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Machine learning-based solution
reveals cuproptosis features in
inflammatory bowel disease
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Background: Cuproptosis, a new cell death mode, is majorly modulated by

mitochondrial metabolism and protein lipoylation. Nonetheless, cuproptosis-

related genes (CRGs) have not yet been thoroughly studied for their clinical

significance and relationship with the immune microenvironment in

inflammatory bowel disease (IBD).

Methods: We screened CRGs that had a significant correlation with immune

status, which was determined utilizing single-sample GSEA (ssGSEA) and Gene

Expression Omnibus datasets (GSE75214). Furthermore, utilizing the R package

“CensusClusterPlus”, these CRGs’ expression was used to obtain different patient

clusters. Subsequently, gene-set enrichment analysis (GSEA), gene set variation

analysis (GSVA), and CIBERSORT assessed the variations in the enrichment of

gene function and the abundance of immune cell infiltration and immune

functions across these clusters. Additionally, weighted gene co-expression

network analysis (WGCNA) and analysis of differentially expressed genes

(DEGs) were executed, and for the purpose of identifying hub genes between

these clusters, the construction of protein-protein interaction (PPI) network was

done. Lastly, we used the GSE36807 and GSE10616 datasets as external

validation cohorts to validate the immune profiles linked to the expression of

CRG. ScRNA-seq profiling was then carried out using the publicly available

dataset to examine the CRGs expression in various cell clusters and under

various conditions.

Results: Three CRGs, PDHA1, DLD, and FDX1, had a significant association with

different immune profiles in IBD. Patients were subsequently classified into two

clusters: low expression levels of DLD and PDHA1, and high expression levels of

FDX1 were observed in Cluster 1 compared to Cluster 2. According to GSEA,

Cluster 2 had a close association with the RNA processes and protein synthesis

whereas Cluster 1 was substantially linked to environmental stress response and

metabolism regulations. Furthermore, Cluster 2 had more immune cell types,

which were characterized by abundant memory B cells, CD4+ T memory

activated cells, and follicular helper T cells, and higher levels of immune-

related molecules (CD44, CD276,CTLA4 and ICOS) than Cluster 1. During the

analysis, the PPI network was divided into three significant MCODEs using the

Molecular Complex Detection (MCODE) algorithm. The three MCODEs

containing four genes respectively were linked to mitochondrial metabolism,

cell development, ion and amino acid transport. Finally, external validation
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cohorts validated these findings, and scRNA-seq profiling demonstrated diverse

intestinal cellular compositions with a wide variation in CRGs expression in the

gut of IBD patients.

Conclusions: Cuproptosis has been implicated in IBD, with PDHA1, DLD, and

FDX1 having the potential as immune biomarkers and therapeutic targets. These

results offer a better understanding of the development of precise, dependable,

and cutting-edge diagnosis and treatment of IBD.
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Introduction

Inflammatory Bowel Disease (IBD) is a chronic, recurrent

intestinal condition with unknown mechanism and aetiology. It

consists primarily of ulcerative colitis (UC) and Crohn’s disease

(CD), which are both characterised by numerous intestinal ulcers.

The active period alternates with the remission period, and various

complications and extrenteral manifestations may occur. Including

intestinal obstruction, intestinal perforation, fistula, abdominal

abscess, perianal lesions, skin mucosal lesions, joint damage and

liver lesions, high disability rate, most patients need lifelong

treatment, seriously affecting the quality of life and survival of

patients. IBD has long been considered a threat to public health

in Western countries, but the increasing incidence of IBD in

developing countries has made the disease a global problem in

recent decades (1, 2). Due to the increasing number of patients,

prolonged course of disease and high cost of treatment, the clinical

and basic research of IBD has attracted more and more attention and

gradually become a research hotspot in the field of gastrointestinal

diseases. Many studies have found that genetic susceptibility,

environmental factors, intestinal microecological changes, intestinal

mucosal immune abnormalities and other factors are involved in the

onset and progression of IBD (3). The improvement of living

environment and sanitary conditions, the popularization of clinical

antibiotics and the westernization of dietary habits are important

environmental risk factors for the incidence of IBD in developing

countries. However, there are still challenges in the diagnosis,

prognosis, and tiered therapy of IBD. Moreover, there is a paucity

of validated disease-indicative biomarkers (4–6).

Recently, metalloallostery has been used to describe the

regulatory role of copper (Cu) in various cellular processes (7, 8).

The term ‘metalloallostery’ describes Cu’s capacity to bind to newly

undiscovered locations in proteins and regulate their activity. Thus,

the current understanding of Cu has changed from that of a static co-

factor to a regulatory factor. Increasing evidence suggests that Cu also

acts as a dynamic signaling constituent exerting significant effects on

varying activities, such as brain activity, cellular proliferation,

autophagy, and lipolysis. Thus, regulating the biological availability

of Cu both inside and outside of the cell is crucial for homeostasis (9,

10). Cuproptosis is defined as a non-apoptotic cell death process,
02
wherein Cu binds directly to the tricarboxylic acid (TCA) cycle-

related lipoylated components (11, 12). The accumulation of these

Cu-bound, lipoylated mitochondrial proteins followed by the Fe-S

cluster proteins’ loss causes proteotoxic stress and a different type of

cell death. Various cell death types, including apoptosis, necroptosis,

pyroptosis, and ferroptosis, have been studied in depth; however, Cu-

induced cellular toxicity has received less attention. Several

hypotheses have been presented to explain the mechanism of Cu-

induced cell death, such as apoptosis activation, cell death

independent of caspase, the synthesis of ROS, and the suppression

of the ubiquitin-proteasome system. Cu metalloallostery is the

binding of Cu to the non-catalytic areas of proteins to regulate

pathways like proliferation, lipolysis, and autophagy. Nonetheless,

non-specific Cu binding has often been reported as a probable

process of Cu toxicity and is frequently used to criticize

metalloallostery. Wilson disease hepatocytes, which hyper-

accumulate Cu due to ATP7B mutations, produce less lipoylated

protein and iron-sulfur clusters, indicating the potential role of

cuproptosis in disease pathogenesis. To remove damaged

mitochondria and presumably reduce cuproptosis, Cu

metalloallostery is activated in Wilson disease hepatocytes to

elevate autophagy and lysosome biogenesis in a direct manner.

Various studies confirmed the existence of numerous extra protein

binding sites for exchangeable Cu. Under normal circumstances, Cu

binding to mitochondria’s lipoylated proteins is an exciting potential

revealed by the discovery of cuproptosis (12, 13). Cu obtainability

might constitute a temporary allosteric control process mediated by

protein aggregation on smaller scales. Moreover, Cu overload caused

by ionophores or illnesses can overwhelm this highly calibrated

system, resulting in Cu-mediated aggregation and cell death. The

discovery of cuproptosis has paved the way for further research into

the unique elements of mitochondrial biology in autoimmune

disorders and normal cellular function.

IBD has become a global health concern, and its complexity

creates significant obstacles for patients, researchers, and caregivers.

Despite the fact that many efforts have been made to overcome

these obstacles and produce viable treatments, the progress made

thus far is insufficient. Throughout the past few decades, various

forms of cell signaling blocking medicines, including biologics, have

improved clinical response and clinical remission rates for IBD.
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In patients with CD or UC, the efficacy of the majority of treatments

has a biological upper limit. Hence, there is an urgent need to create

new research avenues and breakthrough IBD treatments in order to

overcome the efficacy ceiling. Other diseases (such as

atherosclerosis) have been thoroughly researched in terms of

genomic, transcriptome, epigenome, and proteome alterations,

however information from the omics data sets of patients with

IBD is limited. Data from all omics research contribute to the

analysis of the pathobiological mechanisms of IBD, although the

relative value of various omics components may vary. It is possible

that distinct pathophysiological variables may predominate in

distinct subgroups of IBD patients. Cu is an essential trace

element that acts as a co-factor for enzymes in environments

where cells are exposed to correct quantities of the metal, which

can be poisonous to the cells if present in unsuitable amounts.

Interestingly, the metabolic imbalance produced by copper has a

high correlation with the development of IBD, and the copper-to-

zinc ratio has a substantial correlation with CRP and calprotectin in

people who have active IBD (14). A regulator of the Cu transport

pathway, COMMD1 has been demonstrated to suppress NF-kB
activation (15, 16). Eliminating COMMD1 in myeloid cells has been

linked to more severe inflammatory responses, suggesting that

sustained COMMD1 inhibition may be unfavorable throughout

chronic inflammation. As a novel pattern of cell death, cuproptosis

has garnered considerable interest. When the mitochondrial

respiration chain is disturbed, excess copper binds directly to the

lipoylated components of the TCA cycle. In addition, cell death is

intimately linked to gut barrier degradation and anti-inflammatory

cell inhibition of IBD, such as in goblet cells and Tregs. Thus, it is

plausible to hypothesise that cuproptosis may have an impact on the

onset of IBD. However, the mechanism is poorly known, and few

studies have employed bioinformatics to investigate the

involvement of cuproptosis-related genes (CRGs) and related

intestinal cell clusters in IBD, which could lead to a new line of

enquiry into the disease. The current study aims to investigate the

role of CRGs in the aetiology of IBD and immunological regulation,

as well as to identify possible cuproptosis-associated candidate

biomarkers and therapeutic targets.
Methods and materials

Data sources and processing

The “GEOquery” R package (version 2.66.0) was used to get three

microarray datasets (GSE75214, GSE36807, and GSE10616) linked to

IBD from the Gene Expression Omnibus (GEO) database, which is

located at https://www.ncbi.nlm.nih.gov/geo/. The GSE75214 dataset

including 22 healthy, 75 CD and 97 UC samples were selected as

training set. Both the GSE36807 dataset, which had tissues from 7

healthy samples, 13 CD samples, and 15 UC samples, and the

GSE10616 dataset, which contained tissues from 16 healthy

samples, 32 CD samples, and 10 UC samples, were chosen for an

external validation analysis. The gene symbol conversion for each

dataset was annotated using the corresponding platform file.
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Consensus clustering

We used Spearman’s coefficient for investigating the link

between the expression of CRGs and the findings of the ssGSEA

analysis to determine the effect of cuproptosis on the

immunological profiles of IBD. As FDX1, DLD, and PDHA1

possessed the strongest correlation with immune signature based

on the mean value of correlation and the median value of P-value,

these three genes were executed consensus clustering on IBD

sample data. Utilizing the R package “ConsensusClusterPlus”

consensus clustering and visualization of the results were

performed (17). Additionally, we employed the R package

“FactoMineR” to test the effectiveness of the aforementioned

consensus clustering via principal component analysis (PCA).
Gene set enrichment analysis

Utilizing the default defined set of genes, GSEA software (https://

www.gsea-msigdb.org/gsea/) was employed for determining the

enrichment of distinct pathways in the two clusters (18). As the

pre-defined ontology gene set, “c2.cp.kegg.v7.4.symbols.gmt” was

chosen from the MSigDB Collection and regarded a pathway as a

substantially enriched pathway with the absolute normalized

enrichment score that was greater than one (|NES| >1) and

adjusted p-value that was less than 0.05.
Establishment and evaluation of
the nomogram

Nomograms can include multiple different factors that

influence prognosis simultaneously to predict the study cohort’s

survival or occurrence (19). Construction of a predictive nomogram

based on the aforementioned characteristics (FDX1, DLD, PDHA1)

was done utilizing the “rms” R software (version 6.5.0) (20). In

order to make a comparison between the expected values and the

standard values, calibration curves were utilised. The decision curve

analysis (DCA) approach was applied so that the nomogram

model’s ability to forecast could be evaluated. For the purpose of

visualising the receiver operating characteristic (ROC) curves, the

“pROC” R package was utilised.
Evaluating immune cell infiltrations

Using gene expression profiles, the CIBERSORT approach, which

excels at reducing noise and recognizing related cell types, was

applied for identifying the tissues’ immune cell composition. For

each sample, CIBERSORT employs Monte Carlo sampling to

calculate the inverse fold product p-value. Only samples with p-

values less than 0.05 were deemed accurate immune cell fractions.

The sum of the proportions of the 22 immune cells in each sample

was one (21). Using ssGSEA, a GSEA extension, separate enrichment

scores were generated for each pairing of a gene set and sample (22).
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DEGs and WGCNA analysis

We sequentially analyzed DEGs and WGCNA to identify the

hub genes that assisted the biological divergences between various

subclusters. First, the ‘limma’ R package was used to contrast

transcriptome data (FPKM normalization) and identify DEGs.

The |log2FoldChange| > 1 and adjusted p-value < 0.05 served as

screening thresholds, and a heat map and a volcano plot were

utilized to represent the findings. Following that, we used the

“WGCNA” R package to run WGCNA (software = 12) on the

DEGs, which organises strongly linked genes into modules and

assesses the connection between modules and external sample

attributes. The relationships between clustering and immune

checkpoints, and ssGSEA characteristics were investigated. Lastly,

the module of genes closely associated with clustering (greenyellow

module) was selected for subsequent analyses.
Analysis of functional enrichment and
protein-protein interaction network

The gene list was uploaded to Metascape (http://metascape.org/)

in order to undertake pathway and process enrichment analysis as

well as PPI enrichment analysis. This was done in order to further

investigate the aforementioned module of genes. During the

functional enrichment study, ontology sources from GO Biological

Processes, Canonical Pathways, KEGG Pathway, Reactome Gene

Sets, and WikiPathways were utilised. Additionally, a PPI

enrichment analysis was conducted. The Molecular Complex

Detection (MCODE) algorithm was utilized to separate proteins

and construct interaction networks if the network’s protein number

was between 3 and 500 (23, 24).
Gene set variation analysis

It is feasible to discover how the enriched gene sets of the various

clusters are distinct from one another by utilising GSVA, which is a

method of nonparametric, unsupervised analysis. In order to evaluate

the biological roles played by the gene sets, the “GSVA” package

version 1.46.0 in R was utilised to assign signalling pathway variation

scores to each of the gene sets. Gene sets were collected from the

Molecular Signatures Database, which can be found at http://

software.broad-institute.org/gsea/msigdb. The definition of a

significant change was a |t value of GSVA score| that was more than 1.
ScRNA-seq data processing and
identification of cell types

The single cell data set of colon tissue used in this study was come

from a previous study, which contained three conditions (healthy, non-

inflammation and inflammation) (25). Using the “Seurat” package, the

processed data was examined. Scrublet was used to find doublets and

get rid of low-quality cells (26). The expressionmatrix was standardised
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using the log2 (CPM+1) values as the input matrix for the subsequent

analysis. Principal component analysis was carried out after high

variable genes were found using the “FindVariableGenes” function.

Based on the uniform manifold approximation and projection

(UMAP) embedding of the initial work, the dimension reduction of

single-cell visualisation was carried out. Then, the “DimPlot” function

was used to visualise the single-cell UMAP plot, while the “FeaturePlot”

and “Dotplot” functions were used to visualise the hub gene expression

plot. On the basis of the expression of knownmarker genes, cell clusters

from each location were manually categorised into three

compartments: Epithelial (EPCAM, KRT8, and KRT18), Stromal

(CDH5, COL1A1, COL1A2, COL6A2, and VWF), and Immune

(CD45/PTPRC, CD3D, CD3G, CD3E, CD79A, CD79B, CD14,

CD16, CD68, CD83, CSF1R, FCER1G). Subtype annotation of each

main compartment in the original study was used for our study.
Results

Identifying CRGs linked to IBD
immune profiles

To investigate if the CRGs’ expression affected IBD immune profiles,

we extracted the expression of 10 CRGs from previous study (27) and

used ssGSEA to estimate the immune cell infiltration of 194 samples. The

clustering was done for the included samples utilizing the average linkage

hierarchical clustering approach using relative immune cell abundance,

and the normalized enrichment score of immune infiltrates is presented

in the heatmap (Supplementary Figures S1A, B). Compared to healthy

people, CD patients showed increased levels of aDCs, pDCs, mast cells,

neutrophils, T helper cells, Th1 cells, TIL, and Treg, according to the

results of a differential study of immune cell infiltration. Also, CD

patients had significantly greater levels of immune function subtypes

like APC co-inhibition, CCR, Check-point, HLA, Inflammation-

promoting, MHC_class_I, Parainflammation, T_cell co-inhibition,

T_cell co-stimulation, Type_I_IFN_Reponse, Type_II_IFN_Reponse

(Figure 1A). Compared to healthy people, UC patients had reduced

levels of aDCs, macrophages, mast cells, neutrophils, T helper cells, Tfh,

Th1 cells, TIL, and Treg. Moreover, APC co-inhibition, CCR, Check-

point , HLA, Inflammation-promoting, MHC_class_I ,

Parainflammation, T_cell co-inhibition, T_cell co-stimulation,

Type_II_IFN_Reponse were all shown to be significantly lower in UC

patients (Figure 1B). Using Spearman correlation analysis to examine the

relationship between immune cell subtypes/immune function subtypes

and the expression of 10 CRGs, the findings indicated that MTF1 was

significantly positively correlated with nearly all immune cell subtypes

and immune function subtypes, whereas PDHB, PDHA1, LIAS, FDX1,

DLD, and DLAT had a negative correlation (Figure 1C). Additionally,

inflammatory response and cuproptosis gene sets, respectively, were used

for the GSEA enrichment analysis. The outcomes demonstrated that the

enrichment of cuproptosis differed greatly from an inflammatory

response. Whereas inflammatory response was primarily enriched in

the disease group, cuproptosis was primarily enriched in the normal

group (Figures 1D, E). The result suggested that cuproptosis in IBDmay

be a better indicator than other inflammatory pathways.
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IBD patients’ consensus clustering using
PDHA1, DLD, and FDX1

The top 3 genes (PDHA1, DLD, and FDX1) were chosen for

further clustering analysis after the correlation mean value and

median value of P values of all immune score related to each gene
Frontiers in Immunology 05
were obtained (Table S1). Then the extraction of expression data of

PDHA1, DLD, and FDX1 in the included samples was done, and we

also carried out the consensus clustering in GSE75214 to establish

two clusters of patients (Figure 2A). The PCA plot showed that the

clustering described above had good distinction efficiency compared

with clustering using all CRGs (Figures 2B, C). Additionally, we
A

B

D

E

C

FIGURE 1

The correlation of CRGs with ssGSEA in the GSE75214 cohort. (A) Boxplots of the differentially infiltrated immune cells between CD and normal
groups. (B) Boxplots of the differentially infiltrated immune cells between UC and normal groups. (C) The correlation of CRGs with ssGSEA. (D) The
GSEA plot of the cuproptosis-related gene sets. (E) The GSEA plot of the inflammatory response-related gene sets. *p< 0.05, **p< 0.01, ***p< 0.001.
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performed a similar clustering analysis using immune checkpoints-

related genes and discovered that the outcomes were comparable to

those obtained using cuproptosis-related genes, whereas the

outcomes of the PCA analysis revealed that the top three

cuproptosis-related markers had a much stronger differentiation

than immune checkpoints (Supplementary Figures S1C, D). Cluster

1 had a lower expression of DLD and PDHA1 and a higher

expression of FDX1 (Figure 2D) than Cluster 2. Additionally, these

three regulators’ expression levels were contrasted between IBD and

normal tissues, which revealed a lower expression in IBD tissues

compared to normal tissues (Figures 2E, F).
Development of a IBD diagnostic column
line graph

As a diagnostic tool for IBD progression, a nomogram was

constructed by incorporating the characteristic genes (Figure 3A).

Each characteristic gene in the nomogram was assigned a score, and

the sum of all the scores for the characteristic genes was used to

determine the final score. The total score represented various IBD

risks. According to the calibration curves, the results that the model

had predicted were almost identical to the results that were actually

obtained (Figure 3B). The curve for the “column line graph” is

higher than the control line in the DCA, and the curve for the

“FDX1, DLD, and PDHA1” suggests that patients may benefit from

the column line graph model at a high-risk threshold of 0 to 1. A

larger clinical benefit was obtained from the use of the column line

graph model as opposed to the “FDX1, DLD, and PDHA1” curve

(Figure 3C). The correctness of the model may also be confirmed

using the ROC curve analysis, and the results implied that the

clinical significance of the model to predict the occurrence

probability of IBD was superior to that of a single independent

predictive factor (Figures 3D–G). Based on these studies, it appears

that the pathogenesis of IBD involves all main CRGs.

The pathway enrichment between the two clusters was

contrasted utilizing GSEA. Biological pathways associated with

RNA processes and protein synthesis, including SPLICEOSOME,

and RIBOSOME, were enriched in Cluster 2. In Cluster 1,

environmental stress response and metabolism-related biological

pathways, such as ALANINE_ASPARTATE_AND_GLUTA

MATE_METABOLISM, ARACHIDONIC_ACID_META

BOLISM, DRUG_METABOLISM_CYTOCHROME_P450,

R E N I N _ ANG I O T E N S I N _ S Y S T EM a n d M E T A B

OLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450, were

enriched (Figure 3H). The findings revealed that Cluster 1 had a

close association with metabolism modulation in IBD. Additionally,

the GSVA analysis suggested that these two clusters enriched in

many different pathways, including Il2_stat5_signaling,

Tnfa_signaling_via_nfkb, Tgf_beta_signaling, Interferon_gam

ma_response, Kras_signaling_up, G2m_checkpoint, Apoptosis,

Dna_repair,Unfolded_protein_response, Myc_targets_v1, Mtor

c1_signaling, Heme_metabolism, Oxidative_phosphorylation,

Fatty_acid_metabolism, Bile_acid_metabolism, and so on, which

were involved in immune responses, cell death and energy

metabolism (Figure 3I).
Frontiers in Immunology 06
Association between clustering and
immune cell infiltrations

A CIBERSORT analysis was performed, and a comparison of

the abundance of immune-related cell subtypes was made. This

was done so that we could examine the degree to which the two

Clusters differed in the immune infiltration profiles they

displayed. The findings indicated that there was a difference in

the immune microenvironment between cuproptosis-related

Cluster1 and Cluster2 (Figures 4A, B). CIBERSORT analysis

revealed that memory B cells, CD4+ T memory activated cells,

and follicular helper T cells had elevated percentages in Cluster 2

while Cluster 1 had a high expression of activated NK cells, and

regulatory T cells. Thus, it’s possible that cuproptosis-related

Cluster 2 may have a faster immune response capacity

(Figure 4C). As immune modifiers and monoclonal antibodies

have become more significant in the IBD treatment, we evaluated

the critical immune-related biomarkers’ expression levels in the

two clusters. Compared to Cluster 2, CD160, CD244 and LAG3

were elevated while CD44, CD276,CTLA4 and ICOS were

decreased in Cluster1 (Figure 4D).
Identifying key modules genes, functional
enrichment and PPI network analysis

The DEGs were identified between Cluster 1 and Cluster 2,

revealing 266 DEGs (upregulated, 179; downregulated, 87;

Supplementary Figures S2C, D). To improve the accuracy of

WGCNA, we extracted the top 4734 genes having the greatest

median absolute deviation (MAD) and combined the previous 266

DEGs. Lastly, a total of 5000 genes were used for WGCNA. The

power of = 12 (scale-free R2 = 0.9) was chosen as the soft-

thresholding value for constructing a scale-free network

(Supplementary Figures S2A, B). Fourteen modules in total were

discovered utilizing the average linkage hierarchical clustering

(Figure 5A). Moreover, the module eigengenes (MEs) of the

lightcyan module, and greenyellow module were observed to have

a positive relationship (>0.5) with the clustering, and the MEs of the

lightcyan, greenyellow, and lightgreen modules had a positive

correlation with IBD (>0.5, Figure 5B). For further investigation,

these modules were chosen as significant clinical modules. The

greenyellow module had the highest overall correlation with the

clustering and disease as determined by module connectivity and

quantified by the absolute value of Pearson's correlation and clinical

trait association (Figure 5C). Furthermore, the greenyellow module

was utilized to detect hub genes.

For functional enrichment analysis, hub genes discovered by the

greenyellow module were imported into Metascape to further

investigate them, and the construction of the PPI network was

done. In the functional enrichment analysis, the most substantial

pathways were associated with metabolic regulation, such as lipid

biosynthetic process, membrane lipid biosynthetic process, cellular

modified amino acid metabolic process, and regulation of peptide

transport (Figures 5D, E). Then, the MCODE algorithm classified
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the whole PPI network into three primary MCODEs in the PPI

network analysis, each comprising four genes (Supplementary

Figure S3). MCODE1 (PLCE1, PLCD3, PLCB4, and MTM1) was

strongly correlated with metabolic process (Figure 5F). MCODE2
Frontiers in Immunology 07
(TFCP2L1, LEFTY1, FOXA2, and KLF4) was strongly correlated

with the cell maturation and development. MCODE3 (CFTR, CA2,

SLC9A2, and CA4) was strongly correlated with the regulation of

peptide and ion transport (Figure 5F).
A B

D

E F

C

FIGURE 2

Clustering of IBD patients in the GSE75214 dataset using the expression of PDHA1, DLD, and FDX1. (A) Matrix of consensus clustering for k = 2.
(B) The findings of clustering-related PCA using 10 CRGs. (C) The findings of PCA of clustering using top3 CRGs. (D) Contrast of the top3 CRGs’
expression levels between Cluster 1 and 2. (E) Contrast of the top3 CRGs’ expression levels between CD samples and normal samples. (F) Contrast of
the top3 CRGs’ expression levels between UC samples and normal samples. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, no significance.
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External validation of immune cell
landscape in two clusters

The clustering based on three CRGs (PDHA1, DLD, and FDX1)

was externally validated utilizing the GSE36807 and GSE10616 datasets.
Frontiers in Immunology 08
Consensus clustering was performed in GSE36807, which divided the

samples into two clusters (Figure 6A). The PCA plot showed that the

clustering described above has a high degree of distinction efficiency

(Figure 6B). Cluster 1 comprised 13 samples whereas Cluster 2

comprised 15 samples, and the latter had substantially higher FDX1
A B

D E F G

IH

C

FIGURE 3

Construction of a nomogram and differences in GSEA between two clusters. (A) Nomogram showing three featured genes used in the diagnosis of
patients with IBD. (B) Calibration curve showing predicted performance of the column line graph model. (C) The clinical benefits of the model are
evaluated using DCA curves. (D) ROC curves are used to evaluate the clinical value of the model. (E–G) The ROC curves of the training set’s feature
genes. (H) The biological pathways’ enrichment tendency between two clusters. (I) The bar plots illustrate the distribution of the t values of the GSVA
scores generated for a variety of pathways.
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expression levels (Figure 6C). Moreover, patients with UC had

significantly lower PDHA1 and DLD expression levels compared to

normal controls (Figures 6D, E). Furthermore, CIBERSORT revealed

that contrasted to Cluster 1, substantially higher CD8 T cells and less
Frontiers in Immunology 09
CD4 Tmemory resting cells in Cluster 2 (Figures 6F, G, O). Thus, these

findings revealed that the top3 CRGs-based patients clustering exhibited

different immune profiles, which were similarly verified in data set

GEO10616 (Figures 6H–N, P).
A B

D

C

FIGURE 4

Profiling of immune infiltrations in the two Clusters. (A) Stacked bar chart illustrates the 22 immune cell types’ distribution in Cluster 1. (B) Stacked
bar chart illustrates the 22 immune cell types’ distribution in Cluster 2. (C) Differential study of immune cell infiltrations in Cluster 1 and 2. (D) Cluster
1 versus Cluster 2 in terms of molecules associated to the immune. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, no significance.
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ScRNA-seq analysis for the top CRGs

Follow the method used by Xavier RJ et al., annotation by cell-

type markers first broadly classified cells into three major cell-type

compartments: 97,345 epithelial cells, 39,424 stromal cells, and

142,045 immune cells. The epithelial cells can be further divided

into 13 cell subtypes, including Enterocytes, Enteroendocrine cells,

Epithelial Cycling cells, Goblet cells, Paneth cells, Stem cells and

Tuft cells. The immune cells can be further divided into 25 cell

subtypes, including B cells, DC, ILCs, Immune Cycling cells,

Macrophages, Mast cells, Mature DCs, Monocytes, NK, Plasma,

CD4+ T cells, CD8+ cells, Naïve T cells, and Treg. The stromal cells
Frontiers in Immunology 10
can be further divided into 17 cell subtypes, including Activated

fibroblasts, Endothelial cells, Fibroblasts, Glial cells, Inflammatory

fibroblasts, Lymphatics, Myofibroblasts, Pericytes, and Stromal

Cycling cells (25). The percentage of expression of cuproptosis-

related hub genes in each compartment was shown in dot plots and

UMAP plots (Figures 7A–F). We can find these three hub genes

(PDHA1, DLD, FDX1) were highly expressed in Epithelial Cycling

cells, Stem cells OLFM4 LGR5, Stem cells OLFM4 PCNA from

Epithelial cells, which indicated they may play an important role in

the regulation of epithelial cells proliferation. For immune cell

subtypes, the FDX1 was highly expressed in the Monocytes

(CHI3L1, CYP27A1) compared with other hub genes, which
A B

D

E F

C

FIGURE 5

Screening of hub genes related to clustering and construction of a PPI network. (A) Dendrogram of 5000 genes containing 266 DEGs and 4734 top
MAD-ordered genes clustered using a dissimilarity measure. (B) The correlation study between module eigengenes and disease state and clustering
is depicted as a heatmap. Each column includes the matching correlation and p-value. (C) Scatter plot of module membership in greenyellow
module versus the gene significance for Cluster. (D) Analysis of functional enrichment in different ontology sources. (E) Chosen enriched terms for a
network, coloured according to the ID of the cluster group. (F) PPI network analysis for the three specified MCODE components.
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FIGURE 6

Validation of clustering using top3 CRGs in GSE36807 and GSE10616. (A) Matrix of consensus clustering for k = 2. (B) The PCA findings using top3 CRGs
(FDX1, DLD, and PDHA1). (C) The expression levels of the chosen CRGs between Cluster 1 and 2. (D) The expression levels of the chosen CRGs between
CD samples and normal samples. (E) The expression levels of the chosen CRGs between UC samples and normal samples. (F) Stacked bar chart
illustrates the 22 immune cell types’ distribution in Cluster 1. (G) Stacked bar chart illustrates the 22 immune cell types’ distribution in Cluster 2. (H) Matrix
of consensus clustering for k = 2. (I) The PCA findings using top3 CRGs. (J) The expression levels of the chosen CRGs between Cluster 1 and Cluster 2
(“DLD” was not detected in GSE10616). (K) The expression levels of the chosen CRGs between CD samples and normal samples. (L) The expression
levels of the chosen CRGs between UC samples and normal samples. (M) Stacked bar chart illustrates the 22 immune cell types’ distribution in Cluster 1.
(N) Stacked bar chart illustrates the 22 immune cell types’ distribution in Cluster 2. (O, P) Immune cell infiltration-related differential analysis in Cluster 1
and 2. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, ns, no significance.
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indicated this gene may play a key role in the activation and

recruitment of monocytes. For stromal cells, we can find these

three genes mainly located in the Inflammatory fibroblasts (IL11,

CHI3L1), Myofibroblasts (GREM1, GREM2) and Pericytes cells.

Furthermore, we also explored the relative expression differences of

these cuproptosis-related hub genes under different conditions. We

can find that these genes have specific differences in different cell

subtypes and under different conditions, which highlights the

heterogeneity of each cell subtype and the specific expression

patterns of these genes in different cell subtypes (Figures 7G–I).

In addition, we can find that these genes are mainly highly

expressed in epithelial and immune cell subtypes, compared with

stromal cells which illustrated that these three genes mainly played a

potential role in the transcription and regulation of epithelial and

immune cell subtypes (Figures 7G–I).
Frontiers in Immunology 12
Discussion

Multiple forms of cell death have been identified to date,

including cuproptosis, pyroptosis, necroptosis, ferroptosis,

autophagy, and apoptosis. Pyroptosis, apoptosis, and necroptosis

induce instability of the membrane and rupture of the cell via

distinct molecular and cellular processes, including ionic gradients

and inflammatory caspases (28). Autophagy results in the

disintegration of organelles, which supply metabolites, prevent

DNA damage, and resist oxidative stress (29). Ferroptosis is a

type of oxidative cell death dependent on iron owing to

unrestrained lipid peroxidation (30). Each cell death type signifies

a distinct process as well as illustrates an immune response under

various settings. The significance of these processes resides in the

discovery of new targets with potential effectiveness and
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FIGURE 7

Cuproptosis-related features in scRNA-seq profiling. Dot plot showing the relative expression of three cuproptosis-related hub genes from epithelial
cell subtypes (A), immune cell subtypes (B), and stromal cell subtypes (C). Feature plot showing the normalized gene expression of three hub genes
colored by epithelial cell subtypes (D), immune cell subtypes (E), and stromal cell subtypes (F). Dot plot showing the relative expression of three
cuproptosis-related hub genes across three conditions (normal, non-inflammation, and inflammation) from epithelial cell subtypes (G), immune cell
subtypes (H), and stromal cell subtypes (I). According to the similarity of gene expression in different cell subtypes, hierarchical clustering is
conducted to highlight the specific gene expression patterns of genes in different subtypes.
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implementation feasibility. Cuproptosis is a novel mechanism of

cell death caused by an excess of Cu and succeeding disruption to

the TCA pathways in the mitochondria (31, 32). Despite the

significant breakthroughs in the numerous forms of controlled

cell death, the processes and implications of cuproptosis have

received more attention. For instance, it is unknown if

cuproptosis is necessary to activate particular Cu enzymes, the

majority of which are engaged in oxygen activation and reduction.

In apoptosis and ferroptosis, mitochondrial stress can result in a

significant reduction of mitochondrial membrane potential. The

impact of ES-Cu on the membrane potential and the dynamics of

the mitochondria must be elucidated further. It is possible that

activation of mitochondrial quality regulation mechanisms,

including mitochondrion-specific autophagy or mitophagy,

restrict cuproptosis. Nevertheless, the protein degradation

machinery (such as ubiquitin-proteasome system and autophagy)

modulating proteotoxic stress to regulate cuproptosis merits further

investigation. Due to the possibility that some modes of cell death

cause greater inflammation than others, comprehending how

cuproptosis originated, disseminated, and eventually carried out

could have significant implications in the development of

therapeutic approaches and prospective combination therapies.

UC and CD are the most prevalent forms of IBD, which is a

chronic, non-specific inflammation-related intestinal disease with

an unknown cause. Extreme instances may necessitate

hospitalization and surgery, have a low fatality rate, and

necessitate lifetime therapy. Currently, the pathogenesis of IBD is

unknown. The majority of researchers believe that it may be caused

by a number of factors, including genetic susceptibility, persistent

intestinal infection, intestinal flora disorder, changes in intestinal

mucosal permeability, environmental and dietary habits, which may

result in abnormal immune responses in intestinal mucosal tissues

and intestinal inflammation. In recent years, an increasing number

of studies on the pathophysiological pathogenesis and biomarkers

of IBD have been conducted, which have important guiding value

for clinical diagnosis and treatment, particularly in the diagnosis of

disease, disease typing, drug selection, targeted therapy, efficacy

prediction, disease status assessment, prognosis and recurrence

prediction, etc. Consequently, basic and clinical translational

research of IBD emphasizes its significance, which not only

elucidates the disease’s pathophysiology but also advances

clinically accurate diagnosis, stratified therapy, prognosis, and

prognosis. However, studies on the combined impact of CRGs

and their functional traits on IBD are scarce. By examining the

association between CRGs and IBD and alterations in the immune

microenvironment, this study contributes to a preliminary

understanding of the significance of this novel cell death pattern

in IBDs and identifies potential therapeutic targets and

prognostic indicators.

To investigate if the CRGs’ expression affected IBD immune

profiles, we extracted the expression of 10 CRGs from previous

study and used ssGSEA to estimate the immune cell infiltration of

patients with IBD. MTF1 demonstrated a substantial positive

connection with virtually all of the immune cell and function

subtypes, whereas PDHB, PDHA1, LIAS, FDX1, DLD, and DLAT

had an almost negative link with each of these. The findings
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suggested that the presence of cuproptosis in cases of IBD would

be a more accurate indicator. The top 3 genes (PDHA1, DLD, and

FDX1) were chosen for further clustering analysis after the

correlation mean value and median value of P values of all

immune score related to each gene were obtained. Then the PCA

indicated distinct clustering, with Cluster 1 exhibiting low DLD and

PDHA1 expression and high FDX1 expression. Notably, IBD tissues

had lower levels of these three regulators than normal tissues. The

primary idea behind an Alignment diagram, also known as a

Nomogram diagram, is to create a multi-factor regression model

(such as the widely used Cox regression, Logistic regression, and so

on) and calculate the contribution of each influencing component

to outcome variables (the size of regression coefficient). Each value

level of each influencing component is assigned a value, and the

final score is calculated by adding each score. In the final step, the

predicted value of the particular outcome event is calculated by

making use of the function conversion relationship that exists

between the overall score and the likelihood of the result event.

Both clinical practise and medical research have significantly

increased their interest in this field as well as their use in it. On

the basis of the substantial information that we found that

differentiates illnesses, we made an effort to develop a nomogram

model that can diagnose IBD. The calibration curves suggested that

the outcomes that the model had predicted were, to a large extent,

consistent with the results that were actually obtained. The clinical

utility of the model to predict the incidence likelihood of IBD was

more than that of a single independent predictive factor, which can

be proven by the ROC and DCA curve analysis of the column line

graph model. According to the findings of these research, it would

appear that the aetiology of IBD involves all of the key CRGs.

Another cause for concern is the immunological infiltration that

occurs in the intestines in IBD. In IBD, excessive cytokine storms

and immune cell infiltration are believed to prevent inflammation

from resolving and contribute to the recurrence of the disease as

well as tissue damage. The immune response that is mediated by

type 1 T helper cells (Th1) and Th17 has been linked to CD, which

is a chronic inflammatory disease. On the other hand, abnormal

Th2 responses have been linked to the development of UC, and the

eventual imbalance of interactions with other T-cell groups (such as

Treg and Th9) contributes to the complexity of IBD

immunopathogenesis (33, 34). Hence, immune-related genes and

subtypes were compared between the clusters. Cluster 1 was

composed of more abundant activated NK cells, and regulatory

T cells. Meanwhile, Cluster 2 comprised more abundant memory

B cells, CD4+ T memory activated cells, and follicular helper T cells.

Moreover, most critical immune-related molecules (CD44, CD276,

CTLA4 and ICOS) were significantly upregulated in Cluster 2 in

comparison with Cluster 1. According to the data we gathered,

CD44 and T cells immunity are worthy of discussion. The critical

function in gastrointestinal inflammation is attributed to CD44,

which is expressed in monocytes and lymphocytes (35). Leukocyte

CD44 interplays with hyaluronate in the extracellular matrix

following its exit from the blood and passage through the

endothelial barrier. Hyaluronate is also involved in the

extracellular matrix’s organization and is enhanced during

inflammation (36, 37). Moreover, signals crucial for T cell
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1136991
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1136991
activation and suppression are transmitted by the CD80/CD86:

CD28/CD152 costimulatory pathways (38). Notably, the key

antigen-presenting cells in the gut are macrophages and epithelial

cells. Remarkably higher levels of CD80 and CD86 costimulatory

molecules are expressed by the macrophages from the IBD colon

(39). In colitis murine models, the CD28-CD80 interaction

predominantly contributes to overcoming the tolerance and

triggering the T cells-mediated immune response. Thus, the

blockade of the CD80-costimulatory axis may be a promising

approach in IBD therapy (40). Our findings did not find

significant differences in these costimulatory molecules between

the two clusters, suggesting that this may be a common feature of

IBD pathogenesis.

To further elucidate the internal impacting variables between

the two clusters, screening was done for DEGs and used WGCNA

for identifying the module strongly associated with clustering and

IBD. In total 14 modules were determined. The greenyellow and

lightcyan MEs were significantly linked (>0.5) with the clusters,

whereas the greenyellow, lightcyan, and lightgreen modules had a

significant association with IBD. Further analysis demonstrated that

the clustering and greenyellow module had a strong relationship.

The PPI network was built so that we could have a comprehensive

understanding of the hub genes that the greenyellow module

uncovered. In addition, the MCODE algorithm divided the

network into its three primary MCODEs, which are referred to as

MCODE1, MCODE2 and MCODE 3, respectively. The PLCE1,

PLCD3, PLCB4, and MTM1 proteins were clustered into MCODE1

and play a role in the lipid and mitochondrial metabolic program.

PLCB4 is an amplification- or polysomy-derived copy gain-driven

oncogenic lipid-catabolizing enzyme that encodes the ß4 variant of

phosphoinositide-specific phospholipase C isoenzymes. It can also

be upregulated by increased YAP1 (41). MTM1, the founding

member of the myotubularin family of PI 3-phosphatases, plays a

crucial role in the endosomal PI (3)P homeostasis. Defects in

mitochondrial morphogenesis, endoplasmic reticulum shape, and

cellular ATP depletion caused by MTM1 dysfunction can explain

myofiber hypotrophy and defective sarcoplasmic reticulum

organisation in human patients who frequently appear

malnourished (42, 43). MCODE2 comprised TFCP2L1, LEFTY1,

FOXA2, and KLF4, which are involved in cell maturation and

development. Mammary progenitor cells are responsible for

producing LEFTY1, a secreted regulator of NODAL/SMAD2

signaling. At the same time, LEFTY1 suppresses SMAD2 and

SMAD5 signaling, which in turn promotes the long-term

proliferation of both normal and malignant epithelial cells (44). It

has been found that FOXA2 plays a major role in many stages of

mammalian development, including the regulation of gene

expression throughout the genome in the intestinal epithelium,

the formation of the node and notochord, and more. Due to

significant defects in gastrulation, neural tube patterning, and gut

morphogenesis caused by the lack of FOXA2, embryonic lethality

results. FOXA2 is necessary for the regulation of gene expression

across the genome in the intestinal epithelium and the formation of

the node and notochord (45). And since it is known that

differentiated intestinal epithelial cells express KLF4, this indicates

that KLF4 may play a role in the transition from proliferative to
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differentiated states in epithelial cells (46). Additionally, MCODE3

(CFTR, CA2, SLC9A2, and CA4) was strongly correlated with the

regulation of peptide and ion transport. CFTR is a crucial ion

transporter for Cl− and HCO3− in epithelial cells and is crucial for

preserving the body’s interior environment’s homeostasis. High

rates of cancer and cystic fibrosis were brought on by its variations

(47). Intestinal epithelial cells are where the majority of the

expression of the SLC9A2 gene occurs. As was demonstrated for

CFTR in intestinal stem cells, it is more probable that the

intracellular pH, which is regulated by SLC9A2 in the apical

membrane, is the critical factor by which SLC9A2 influences

signal transduction (48). The evidence presented above from the

scientific literature, along with the findings from our bioinformatics

analysis, point to the possibility that the regulation of mitochondrial

metabolism is connected to the development and physiopathologic

mechanism of IBD. This is an important topic that needs to be

investigated further in the future.

In addition, we utilised GSE36807 and GSE10616 so that we

could validate the clustering that was based on CRGs. The PCA plot

demonstrated that the clustering that was discussed earlier had a

high degree of effectiveness in distinguishing across groups. And

Cluster 1 and Cluster 2 displayed unique immunological profiles.

Immunological infiltration was predicted using public databases,

therefore these data should be analysed carefully to avoid

misleading conclusions. In order to determine whether or not the

difference has any real-world implications, additional experimental

verification is required. The use of scRNA-seq profiling affords the

opportunity to investigate tissues that contain multicellular

components. In our study, the cells were originally extensively

categorised by cell-type markers into three major compartments:

epithelial cells, stromal cells, and immune cells. The intestinal

epithelium is the largest mucosal surface in the human body. It

acts as a barrier, both physically and biochemically, between the

luminal contents and the immune system that lies beneath it.

Intestinal epithelium is responsible for a variety of tasks,

including the absorption of nutrients, the maintenance of a

physical barrier, and the response to signals from the gut

microbiota and the immune system. During the course of the past

few decades, there has been tremendous progress made in the

immunological mechanisms that underlie IBD. This has made it

possible for new IBD treatment options to be developed. On the

other hand, the cuproptosis-related mechanisms that are essential

to the pathogenesis of IBD are not yet fully understood. The CRGs

(PDHA1, DLD, FDX1) were highly expressed in Epithelial Cycling

cells, Stem cells OLFM4 LGR5, Stem cells OLFM4 PCNA from

Epithelial cells, which indicated they may play an important role in

the regulation of epithelial cells regeneration. Compared to other

hub genes, FDX1 was strongly expressed in monocytes (CHI3L1,

CYP27A1), indicating that this gene may play a crucial role in the

activation and recruitment of monocytes. For stromal cells, we can

find these three genes mainly located in the Inflammatory

fibroblasts (IL11, CHI3L1), Myofibroblasts (GREM1, GREM2)

and Pericytes cells. In addition, we investigated the relative

expression discrepancies that occurred between these CRGs in a

variety of different environments. We are able to find that these

genes have specific differences in different cell subtypes and under
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different conditions. This illustrates the heterogeneity that exists

within each cell subtype as well as the specific expression patterns

that these genes have in different cell subtypes. Hence, several cell

clusters might need to be investigated further in next research on

the colon in IBD.

There are several limitations to this study. First, owing to

experimental circumstances and institution size, sufficient

prospective IBD cohorts, and real-world data were lacking to

support the prognostic role and stratification performance of the

CRGs. Second, the potential cuproptosis-related biomarkers

identified in this study require more support from the literature

and laboratory confirmation. Third, the CRGs came from a public

database that constantly gets updated. More genes need to be

found, and it is impossible to fully evaluate the different

subclusters of IBD because there isn’t enough information about

important clinical factors like sex, age, disease stage, response to

medication, smoking, complications, and previous treatments.

Additionally, the mRNA expression values were normalized

using various standard methods, which could produce divergent

results. Due to the inadequate understanding of cuproptosis, the

majority of current evidence is limited to the investigation of

changes in gene expression and must be validated by additional

functional and mechanistic research.

In conclusion, our research is the first of its kind since it

combines scRNA-seq profiles with microarray samples to evaluate

the expression of CRGs in IBD while also studying the association

between the expression of CRGs and immune infiltration. We

were able to show that the classification of IBD into two distinct

groups was helped by three CRGs that were screened: PDHA1,

DLD, and FDX1. Moreover, there were distinctions between the

two subclusters in the immune cell landscape. The CRGs

expression patterns in the relevant cell clusters were also

clarified by scRNA-seq profiles, which showed that the fraction

of the hub CRGs in differentiated intestinal cell clusters varied

throughout IBD. As a result, the thorough reflection of IBD’s

cuproptosis-related signatures that we uncovered might expand

our understanding of molecular mechanisms and assist future IBD

researchers with novel diagnostic hints, extra potential

biomarkers, or therapeutic options.
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SUPPLEMENTARY FIGURE 1

Investigation of soft-thresholding power in WGCNA. (A) Clustering

dendrogram of 194 samples in the GSE75214 dataset. (B) Heatmap showing
the immune cells’ relative proportion in CD, UC, and normal tissues in the

GSE75214 dataset. (C) For k = 2, the consensus clustering matrix. (D)
Theoutcomes of PCA of clustering.

SUPPLEMENTARY FIGURE 2

Identification of key modules genes in two clusters. (A) The scale-free fit

index for multiple soft-thresholding powers b. (B) The mean connectivity for
multiple soft-thresholding powers. (C) The volcano plot depicting the DEG

expression levels in different consensus clusters. (D) The heatmap showing

the DEGs in different consensus clusters.

SUPPLEMENTARY FIGURE 3

Construction of a PPI network. Whole Chosen genes for the constructionof

the PPI network.
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