00] 5.00 [3.00, 7.00] 0.222

Number of other antitumor drugs 0.153

0 8 (17.0) 35 (24.6)

1 14 (29.8) 21 (14.8)

2 24 (51.1) 83 (58.5)

3 1 (2.1) 2 (1.4)

≥4 0 (0.0) 1 (0.7)

History of other antitumor drugs exposure (yes) 39 (83.0) 107 (75.4) 0.546

Number of non-antitumor drugs 0.027

0 13 (50.0) 102 (74.5)

1 3 (11.5) 17 (12.4)

2 4 (15.4) 7 (5.1)

3 3 (11.5) 5 (3.6)

4 2 (7.7) 3 (2.2)

5 1 (3.8) 1 (0.7)

≥6 0 (0.0) 2 (1.5)

History of non-antitumor drugs exposure (yes) 13 (50) 35 (25.5) 0.005

Surgery (yes) 11 (26.2) 42 (29.6) 0.817

History of radiation therapy (yes) 27 (64.3) 48 (33.8) 0.002

History of chemotherapy (yes) 32 (66.7) 78 (54.9) 0.210

Number of previous anti-tumor drugs 0.070

0 17 (35.4) 53 (40.2)

1 1 (2.1) 3 (2.3)

2 28 (58.3) 51 (38.6)

3 2 (4.2) 23 (17.4)

4 0 (0.0) 1 (0.8)

≥5 0 (0.0) 1 (0.8)

History of anti-tumor drugs exposure (yes) 31 (64.6) 89 (62.7) 0.866

CD4+ lymphocyte count
264.50

[186.75, 490.00]
403.50

[256.25, 582.75] 0.054

(Continued)
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(Figure 4). A positive SHAP value indicates a positive association

between predictors and ICI-related IRP; likewise, a negative SHAP

value corresponds to a negative association between predictors and

ICI-related IRP. The SHAP plot indicated that the number of

underlying diseases ≥2, NSCLC, KPS score ≤70, history of

antitumor therapy, other ICI drugs, and body temperature were

positively associated with IRP, whereas the remaining predictors

were negatively related to IRP.

3.2.3 Calibration plots
Calibration plots were used to visualize the calibration

(Figure 5). In the validation set, we observed great calibration for

patients with predicted risk less than 0.8, and overestimated IRP

risk in patients with predicted risk between 0.8 and 1.0, respectively.

In the test set, we found that the model underestimated the risk in

high IRP risk group and overestimated the IRP risk in the low-risk
Frontiers in Immunology 07
group. Taken together, the predicted probability risks in the

subgroups were close to the observed proportion, suggesting that

our model was well-calibrated.

3.2.4 Risk stratification
Using 5%, 20%, 50%, and 80% as cut-offs, the predicted

probabilities of IRP were stratified into four risk categories: <5%,

5% to <20%, 20% to <50%, 50% to 80%, and ≥80%, each

corresponding to a different level of risk, including low-,

medium-low, medium, median-high, and high-risk groups.

Table 3 shows that our model performed well with regard to the

risk stratification. In the validation set, among 31 participants with a

predicted IRP risk greater than 80%, 61% (19 out of 31) developed

IRP; 325 participants with a predicted IRP risk of less than 0.05, 5%

(15/325) of them developed IRP. Risk stratification in the test set

indicated good calibration. Two and five of the 17 and 13
TABLE 1 Continued

IRP (n = 48) Non-IRP (N = 142) P-value

Percentage of CD4+ lymphocytes
31.05

[25.62, 41.05]
35.20

[28.33, 44.88] 0.102

CD8+ lymphocyte count
260.50

[189.50, 356.75]
308.00

[183.75, 406.50] 0.249

Percentage of CD8+ lymphocytes
28.20

[21.52, 37.38] 26.75 [20.52, 33.22] 0.565

T lymphocyte count
570.00

[427.50, 867.25]
752.00

[554.50, 1049.50] 0.049

Percentage of T lymphocytes 67.60 [58.80, 75.55] 71.10 [62.00, 77.35] 0.292

B lymphocyte count 77.50 [31.75, 129.75] 90.00 [53.50, 141.50] 0.331

Percentage of B lymphocytes 7.90 [4.65, 13.22] 8.50 [5.35, 12.85] 0.629

NK cell count 201.50 [124.00, 297.25] 206.00 [122.00, 289.50] 0.896

Percentage of NK cell 18.95 [14.78, 31.52] 18.60 [12.45, 27.85] 0.488

Red blood cell 3.92 [3.38, 4.34] 3.84 [3.40, 4.17] 0.592

Hemoglobin 118.50 [103.75, 127.00] 116.50 [106.75, 129.00] 0.781

Hemameba 5.72 [4.30, 7.91] 5.17 [4.15, 6.56] 0.139

Percentage of lymphocytes 17.75 [11.18, 24.52] 20.25 [13.30, 27.77] 0.151

Percentage of monpcytes 9.20 [6.00, 12.35] 10.05 [7.60, 12.50] 0.370

Percentage of neutrophilic granulocyte 68.70 [59.65, 79.20] 66.40 [58.43, 74.35] 0.278

Percentage of eosinophils 1.00 [0.30, 3.80] 1.90 [0.60, 3.15] 0.379

Percentage of basophils 0.30 [0.10, 0.60] 0.40 [0.30, 0.70] 0.034

Blood platelet 184.00 [144.25, 256.50] 181.00 [139.50, 233.75] 0.354
1: non-NSCLC contains malignant melanoma, small cell lung cancer, nasopharyngeal carcinoma, cervical cancer, Hodgkin’s lymphoma, ovarian cancer, diffuse large B-cell lymphoma,
esophageal carcinoma, gastric cancer, bladder cancer and others. The bold values means less than 0.05.
TABLE 2 Summary of performance of model on training and test datasets.

Data AUC (95% CI) AP SBrS Spiegelhalter-z (p-value)

Validation1 0.81 (0.79–0.84) 0.58 0.27 0.34 (0.74)

Test2 0.81 (0.55–0.90) 0.68 0.30 −0.29 (0.77)
1Validation data refers to thirty leave-out parts in repeated CV framework. 2Test data is the 20% of the whole study subjects which was used to mimic an external data source for external validation.
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individuals who were predicted to be at medium-low and medium

IRP risk, respectively, developed IRP.
4 Discussion

The utility of electronic medical records (EMR) has expanded

from data storage to data utilization using various methods, which

could guide clinical decisions and predict important outcomes (15).

Establishing an ICI-related IRP prediction model using EMR and

machine learning algorithms is an effective and low-cost approach.

We identified potential IRP predictors such as the number of

underlying diseases, ICI drugs (sindilizumab and tirelizumab),

history of lung disease, NSCLC, percentage of CD4+ lymphocytes,

and body temperature, KPS score ≤70, hemoglobin, cancer stage IV,

and history of antitumor therapy. We also developed and validated
Frontiers in Immunology 08
an IRP prediction model for patients with cancer, using the Elastic

Net model. We further applied the final model to establish a user-

friendly IRP risk calculation tool, in which personalized IRP risk

could be calculated using relevant clinical information.

We found that the total number of underlying diseases was the

most important risk factor for IRP. Patients with more than two

underlying diseases might have a greater risk of developing IRP if

they received ICI treatment. This phenomenon might contribute to

the poor performance status (16). In our study, we found that

hypertension, diabetes, coronary heart disease, viral hepatitis, and

chronic obstructive pulmonary disease were the most common

combination of diseases. Interestingly, we did not find that these

combination diseases had statistically significant differences

associated with IRP, which differs from previous studies. Some

previous studies have suggested that pre-existing lung diseases, such

as chronic obstructive pulmonary disease, might contribute to IRP,
FIGURE 3

The rank of features in the prediction model by the degree of importance.
FIGURE 4

The SHAP value of features in the prediction model.
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but this was not confirmed by a statistically significant difference (7,

11, 17).

The incidence of IRP is affected by anti-PD-1 agents. In contrast

to anti-PD-L1 and anti-CTLA-4 drugs, anti-PD-1 agents are more

likely to cause adverse reactions in the lungs (7). However, we could

not rule out the possibility that other ICIs could result in IRP in

patients who underwent immunotherapy. In our study, we did not

include data on combination immunotherapy. Previous

studies have suggested that patients receiving combination

immunotherapy are associated with a higher incidence of lung

toxicity than patients receiving monotherapy (14, 18). Combination

therapy with other antitumor drugs, such as chemotherapy, was the

most common treatment, and there was no statistically significant

difference between IRP and non-IRP. There is still limited evidence

on the IRP of ICI combined with chemotherapy (19).

NSCLC was a risk factor for IRP, which was more common in

lung cancer patients treated with ICIs than in patients with other

cancers. Some studies have demonstrated that IRP has been

repeatedly reported in NSCLC patients compared to patients

diagnosed with melanoma and head and neck squamous cell

carcinoma (17, 20). However, the biological mechanism of IRP in
Frontiers in Immunology 09
NSCLC is poorly understood. Dysregulated activation of T cells in

peripheral lung tissue (21) and the predisposition of peritumoral

lung tissue to irAEs (7) may play an important role.

For laboratory indexes, CD4+ lymphocyte count after ICI

treatment was negatively correlated with IRP; that is, a smaller

CD4+ lymphocyte count is related to higher IRP risk. CD4+

lymphocytes are a subpopulation of T lymphocytes, and CD4+

cell can cooperate with cytotoxic T lymphocytes contributing to the

efficacy of immunotherapy (22). ICIs may increase the greater

magnitude of T-cell proliferation or decrease CD4+ cell-mediated

immunosuppression (23). A lower count of CD4+ cells may indicate

an active immune response. IRP is an active inflammatory

infiltrative lung disease associated with an immune response (8),

and the count of CD4+ lymphocyte cells can predict the risk of IRP.

In this study, we established a prediction model for the IRP of

cancer patients using ICIs. Accordingly, an online calculation tool

was developed. Users can upload relevant information to obtain the

IRP risk immediately. An early understanding of the risks of IRP

will improve the clinical benefit for patients. However, this study

had some limitations. First, this was a retrospective study with a lack

of prospective verification. This may introduce selection bias,
FIGURE 5

The calibration plots of validation cohort (left) and test cohort (right) of the prediction model.
TABLE 3 The risk stratification of ICIs-related IRP in our prediction model.

Validation Test

Risk groups
# of IRP event/
# of patients PPV

# of IRP event/
# of patients PPV

0.05 (low-risk) 15/325 0.05 0/5 0.00

5%–20% (medium-low) 48/466 0.10 2/17 0.12

20%–50% (medium) 146/470 0.31 5/13 0.38

50%–80% (medium-high) 162/238 0.68 2/2 1.00

>80% (high-risk) 19/31 0.61 0/0 /
PPV, positive predictive value; samples are 10 times that of the original training set, due to the repeated CV framework (repeat = 10). "#" means number and "/" means division sign.
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specifically sampling bias, which may limit the generalizability of

the results. In addition, the data selected from a single resource may

not be representative of the characteristics of the general

population. Therefore, the external validation in this study did

not guarantee a good performance when applying the model to the

general population.

Second, the small sample size may have caused imbalanced

distributions of variables and biased the estimate of IRP risk. In our

study dataset, we observed skewed distributions for sex and PD-1

therapy, where female patients and patients who underwent PD-L1

therapy were underrepresented. Our analysis revealed that there

was no statistically significant difference in the sex distributions

between the IRP and non-IRP groups and that sex was not a

predictor of IRP, which is consistent with earlier meta-analyses and

the findings of a real-world study (24). Although the proportion of

patients who received PD-1 therapy in two comparison groups was

statistically significant, PD-1 therapy was not a predictor of IRP

risk. Interpretation of the observed statistical significance should be

done with care, as the PD-1 therapy distribution in our study

sample could be imbalanced and not representative of the true

pattern of the data. To address this concern, we used a repeated CV

framework to make full use of the data; however, the observed

model performance in the test set should be interpreted with

caution because of the limited sample size. Third, variables (such

as Tumor Mutational Burden (25)) that were found to be associated

with IRP could not be included in the prediction model because of

the high missing rates. In the future, a higher-quality data,

multicenter, larger sample, and prospective study is needed to

optimize and prove the validity of the IRP prediction model

before it can be used in a clinical setting.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material. Further inquiries can be

directed to the corresponding authors.
Author contributions

LG, JG, XS, LY, XC, and Y-SL contributed to conception and

design of the study. LG and JG screened the data and organized the
Frontiers in Immunology 10
database. JG, XS, and LY performed the statistical analysis. LG, JG,

XS, LY, and BL wrote the first draft of the manuscript. Y-SL and XC

reviewed and modified the manuscript. All authors contributed to

the article and approved the submitted version.
Funding

This study was funded by Chongqing Scientific Research

Institutions Performance Incentive and Guidance Project (2020), the

Major International (Regional) Joint Research Program of the National

Natural Science Foundation of China (No. 81920108027), Chongqing

Outstanding Youth Foundation (No. cstc2020jcyj-jqX0030), the

Founding of Chongqing University Innovation Group, and the

Chongqing Youth Talents Program (No. CQYC20200301111).
Conflict of interest

Author LY and XS were employed by the company NanPeng

Artificial Intelligence Research Institute Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1138489/

full#supplementary-material
References
1. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chavez A, Keegan N,
Khamashta MA, et al. Immune-related adverse events of checkpoint inhibitors. Nat
Rev Dis Primers. (2020) 6(1):38. doi: 10.1038/s41572-020-0160-6

2. Ardolino L, Joshua A. Immune checkpoint inhibitors in malignancy. Aust Prescr.
(2019) 42(2):62–7. doi: 10.18773/austprescr.2019.012

3. Oncology(csco) gocsoc. Immune checkpoint inhibitor clinical practice. (2020).
Available at: https://csco.org.cn.

4. Thompson JA. New NCCN guidelines: recognition and management of
immunotherapy-related toxicity. J Natl Compr Canc Netw (2018) 16(5S):594–6. doi:
10.6004/jnccn.2018.0047
5. Brahmer JR, Abu-Sbeih H, Ascierto PA, Brufsky J, Cappelli LC, Cortazar FB, et al.
Society for immunotherapy of cancer (SITC) clinical practice guideline on immune
checkpoint inhibitor-related adverse events. J Immunother Cancer (2021) 9(6):e002435.
doi: 10.1136/jitc-2021-002435

6. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, et al. Fatal toxic
effects associated with immune checkpoint inhibitors: a systematic review and meta-
analysis. JAMA Oncol (2018) 4(12):1721–8. doi: 10.1001/jamaoncol.2018.3923

7. Gomatou G, Tzilas V, Kotteas E, Syrigos K, Bouros D. Immune checkpoint
inhibitor-related pneumonitis. Respiration (2020) 99(11):932–42. doi: 10.1159/
000509941
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1138489/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1138489/full#supplementary-material
https://doi.org/10.1038/s41572-020-0160-6
https://doi.org/10.18773/austprescr.2019.012
https://csco.org.cn
https://doi.org/10.6004/jnccn.2018.0047
https://doi.org/10.1136/jitc-2021-002435
https://doi.org/10.1001/jamaoncol.2018.3923
https://doi.org/10.1159/000509941
https://doi.org/10.1159/000509941
https://doi.org/10.3389/fimmu.2023.1138489
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2023.1138489
8. Chen X, Zhang Z, Hou X, Zhang Y, Zhou T, Liu J, et al. Immune-related
pneumonitis associated with immune checkpoint inhibitors in lung cancer: a network
meta-analysis. J Immunother Cancer (2020) 8(2):e001170. doi: 10.1136/jitc-2020-
001170

9. Zheng Y, Kim R, Yu T, Gayle JA, Wassel CL, Dreyfus J, et al. Real-world clinical
and economic outcomes in selected immune-related adverse events among patients
with cancer receiving immune checkpoint inhibitors. Oncologist (2021) 26(11):e2002–
e12. doi: 10.1002/onco.13918

10. Lemiale V, Meert AP, Vincent F, Darmon M, Bauer PR, Van de Louw A, et al.
Severe toxicity from checkpoint protein inhibitors: what intensive care physicians need
to know? Ann Intensive Care (2019) 9(1):25. doi: 10.1186/s13613-019-0487-x

11. Zhong L, Altan M, Shannon VR, Sheshadri A. Immune-related adverse events:
pneumonitis. Adv Exp Med Biol (2020) 1244:255–69. doi: 10.1007/978-3-030-41008-
7_13

12. Chowell D, Yoo SK, Valero C, Pastore A, Krishna C, Lee M, et al. Improved
prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat
Biotechnol (2022) 40(4):499–506. doi: 10.1038/s41587-021-01070-8

13. Zhang N, Pan LY, Chen WY, Ji HH, Peng GQ, Tang ZW, et al. A risk-factor
model for antineoplastic drug-induced serious adverse events in cancer inpatients: a
retrospective study based on the global trigger tool and machine learning. Front
Pharmacol (2022) 13:896104. doi: 10.3389/fphar.2022.896104

14. Nishino M, Ramaiya NH, Awad MM, Sholl LM, Maattala JA, Taibi M, et al. PD-1
inhibitor-related pneumonitis in advanced cancer patients: radiographic patterns and clinical
course. Clin Cancer Res (2016) 22(24):6051–60. doi: 10.1158/1078-0432.CCR-16-1320

15. Sandokji I, Yamamoto Y, Biswas A, Arora T, Ugwuowo U, Simonov M, et al. A
time-updated, parsimonious model to predict AKI in hospitalized children. J Am Soc
Nephrol. (2020) 31(6):1348–57. doi: 10.1681/ASN.2019070745

16. Yamagata A, Yokoyama T, Fukuda Y, Ishida T. Impact of interstitial lung
disease associated with immune checkpoint inhibitors on prognosis in patients with
Frontiers in Immunology 11
non-small-cell lung cancer. Cancer Chemother Pharmacol (2021) 87(2):251–8. doi:
10.1007/s00280-020-04205-x

17. Kim S, Lim JU. Immune checkpoint inhibitor-related interstitial lung disease in
patients with advanced non-small cell lung cancer: systematic review of characteristics,
incidence, risk factors, and management. J Thorac Dis (2022) 14(5):1684–95. doi:
10.21037/jtd-22-93

18. Naidoo J, Wang X, Woo KM, Iyriboz T, Halpenny D, Cunningham J, et al.
Pneumonitis in patients treated with anti-programmed death-1/Programmed death
ligand 1 therapy. J Clin Oncol (2017) 35(7):709–17. doi: 10.1200/JCO.2016.68.2005

19. Shafique M, Tanvetyanon T. Immunotherapy alone or chemo-immunotherapy
as front-line treatment for advanced non-small cell lung cancer. Expert Opin Biol Ther
(2019) 19(3):225–32. doi: 10.1080/14712598.2019.1571036

20. Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR. Tumour- and class-
specific patterns of immune-related adverse events of immune checkpoint inhibitors: a
systematic review. Ann Oncol (2017) 28(10):2377–85. doi: 10.1093/annonc/mdx286

21. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events
associated with immune checkpoint blockade. N Engl J Med (2018) 378(2):158–68.
doi: 10.1056/NEJMra1703481

22. Notarbartolo S, Abrignani S. Human T lymphocytes at tumor sites. Semin
Immunopathol (2022) 44(6):883–901. doi: 10.1007/s00281-022-00970-4

23. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in
cancer: mechanisms of action, efficacy, and limitations. Front Oncol (2018) 8:86. doi:
10.3389/fonc.2018.00086

24. Jing Y, Zhang Y, Wang J, Li K, Chen X, Heng J, et al. Association between sex
and immune-related adverse events during immune checkpoint inhibitor therapy. J
Natl Cancer Inst (2021) 113(10):1396–404. doi: 10.1093/jnci/djab035

25. Bomze D, Hasan Ali O, Bate A, Flatz L. Association between immune-related
adverse events during anti-PD-1 therapy and tumor mutational burden. JAMA Oncol
(2019) 5(11):1633–5. doi: 10.1001/jamaoncol.2019.3221
frontiersin.org

https://doi.org/10.1136/jitc-2020-001170
https://doi.org/10.1136/jitc-2020-001170
https://doi.org/10.1002/onco.13918
https://doi.org/10.1186/s13613-019-0487-x
https://doi.org/10.1007/978-3-030-41008-7_13
https://doi.org/10.1007/978-3-030-41008-7_13
https://doi.org/10.1038/s41587-021-01070-8
https://doi.org/10.3389/fphar.2022.896104
https://doi.org/10.1158/1078-0432.CCR-16-1320
https://doi.org/10.1681/ASN.2019070745
https://doi.org/10.1007/s00280-020-04205-x
https://doi.org/10.21037/jtd-22-93
https://doi.org/10.1200/JCO.2016.68.2005
https://doi.org/10.1080/14712598.2019.1571036
https://doi.org/10.1093/annonc/mdx286
https://doi.org/10.1056/NEJMra1703481
https://doi.org/10.1007/s00281-022-00970-4
https://doi.org/10.3389/fonc.2018.00086
https://doi.org/10.1093/jnci/djab035
https://doi.org/10.1001/jamaoncol.2019.3221
https://doi.org/10.3389/fimmu.2023.1138489
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification and prediction of immune checkpoint inhibitors-related pneumonitis by machine learning
	1 Introduction
	2 Materials and methods
	2.1 Study data
	2.2 Study outcome and variables
	2.3 Statistical analysis

	3 Results
	3.1 Study patients
	3.2 IRP risk prediction
	3.2.1 Model performance
	3.2.2 Variable importance
	3.2.3 Calibration plots
	3.2.4 Risk stratification


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References


