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Interferon (IFN), the most effective antiviral cytokine, is involved in innate and

adaptive immune responses and is essential to the host defense against virus

invasion. Once the host was infected by pathogens, the pathogen-associated

molecular patterns (PAMPs) were recognized by the host pattern recognition

receptors (PRRs), which activates interferon regulatory transcription factors (IRFs)

and nuclear factor-kappa B (NF-kB) signal transduction pathway to induce IFN

expression. Pathogens have acquired many strategies to escape the IFN-

mediated antiviral immune response. Pestiviruses cause massive economic

losses in the livestock industry worldwide every year. The immune escape

strategies acquired by pestiviruses during evolution are among the major

difficulties in its control. Previous experiments indicated that Erns, as an

envelope glycoprotein unique to pestiviruses with RNase activity, could cleave

viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral

ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to

pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to

confront the IFN response. This review mainly summarized the current progress

on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
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Introduction

The genus Pestivirus, belonging to the family Flaviviridae, comprises pathogens

responsible for massive economic losses in livestocks, especially pigs and ruminant

species (1–3) and often cause clinical manifestations ranging from mild to severe (4–7).

Among pestiviruses, classical swine fever virus (CSFV) and bovine viral diarrhea virus 1

and 2 (BVDV-1 and BVDV-2) are the most impactful ones. Notably, the majority of
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pestiviruses are non-cytopathogenic (NCP), while both two

biological types: NCP and cytopathogenic (CP) viruses have been

reported in CSFV and BVDV strains isolated in clinical samples (4).

Several other viruses related to pestivirus have been also described

in some studies. These viruses isolated from domestic animals (8–

17) and wild species (18–21) have great differences in genetics.

Recently, the following eleven viruses: BVDV-1, BVDV-2, CSFV,

BDV, pronghorn pestivirus, Bungowannah virus, giraffe pestivirus,

HoBi-like pestivirus, Aydin-like pestivirus, rat pestivirus, and

atypical porcine pestivirus have been appointed to Pestivirus A-K,

respectively (3, 15).

Pestiviruses could transmit from one species of ruminants to

another frequently. For example, ruminant pestiviruses often infect

pigs (22). However, no evidence is available to suggest the

replication of CSFV in ruminants. After infection, pestiviruses are

excreted through various body secretions and usually transmitted

by direct contact with infected animals or indirect contact with

infectious secretions, contaminated food, or needles (23). Animals

with pestiviruses infection (especially those with persistent

infection) excrete lots of viruses from their body secretions for life.

Pestiviruses are single-stranded, positive-sense RNA viruses

with an envelope and a genomic size of about 12.3 kb (24). The

genomic RNA is translated into a single polyprotein, which is

processed subsequently into four structural proteins (SPs): a basic

core protein C and three envelope (E) glycoproteins Erns, E1, and

E2, as well as eight non-structural proteins. Proteins unique to the

Pestivirus genus are the non-structural protease Npro and Erns

envelope glycoprotein which has RNase activity. Both proteins are

associated with the suppression of the host’s innate antiviral

immune response (23). This review compiles current progresses

on the roles and functions of Pestivirus Npro in the evasion of type I

interferon response.
Npro of pestiviruses has antagonistic
activity against type-I IFN production

Npro is the first protein encoded by pestivirus, with a molecular

weight of 23 KDa, and is unique to the pestivirus genus. Npro

protein is a hydrophilic peripheral membrane protein without

signal peptide, and the secondary structure mainly contains b-
sheet and random curling. Moreover, it has autoprotease activity

and can be cleaved in an autocatalytic manner from nascent

polyproteins being translated into mature viral proteins. Npro is

not necessary for the replication of pestiviruses but plays an

important role in the evasion of the antiviral immune response of

host cells. It has been shown that Cys69 and His130 are the catalytic

residues of protease cleavage and catalyze the cleavage of peptide

bonds between Tyr164 and Vail65. To study the biological activity

of Npro, Tratschin et al. prepared a CSFV virus strain vA187-Ubi,

the Npro protein gene sequence of which was replaced by the mouse

ubiquitin protein gene. It has been shown that vA187-Ubi had

similar growth characteristics to the parent vA187-1 virus, both of

which showed obvious cytopathological effects. In vivo assay results
Frontiers in Immunology 02
showed a complete loss of virulence of vA187-Ubi, indicating the

Npro protein is unnecessary for the virus replication but is essential

for its virulence (25). In addition, the Npro protein of pestiviruses

could block apoptosis and IFN-a/b production induced by double-

stranded RNA. NCP-type BVDV-1 infection was found to protect

bovine nose osteocytes from poly (I: C) -induced apoptosis. Further

studies showed that NCP-type BVDV inhibited the transcription

and secretion of type I interferon-induced poly (I: C) (26). In

addition, compared with the parent strain, DNpro BVDV can

effectively induce IFN-b production, indicating that Npro could

inhibit the production of type I interferon (27). The Npro protein of

BVDV-2 could also significantly down-regulate oligo adenylate

synthetase (OAS), ubiquitin-like protein 15 (ISG15), Myxoviral-

resistant protein 1 (Mx1), and type I IFN transcription levels (28).

Studies on CSFV have shown similar results. Ruggli et al.

reported that after infection with CSFV, the resistance to poly (I:

C) -induced apoptosis by porcine renal cell line SK-6 increased

nearly 100 times. DNpro CSFV was found to have a similar growth

profile to wild-type virus, but with no protection for SK-6 cells

against apoptosis induced by poly (I: C) (29). Therefore, it was

suggested that Npro could counteract dsRNA-induced apoptosis and

IFN-a/b production independently of other CSFV proteins. After

treated with poly (I: C), drastically more SK6-EGFP-Npro cells and

CSFV-infected SK-6 cells survived compared with the parental SK-6

cells. Luciferase reporter gene experiments showed that Npro also

inhibits the expression of luciferase derived by IFN-a/b promoter in

human cells, meanwhile, it can also inhibit the production of

Newcastle disease virus-induced IFN-a/b (30). Moreover, in

dendritic cells (DC), DNpro CSFV can promote the expression of

IFNa/b, and also up-regulate the expression of CD80/86 and MHC

II to promote the maturation of DCs (31).

Bungowannah virus is genetically the most divergent

pestivirus with all of the genomic and structural elements of

classical pestiviruses. Compared with other pestivirus, they also

have many differences in antigenic cross-reaction. To test the

influence of Npro of Bungowannah virus on the type I interferon

signaling pathway, a chimeric BVDV/Bungowannah virus

(vCP7_Npro-Bungo) was rescued by Richter et al. (32). In the

virus, the Npro gene of Bungowannah virus replaced that of CP7—

a cytopathic BVDV strain . After infected with CP7,

Bungowannah virus, and virus vCP7_Npro-Bungo, similar IFN

suppression was observed in cells. However, the Npro-deleted

mutant had an impaired replication and induced increased type-I

IFN response in bovine cells (32). Collectively, these studies

indicated that the Npro of pestiviruses had antagonistic protease

activity of IFN-a/b production.

Furthermore, it has been shown that the replacement of amino

acids Glu22 and His49 of pestiviruses could abolish the ability of

Npro to inhibit IFN production, while the replacement of Cys69 had

no such effect. There was no antagonistic IFN-a/b activity in the

conserved Npro region (L8P) mutant near the N-terminal of the two

BVDV biotypes, demonstrating the integrality of the Npro N-

terminal structure is essential in the catalytic activity of IFN-a/b
inhibition (33).
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Npro induces proteasome
degradation of IRF3

Overview of IRF3

The IRF family has been reported to have 10 members, namely

IRF1-IRF9 and virus IRF (v-IRF). IRF3, a principal transcription

factor, is significant in the antiviral immune response (34). IRF3 is

highly homologous to IRF7. Both of them regulate the type I IFN

synthesis, but play different roles in the innate immune response.

IRF3 is critical for early induction of IFN expression in most cells

post-viral infection; IRF7, which induces both IFNa and IFNb
expression, has functions in the antiviral activity of IFN in a later

stage. In contrast, IRF3 can induce IFNb gene expression, but not

other IFNa expression except IFNa4 (35). Upon viral infection, a

series of cellular pathways are activated subsequently to promote

the translocation of phosphorylated IRF3 or IRF7 into the nucleus

and initiate the transcription of type I interferon genes by attaching

to IFN-a/b promoters (36).
Npro mediates ubiquitination and
proteasomal degradation of IRF3

By luciferase reporter gene experiment, La Rocca et al. found

that CSFV-infected cells could inhibit IRF3 gene transcription. The

use of cell lines expressing CSFV Npro confirmed that the Npro

protein reduced the expression of IRF3, suggesting that this single

viral protein specific to the pestiviruses can inhibit interferon

production in the innate immune response to the virus (37)

(Figure 1). Hilton et al. reported that NCP-BVDV (pe515)

infection could induce the translocation of a small amount of

IRF-3 from the cytoplasm to the nucleus at the early stage of

infection. In addition, most IRF3 in the cytoplasm was degraded by

the ubiquitination-proteasome pathway mediated by the Npro

protein (27). Similar to the NCP-BVDV virus, CP-BVDV (NADL

strain) does not induce interferon response after infection and

blocks interferon-stimulating genes induced by paramyxovirus

infection, resulting in a significant decrease in IRF3 expression.

However, the IRF3 repression activity is considered independent of

the protease activity of Npro. Further studies revealed that Npro

could interact with IRF3 before its phosphorylation-induced

activation, leading to the ubiquitination and proteasomal

degradation of IRF3 (38).

The Npro protein of CSFV can also mediate the degradation of

IRF3 after interaction with it. However, different from the research

results of La Rocca et al., There are other studies reported that CSFV

infection does not inhibit a cytomegalovirus (CMV) promoter-

driven IRF3 expression. Furthermore, CSFV neither reduces the

transcriptional activity of the IRF3 promoter nor affects the stability

of IRF3 mRNA (39, 40).

Ubiquitin contains 76 amino acid residues and is highly

conserved in all eukaryotes (41). Selective binding of linear

ubiquitin to a protein is the initial signal for target protein

degradation. Ubiquitin chains can be conjugated to the specific
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protein substrate through an isopeptide bond between the ubiquitin

C-terminal glycine residues and the lysine residues in the substrate.

Proteasome-dependent degradation of proteins mediated by

ubiquitination regulates a variety of biological reactions in the

body, including cell cycle, signaling, DNA repair, and apoptosis

(42, 43).

The ubiquitin modification process requires successive events

associated with three enzymes: an E1 ubiquitin-activating enzyme,

an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin ligase.

Ubiquitin is first connected to the catalytic cysteine residues of

endogenous E1 protein by an intermediate thioester bond. It is then

conveyed to an E2 conjugating enzyme through a trans-

esterification reaction. Subsequently, E3 ubiquitin ligase transfers

the activated ubiquitin from an E2 to substrates. Finally, the

substrate labeled with ubiquitin is delivered to the 26S

proteasome for degradation (44). Once the E1 ubiquitin-

activating enzyme was thermal inactivated, the degradation

activity of IRF3 mediated by the Npro protein of CP-BVDV was

lost (39), indicating that the E1 ubiquitin-activating enzyme is
FIGURE 1

Npro blocks the host’s IFN-activated immune response by
degradation of IRF3. Upon viral infection, pathogenic associated
molecular patterns (PAMPs) are recognized by cellular pattern
recognition receptors (PRRs). A series of cellular pathways were
activated subsequently to promote the translocation of
phosphorylated IRF3 into the nucleus and initiate the transcription
of type I interferon genes by binding to IFN-a/b promoters. Npro

could interact with IRF3 before it’s phosphorylation-induced
activation, leading to the ubiquitination and proteasomal
degradation of IRF-3 and subsequent inhibition of the type I
interferon response.
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involved in the Npro protein-mediated ubiquitin modification and

degradation of IRF3.

Besides contributing to the antiviral immune response, IRF3

participates in the control of the cell cycle, apoptosis, and tumor

suppression as well (45). When cells are infected with Sendai virus

or stimulated by double-stranded RNA, IRF3 can bind to

cytoplasmic Bax via its BH3 region and transfer Bax to

mitochondria to activate apoptosis. It has been shown that wild-

type Npro could restrain apoptosis signals induced by astrosporin,

interferon, double-stranded RNA, sodium arsenate, and hydrogen

peroxide, which was mainly achieved by the degradation of IRF3

protein. In addition, the Npro protein can inhibit the Bax-dependent

apoptosis pathway by inhibiting mitochondrial lysis and Bax

redistribution through interaction with the mitochondrial lumen.

Moreover, the Npro protein could rapidly localize to ubiquitin-

containing peroxisome. Thus, the Npro protein may bind to IRF3

and degrade it by transporting it to ubiquitin-containing

peroxisome (46).

Peptide-prolyl isomerase (Pin1), Ro52 (TRIM21), RBCC

protein interacting with PKC1 (RBCK1), RTA-associated

ubiquitin ligase (RAUL), Tripartite motif 21 (TRIM21), Forkhead

transcription factors of the O class (FOXO1), Casitas B-lineage

lymphoma (c-Cbl) have been suggested as E3 ligases to invoke

ubiquitination and subsequent degradation of IRF3 in the

cytoplasm, thus inhibiting the production of type I IFN (47–51).

However, it is unclear which E3 ubiquitin ligase contributes to the

ubiquitination degradation of IRF3 mediated by the Npro protein. It

is worthy of further exploration whether Npro has crosstalk with

these E3 ligases or molecules to regulate the ubiquitination and

subsequent degradation of IRF3.

Currently, the Npro binding site on IRF3 is unclear. It has been

revealed that Npro can interact with IRF3 directly and forms a

soluble 1:1 complex by utilizing recombinant Npro and IRF3

proteins. This interaction requires the complete IRF3 protein

rather than any of the single domains, the DBD in N-terminal or

the IAD in C-terminal (52). It has been also shown in a previous

mammalian two-hybrid analysis that the association of Npro with

IRF3 needs both the DBD and the IAD of IRF3 (53). However, the

exact arrangement of DBD and the IAD in the IRF3 monomer and

dimer is still unknown (35, 54, 55). As the ~60-amino-acid linker

region between the two domains is somewhat helical but not

structured in the absence of either DBD or IAD (56). The intact

linker is thus suggested to be involved in Npro binding (52). Npro has

been shown to interact with the IRF3 monomer and

phosphomimetic dimer, indicating that the Npro binding site on

IRF3 contains areas not affected by the phosphorylation and

subsequent activation status of IRF3 (52). Npro can also interact

with IRF3 in the complex with its transcriptional cofactor, the

CREB-binding protein (CBP). Therefore, the contact surface in the

IRF3 dimer and CBP binding site is not required for Npro

binding (52).

BVDV Npro protein has been shown to degrade IRF3 in the

cytoplasm, whereas IRF3 in the nucleus is resistant to this

degradation (26). The influence of cellular localization of Npro on

IRF3 degradation is unclear. A recombinant virus vSMS-IRF3 was

constructed by inserting the IRF3 gene sequence between the 13th
Frontiers in Immunology 04
and 14th amino acid sites of the Npro protein of the highly virulent

CSFV Shimen strain by Li et, al (57). The fusion protein of IRF3-

Npro expressed by the recombinant virus only located in the

cytoplasm and vSMS-IRF3 was significantly attenuated. Pigs

inoculated with the recombinant virus were all resistant to the

lethal CSFV challenge, but the parent virus showed a typical

virulent phenotype (57). Therefore, it was suggested that the

nuclear localization of Npro is essential to the replication and

virulence of CSFV (57).

However, a previous study showed that any mutants of L8P,

E22L, and H49V in Npro could abolish its IFN-a/b antagonistic

activity, revealing that the 49 amino acids in the N-terminal of Npro

protein are necessary to type-I IFN suppression (33). Based on this,

we speculate that the insertion of the IRF3 gene into the Npro gene

may eliminate its function of IRF3 degradation. Thus, the

attenuation of vSM-IRF3 may be caused by the loss of the IFN-a/
b antagonistic activity of IRF3-Npro rather than its cytoplasmic

localization. Moreover, Npro was observed in the nucleus in a diffuse

manner (58, 59), and could bind to IRF3 dimer or the IRF3 dimer in

the complex with CBP (52). Therefore, the insertion of IRF3 into

Npro could also affect the cellular diffusion of the IRF3-Npro fusion

protein, leading to its accumulation in the cytoplasm. The effects of

cellular localization of Npro protein on CSFV virulence need

further study.

Whether Npro protein is the main determinant of the virulence

of pestiviruses is still a controversial topic. Continuous passage of

CSFV attenuated vaccine strain GPE- in pigs restored its virulence,

but did not regain the ability of its Npro to degrade IRF3 (60).

However, strains containing the N136D mutation in Npro restored

the IRF3 degradation activity and IFN-a/b antagonistic ability in

vitro as well as pathogenicity in vivo. These results demonstrate that

the Npro protein makes a decisive contribution to the virulence of

pestiviruses, but there are other factors that can regulate the

virulence of pestiviruses.

The Npro protein of CSFV can also interact with IRF7 in

plasmacytoid dendritic cells, down-regulating the expression level

of IRF7 protein and further inhibiting the IFN-a expression.

Whereas, the molecular mechanism of Npro inhibiting the

expression of IRF7 protein is still unclear. It is certain, however,

that this antagonism does not involve either polyubiquitination or

protease degradation pathways (53).
The zinc atom binding motif of Npro is
critical for the degradation of IRF3

Analysis by sequence alignment revealed that the C-terminal

half of the Npro protein contains a conserved metal binding TRASH

motif composed of Cys-X21-Cys-X3-Cys (where X is any amino

acid). TRASH motif commonly exists in proteins associated with

heavy metal recognizing, resistance, transcription regulation, cation

transportation, and hydrogenase. Inductively coupled plasma–mass

spectrometry (ICP-MS) assay indicated that each Npro protein

molecule could coordinate a single zinc atom. Site-directed

mutagenesis studies revealed that the zinc-binding sites of Npro

protein include Cys112, Cys134, Cys138, and probably Asp136.
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These zinc-binding site mutations lead to the deficit of Npro protein-

mediated IRF3 degradation in cells inoculated with CSFV,

suggesting that the zinc-binding capacity of Npro protein is

critical for virus-mediated IRF3 degradation (61). In addition, the

zinc-binding domain of Npro is critical for its protein stability and

its interaction with IRF7 (62).
Npro interacts extensively with
host proteins

Proteins in cytoplasmic
ribonucleoprotein particles

Recently, pull-down combined mass spectrometry showed that

Npro binds to more than 55 kinds of proteins, mainly RNA helicase

A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5,

IGF2BP1, eIF3, and other ribosomal proteins, multiple myeloma

tumor protein 2, interleukin enhancer binding factor 3 (IEBP3)

guanine nucleotide-binding protein 3, and polyadenylate-binding

protein 1 (PABP-1). Many of the interacting proteins are

components in cytoplasmic ribonucleoprotein particles (RNPs).

They play roles in regulating the translation of mRNA and could

be recruited into stress granules to regulate the translational

initiation rate or mRNA degradation (63). The assembled stress

granules might control the proliferation of viruses and some viruses

could in turn hinder their formation or even disassemble them (64).

It has been suggested that Npro could redistribute to stress granules

after interaction with YBX1 through its TRASH domain. When

exposed to oxidative stress, cells expressing Npro alone assembled

stress granules and Npro colocalized with stress granule proteins. In

contrast, the formation of stress granules in NCP-BVDV-infected

cells was inhibited, indicating that this inhibition was not caused by

Npro binding to ribonucleoproteins (63). Thereby, Npro may not

influence the function and location of ribonucleoproteins although

it could be localized to stress granules by interacting with these host

proteins. As some interacting proteins of Npro are also involved in

RISC function during RNA silencing, further studies were

conducted to determine whether Npro affected RNA interference

(RNAi). However, the outcomes suggested the expression of Npro

had no influence on RNAi silencing activity (65).
S100A9

S100A9, one of the danger-associated molecular patterns

(DAMPs) proteins, is vital in the innate immune system and

always accumulates in large amounts in ectocytic space during

inflammation responses (66). Additionally, the S100A9 could

effectively trigger inflammatory responses through Toll-like

receptor 4 (TLR4) as a homodimer (67–73). In the heterodimer

with S100A8, the S100A9 exerts antimicrobial activity by inhibiting

microbes from acquiring nutrients (74–79). Yet, the function of

S100A9 in virus infection is unclear. It has been shown that the

amount of S100A9 was increased after treatment with poly (I: C),

which is an analog of viral dsRNA (80). The expression of S100A9 is
Frontiers in Immunology 05
also highly enhanced in human papillomavirus-associated

dysplastic tissues (81) and BKV-infected recipients post-kidney

transplantation (82). Likewise, high levels of S100A9 expression

were observed in lungs and livers in autopsied subjects with

COVID-19 and pre-existing chronic liver disease (83). Darweesh

et al. reported that NCP-BVDV2a 1373 Npro protein has a strong

interaction with cellular S100A9 protein. Furthermore, the Npro

protein enhances the replication of BVDV in infected cells by

inhibiting S100A9 activity in epidermal cells (84).
TRIM56

Currently, the TRIM family consists of more than 60 members

and could be divided into 11 subfamilies (85). Although their exact

functions are still unclear, the TRIM proteins contribute to a large

variety of biological activities, such as cell proliferation,

development, differentiation, immunity, apoptosis, and innate

immune response to pathogens (86–90). As a protein of the fifth

subfamily of TRIM, TRIM56 is expressed in the cytoplasm after

type I interferon stimulation (91, 92). A previous study has

identified TRIM56 as a cellular protein that associates with

BVDV Npro through its C-terminal portion. Although TRIM56

has RING-dependent E3 ubiquitin ligase function, it is not involved

in Npro-mediated IRF3 degradation nor degrade Npro. Furthermore,

it was suggested that both ectopically and endogenously expressed

TRIM56 contribute to impaired replication of BVDV due to its E3

ligase activity. In contrast, the downregulation of TRIM56

expression largely improved BVDV proliferation. Moreover, it is

the integrity of the TRIM56 C-terminal, rather than the TRIM56-

Npro association that contributes to TRIM56’s antiviral activity (91).
pIkBa

To discover host proteins that could bind to Npro of CSFV,

Doceul, et al. (58) conducted a yeast two-hybrid assay of a human

library. It was revealed that Npro had a direct association with IkBa,
which is responsible for apoptosis regulation, the immune reaction,

and IFN expression. As an inhibitor of NF-kB, IkBa is also a prime

target for immune evasion strategies developed by many viruses

(93–95). Further studies suggested the interaction of Npro with aa

213-317 of the C-terminus of pIkBa (pig IkBa) (58), which also

contact with NF-kB through the domain between aa214-280 (96,

97). This suggests that Npro competes with NF-kB for unbound

pIkBa (58).

Before stimulation, NF-kB remains in an inactive state in the

cytoplasm due to its interaction with IkBa, which covers the

nuclear localization signals of NF-kB. It has been reported that

NF-kB/IkBa complex could be triggered by phosphorylation upon

various stimulation, such as viruses and bacteria (98–101). In this

case, IkBa is phosphorylated at Ser32 and Ser36 by the IKKb
subunit following the activation of the IKK complex (IKKa/IKKb/
IKKg). Then, the E3 ubiquitin ligase complex, SCFb−TRCP,
ubiquitinates IkBa and targets it for degradation by the 26S

proteasome, resulting in the release of NF-kB for nuclear
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translocation (102–105). However, the activated NF-kB initiates

regeneration of IkBa, which detaches NF-kB from DNA after its

translocation to the nucleus, and conveys NF-kB to the cytoplasm

in a nuclear export sequence-dependent process (106–108). Tumor

necrosis factor-alpha receptor (TNFR) activated by binding with

TNF-a is one of the principal receptors that mediate NF-kB
activation (109).

It’s reasonable to speculate that under stimulation of TNF-a,
new synthesized cytoplasmic IkBa induced by NF-kB activation

could bind to Npro in cells expressing Npro proteins. Therefore,

limited unbound IkBa translocate into the nucleus, and thus the

suppression of NF-kB DNA-binding activity by IkBa should be

restricted (Figure 2). It has been suggested that HIV-1 tat

transactivator could activate NF-kB by interacting with IkBa and

by inhibiting the repressor from binding to the NF-kB complex

(110). However, the ability of the p65 subunit of NF-kB to bind the

promoter sequence in CSFV-infected PK15 cells was not affected by

functional analysis (111). Furthermore, after TNF-a stimulation of
Frontiers in Immunology 06
Npro stable expression PK15 cells, a high concentration of pIkBa
was observed in the nucleus, but the function and expression of NF-

kB did not change significantly (58). Therefore, TNF-a may

stimulate the rapid resynthesis and massive nuclear translocation

of pIkBa, many of which are bound to Npro and does not affect the

action of NF-kB thus resulting in the accumulation of a large

amount of pIkBa in the nucleus. However, the effect of Npro

binding to pIkBa on the activity of NF-kB in the nucleus and

cytoplasm is worth further investigation.
HAX-1

HS-1-associated protein X-1 (HAX-1), a protein of

approximately 35-kDa, is universally synthesized in murine and

human tissues (112, 113), especially in the mitochondria (114).

Primarily, it was shown to play a role in the control of apoptosis or

programmed cell death (114). A recent study has indicated that

HAX-1 may also contribute to the control of calcium homeostasis

and cell survival in cardiac tissue (115). It was found that the

protein could bind to the Npro protein of CSFV by yeast two-hybrid,

and the interaction between the two proteins was further confirmed

by co-immunoprecipitation assay (116). During CSFV infection,

the expression level of HAX-1 did not change significantly,

indicating that Npro interacting with HAX-1 could not degrade it.

However, in the cells co-transfected with HAX-1 and Npro, the two

proteins were significantly transported to the endoplasmic

reticulum, and the Npro protein in the nucleus was significantly

reduced (116). Significantly, the relocation of HAX-1 to the ER in

the presence of phospholamban (PLN), a crucial regulator of Ca2+

homeostasis and contractility in the heart, correlated with stronger

resistance to apoptosis (117). Therefore, it could be hypothesized

that during CSFV infection, Npro protein may bind to HAX-1 in the

cytoplasm and transport it to ER to enhance the tolerance of

infected cells to apoptosis. Thus, less Npro protein synthesized in

the cytoplasm diffuses into the nucleus. However, further research is

needed to confirm this hypothesis.
PCBPs

As members of the K homology (KH) domain superfamily, Poly

(C)-binding proteins (PCBPs) are known for their interaction with

both RNA and DNA specifically. It has been suggested that the KH

domain superfamily proteins associate with the stability of cellular

mRNAs (118–120), regulate their translation (121–125), and also

involve in the host antiviral reaction (126, 127). Among the PCBPs,

PCBP1 is an ssDNA-binding protein that contributes to the

transcription of the neuronal m-opioid receptor gene (122).

Cytoplasmic and nuclear expression of CBP1 been demonstrated

(128). Li et al. found that PCBP1 protein could interact with Npro

protein. Knocking down the expression of PCBP1 could inhibit the

replication of CSFV, while overexpression of PCBP1 could promote

the reproduction of CSFV. PCBP1 inhibits the IFN signaling

pathway by degrading MAVS and enhances the replication of

CSFV genomic RNA, thus promoting the proliferation of CSFV
FIGURE 2

N competes with NF-kB to bind with IkBa. Prior to stimulation, NF-
kB remains an inactive state in the cytoplasm due to its interaction
with IkBa, which masks the unclear localization signals of NF-kB.
NF-kB/IkBa complex is activated by phosphorylation in response to
various stimuli, such as viral and bacterial pathogens. In this case,
IkBa is phosphorylated at Ser32 and Ser36 by the IKKb subunit
following the activation of IKK complex. Then, the E3 ubiquitin ligase
complex, SCFb−TRCP, ubiquitinates IkBa and targets it for
degradation by the 26S proteasome, leading to the release of NF-kB
for nuclear translocation. However, NF-kB activation induces rapid
resynthesis of IkBa, which translocates to the nucleus, dissociates
NF-kB from DNA and transports NF-kB to the cytoplasm in a
nuclear export sequence-dependent process.
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(129). However, whether the interaction between PCBP1 and Npro

has any effect on their cellular localization or CSFV replication

needs further exploration.
Response of Npro protein to
type-3 interferon

Npro has also been suggested to inhibit the innate immune

reaction by restricting type III IFNs (IFN-ls). Although many

similarities exist between types I and III IFNs in the signaling

networks and expression processes (130, 131), a host of distinctions

are evident. Different from type I IFNs induction which needs all

IFN enhanceosome elements, type III IFNs are induced

independent of IRFs or NF-kB (132). Besides, unlike the

ubiquitous receptors for type I IFNs, type III IFN receptors are

mainly expressed in mucosal epithelia (133). Thus, type III IFNs are

considered to be crucial for immune responses in the respiratory

and gastrointestinal tracts (134). As IRFs and NF-kB are important

regulators for type III IFNs, IRF1 may have a specific function in

this process (135). Npro-deficient CSFV has been shown to

significantly enhance the transcription level of IFN-ls 24h post-

infection. In contrast, overexpression of Npro significantly reduced

the IFN-ls transcription and IFN-l3 promoter activity. Moreover,

in poly (I: C)-treated IPEC-J2 cells, overexpression of Npro or

infection with wtCSFV not only down-regulated the production

and the promoter activity of IRF1 significantly but also inhibited

IRF1 nuclear translocation. This suggests that Npro could restrict

type III IFNs response by preventing the production and nuclear

translocation of IRF1 (134).
Conclusion

Pestiviruses are counted among the highly destructive and

economically important pathogens, which have evolved many

strategies to evade elimination by the host antiviral immune

response. Studies emphasizing various molecular techniques

undertaken during the last two decades have elucidated at least

two viral proteins (Npro and Erns RNase) as IFN antagonists of

pestiviruses. Unlike repression of the interferon response via the

effect of Npro on IRF3, the secreted Erns protein distributed by the

bloodstream could be taken up by cells, specifically PDCs, and

degrade pestiviral RNA. Therefore, Erns hinders IFN production

induced by the extracellular synthetic or viral ss- or dsRNAs (136–

138). Thus, we conclude that pestiviruses evade the host’s IFN-

activated innate antiviral immune response in a complex way to
Frontiers in Immunology 07
establish and maintain a persistent infection status. This article

mainly reviewed the progress of innate immune evasion mediated

by Npro of pestiviruses. while its detailed process concerning

blocking the IFN-1 response remains obscure. Further

understanding of the approaches employed by viruses of this

genus to control immune response to escape the innate immune

system is in need, which will eventually contribute to developing

effective strategies to prevent and control pestivirus infection.
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