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rheumatoid arthritis
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Fibroblast-activated protein-a (FAP) is a type II integrated serine protease

expressed by activated fibroblasts during fibrosis or inflammation. Fibroblast-

like synoviocytes (FLSs) in rheumatoid arthritis (RA) synovial sites abundantly and

stably overexpress FAP and play important roles in regulating the cellular

immune, inflammatory, invasion, migration, proliferation, and angiogenesis

responses in the synovial region. Overexpression of FAP is regulated by the

initial inflammatory microenvironment of the disease and epigenetic signaling,

which promotes RA development by regulating FLSs or affecting the signaling

cross-linking FLSs with other cells at the local synovium and inflammatory

stimulation. At present, several treatment options targeting FAP are in the

process of development. This review discusses the basic features of FAP

expressed on the surface of FLSs and its role in RA pathophysiology and

advances in targeted therapies.
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Abbreviations: a2AP, a2-antiplasmin; ACPA, anti-citrullinated protein antibody; CAR, chimeric antigen

receptor; CCL-2, CC motif chemokine ligand 2; CDH-11, cadherin-11; DPP, dipeptidyl peptidase; ECM,

extracellular matrix; EGR-1, early growth response-1; ERK, extracellular regulated protein kinase; ERS,

endoplasmic reticulum stress; FAP, fibroblast-activated protein-a; FLS, fibroblast-like synoviocyte; HIF-1a,

hypoxia-inducible factor-1a; IL, interleukin; IPF, idiopathic pulmonary fibrosis; JAK/STAT, janus kinase/

signal transducer and activator of transcription; MAPK, mitogen-activated protein kinase; MDSC, myeloid-

derived suppressor cell; miRNA, microRNA; lncRNA, long non-coding RNA; MHC, major

histocompatibility complex; MLKL, mixed linage kinase-like; MMP, matrix metalloproteinase; MMP-1,

matrix metalloproteinase-1; MMP-9, matrix metalloproteinase-9; MSC, mesenchymal stem cell; mTOR,

mammalian target of rapamycin; NET, neutrophil extracellular trap; NF-kB, nuclear factor kappa-B; NPY,

neuropeptide Y; PADI, peptidyl arginine deiminase; PDPN, podoplanin; RA, rheumatoid arthritis; RANKL,

receptor activator of nuclear factor-k B ligand; RIPK3, receptor-interacting protein kinase-3; SMAD,

drosophila mothers against decapentaplegic protein; TGF-b, transforming growth factor-b; TNF, tumor

necrosis factor; TNF-a, tumor necrosis factor-a; Treg, regulatory T cells; Tresp, responder T cells; VEGF,

vascular endothelial growth factor.
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1 Introduction

Rheumatoid arthritis (RA) is an aggressive immune-mediated

disease (1) with a worldwide prevalence of about 0.46% (2).

Although the specific causes of RA occurrence remain unknown,

genetic and environmental factors may contribute to the onset of

the disease. Autoimmune reactions that occur before clinical

symptoms are identified as signs of the disease onset and are also

thought to be triggers of RA (3). Synovitis is the predominant

pathological change in RA, leading to irreversible joint bone

destruction in the later stages (4). The cross-linking reaction

between immune cells and inflammatory cells in the local

synovial region is a constant concern in RA.

Fibroblast-like synoviocytes (FLSs) (5) are generally considered

to be widely distributed in the synovium and play an important role

in RA. As intrinsic mesenchymal cells in synovial structures, FLSs

play an important role in maintaining the dynamic balance of the

internal environment. They possess the characteristics of

inflammatory cells and are also considered a key pro-

inflammatory factor. Although targeted modulation of FLS

function has become one of the new directions in RA treatment

(6), the actual ability of FLS targeting to induce RA remission

remains to be clinically validated. However, this does not

undermine the therapeutic potential of FLSs. Importantly,

promising therapeutic surface biomarkers are yet to be fully

understood, which is the primary limiting factor for the practical

application of FLS-targeting therapy.

Fibroblast-activated protein-a (FAP)—a serine protease

expressed on the FLS surface (7)—is a surface biomarker that is

barely expressed in normal adult FLSs and is associated with FLS

activation. FAP is only highly expressed in pathological tissues,

including RA-lesioned synovial tissues and various tumor stromal

tissues. The regulatory effects of FAP in RA have been well

demonstrated. For example, targeting the depletion of FAP+ FLSs

has been shown to slow the development of arthritis in mice (8).

These exciting discoveries have allowed FAP to emerge as a high-

profile research biomarker in recent years. The present review

focuses on FAP-mediated functional phenotypic changes that

occur in FLSs and the related regulatory mechanisms of FAP

expression, which may deepen our understanding of RA

pathogenesis and provide clues for identifying new therapeutic

targets for RA.
2 Sources and surface markers of FLSs

The synovium is divided anatomically into the lining and sublining

layers. The lining layer connects to the joint cavity, and the sublining

layer consists of a connective tissue network of sparse cells and blood

vessels (9). The synovial tissue mainly consists of a class of cells with

stem cell-like characteristics and immunomodulatory capacity, which

have previously been described as mesenchymal stem cells (MSCs),

FLSs, synovial fibroblasts, type B synoviocytes, etc. The term “FLS” is

often preferred to represent these synovial-derived cells in RA studies.

Although these complex terms are used interchangeably, the different
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designations represent different stages of cell growth and MSCs may

represent immature FLSs (10).

FLSs are derived from synovial tissue, and these spindle-like cells

have strong differentiation potential, contributing to tissue separation,

forming functional joint cavities, exhibiting positive cartilage formation

and osteogenesis, and exerting immunomodulatory effects through

intercellular contact and secretion of cytokines, which are important for

the physiological development of the synovium and joints (11). In

pathological situations, FLSs are the main effector cells leading to

exacerbation of RA synovitis and bone erosion, undergoing sustained

proliferation and migration induced by local injury signals (12).

FLSs are found in both the lining and sublining layers and can

also be detected in the inflammatory synovial exudate in RA

patients (13). FLSs distributed in different locations of the

synovial tissue differ in subtype classification, and the expression

patterns of some surface biomarker proteins such as CD90 (Thy1),

CD34, and CD55 can indicate the functions and locations of FLSs

(14). These surface markers are expressed in the context of FLS

activation. The most frequently mentioned CD90- FLSs are mainly

present in the lining layer and can express cytokines such as matrix

metalloproteinases (MMPs) and receptor activator of nuclear factor

kappa-B ligand (RANKL) to induce bone destruction. In contrast,

CD90+ FLSs are mainly present in the sublining layer and are more

inclined to participate in inflammatory responses (15). Podoplanin

(PDPN) is a transmembrane glycoprotein on the surface of FLSs,

and activated PDPN+ FLSs are mainly located in the synovial lining

layer (16). A recent prospective cohort study suggested that

activated PDPN is associated with the development of RA in

individuals at high risk of the disease (17). Another

transmembrane phosphorylated protein, CD34, is widely

distributed on the FLS surface in the lining and sublining layers.

The CD34+ FLS subpopulation has been reported to be more

invasive and migratory in vitro, releasing higher levels of

inflammatory factors after stimulation with tumor necrosis factor

(TNF) (18). CD55 is a cell surface protein associated with activation

of the complement system and was previously thought to be closely

associated with peripheral blood cells and cancer cells (19, 20).

Recent studies have identified CD55+ FLSs, a subpopulation

distributed in the synovial lining layer and associated with

endothelial cell proliferation and reactive oxygen species-

regulated responses (21, 22). Moreover, the cell adhesion factor

cadherin-11 (CDH-11) and phosphorylated platelet-derived growth

factor receptor (pPDGFRab) are known to be expressed

throughout the synovial layers. In addition, pPDGFRab+ CDH11-

FLSs are specifically distributed in the sublining layer. This

subpopulation of FLSs is thought to possess resistance to cell

death and show greater involvement in inflammation (23). With

advances in research methods, FLS classification can be better

determined by combining single-cell sequencing, high-throughput

sequencing, and RNA-seq analysis (24, 25), and defining FLS

subgroups on the basis of differences in surface biomarker

expression can help identify the different locations and functional

roles of FLSs (Figure 1).

The transmembrane protein FAP is present on the surface of all

FLSs, and its activation correlates with the degree of inflammation

and bone destruction in RA joints (26). FAP, together with
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dipeptidyl peptidase (DPP)-2/4/6/8/9/10, especially DPP-4, form

the post-prolyl peptidase family (27), with 50%-70% sequence

identity between the two structural domain sequences (28). This

structure shows that FAP has a unique function. Overexpression of

FAP is often closely associated with abnormal activation of FLSs, in

which phenotypic characteristic activities such as proliferation,

invasion, inflammation, and immunity of tissue cells in RA

synovial sites occur, contributing significantly to the progression

of RA.
3 Plasticity of FAP expression

3.1 Activation by immune and
inflammatory response

Although FLSs are involved in the regulation of immune

homeostasis in healthy synovial membranes under physiological

conditions, they are aberrantly activated in the abnormal immune

and inflammatory environment of RA, causing the expression of the

associated pathogenic phenotype (29). For example, T cell

chemokines can stimulate FLS activation, maintain the

inflammatory phenotype of the cells, and use FLSs as antigen-

presenting cells, leading to T cell activation and proliferation that

act synergistically with the abnormal immune system to further

drive inflammation (30, 31). However, the persistent inflammatory

secretion of FLSs disappears upon removal of these cellular stimuli,

while some of the cell surface biomarkers remain activated in the

legacy (32, 33). Persistently high expression of surface proteins has a

memorability, which makes FLSs more sensitive to inflammatory

stimuli. RA begins with local inflammation, and this inflammatory

environment activates key cell surface proteins that inflict the pro-

inflammatory phenotype of FLSs, exacerbating local inflammation

through a feedback loop to the point where the synovial tissue
Frontiers in Immunology 03
undergoes a waterfall cascade response at a later stage and spreads

inflammation to other parts of the body.

Multiple studies have reported that inflammation can induce

FAP. Early research in the field of atherosclerosis proved that

macrophage-derived tumor necrosis factor-a (TNF-a) targets the
structural domain of FAP, resulting in dose-dependent

upregulation of FAP expression (34), while several in vitro

experiments in myocardial infarction and oncology have

demonstrated that FAP can be induced by transforming growth

factor-b (TGF-b) through the classical drosophila mothers against

decapentaplegic protein (SMAD) family member 2/3 pathway (35,

36). Another study proposed that active FAP on chondrocyte

membranes in patients with osteoarthritis may be activated after

stimulation with pro-inflammatory cytokine interleukin (IL)-1 and

oncostatin M (37). These findings underpin the important

regulatory role of inflammatory signaling in FAP expression.

FAP can be non-enzymatic in subsequent signaling by binding

to specific receptors, such as avb6-integrin. This process has been
shown to promote TGF-b secretion and influence the cellular

inflammatory response (38). In terms of its biological structure,

FAP exists as a 170-kDa protein on the surface of FLSs and can be

activated only when it is assembled as a dimer under specific

conditions by adjusting the structural domain (e.g., binding DPP-

4) based on its spatial structure (39). N-linked glycosylation

modification is also a part of the processing to form a functional

FAP (40). Related oncological studies have consistently reported

that the highly inflammatory environment drives FAP activation

and participates in processes related to FAP dimer assembly,

receptor binding, and glycosylation modification.

As an inflammatory and immune disease, RA is recognized to

show a clear association with FAP, and we hypothesize that a similar

initiation process occurs in the local synovial microenvironment.

However, more experimental evidence is needed to explain the causal

relationships among FAP and immune and inflammatory responses.
A B

C

FIGURE 1

The synovial joint in health and in RA. (A) In healthy joints, the synovial tissue is sparse, with only one or two layers of cells. (B) In RA, synovial cells
proliferate and become invasive, causing cartilage and bone to erode. (C) Surface markers of FLSs and their main locations.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1135384
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1135384
3.2 Epigenetic regulation

As a protein located on the cell surface, the functions of FAP

can be controlled at the transcriptional level; therefore, identifying

such transcriptional regulators of FAP mRNA may reveal the

epigenetic regulatory mechanism of FAP. The transcription factor

early growth response-1 (EGR-1) is mainly involved in the

regulation of tissue injury, immune response, and fibrosis (41),

and its high expression has been linked to the progression of the RA

inflammatory response (42) and can regulate RA-FLS proliferation

and apoptosis through the extracellular regulated protein kinases

(ERK) signaling pathway (43). Zhang JP et al. identified the FAP

promoter in human and mouse embryo fibroblasts and found that

the EGR-1 binding site with a 2-kb promoter fragment was required

for FAP expression and that the promoter could only be

transactivated in FAP+ cells (44). These results suggest that EGR-

1 may play a role in the activation of RA-FLS by binding to FAP.

Such potential connections are worth further exploration in the

field of RA research. Notably, downregulation of EGR-1 only

partially blocked FAP transcription, suggesting that transcription

factors that bind other sites are also involved in the regulation of

FAP mRNA transcription.

TGF-b1, a multifunctional key biomediator, is highly expressed in

RA synovial tissue and affects alterations in the 28-joint disease activity

score and erythrocyte sedimentation rate (ESR) in RA patients (45). It

has been also linked to increased expression of multiple inflammatory

factors (46). One study conducted in cardiac myocytes suggests that the

TGF-b superfamily can activate inflammation through the classical

SMAD signaling pathway to promote FAP expression (35). In addition,

TGF-b1 has been shown to be involved in FAP transcription and can

act as one of the regulators of the FAP promoter in the glioblastoma

microenvironment (47). Through luciferase labeling, LiWL et al. found

that TGF-b1 could interact with another 5.4-kb FAP promoter region

and that TGF-b1 could promote the activation of FAP on the surface of

fibroblasts in mice models of fibrotic disease (48). Collectively, these

findings confirmed the additional role of traditional bioregulatory

factors in FAP transcription as well as their pro-inflammatory effects.

These studies expand our understanding of the complex network

underlying FAP functional regulation. However, the application of

this understanding in the context of the pathological mechanisms of

RA remains an important question.

Several splice variants have been reported to appear in the

translation of FAP from mRNA to protein, but it remains unclear

whether the resulting protein products are all biologically active.

Three enzymatically active FAP splice variants with similar

structure and expression were identified in immunodeficient

mouse embryonic tissue. However, they all lacked the

extracellular chain near the transmembrane region, resulting in

the loss of certain FAP functions (49). The evidence has indicated

that different splice sites of FAP mRNAmay also affect the function,

but the reasons for these differences require further research at the

epigenetic level.

Genetic modifications of RNA have also been shown to affect

FAP expression. MicroRNA (miRNA) is a conserved small non-

coding RNA that regulates post-transcriptional gene expression
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(50). Several miRNAs, such as miR-30a and miR-204, have been

found to be negatively correlated with FAP expression and were not

only involved in the induction of FAP expression by TGF-b1 in

interstitial pulmonary fibrosis (51), but were also verified to target

and inhibit FAP directly in oncological studies (52, 53). Meanwhile,

increased expression of miR-630, miR-200c, and miR-155-5p

resulted in the upregulation of FAP levels in some tumor diseases

(54–56). Long non-coding RNAs (lncRNAs), another class of RNA

molecules that do not encode a protein, have been considered to be

regulators of FAP. For instance, bioinformatics analysis revealed

that lncRNA AC009099 was positively correlated with FAP

expression and may be regulated from the AC009099/miR-7152/

FAP pathway in hepatocellular carcinoma (57), while lncRNA

HIPK1-AS has shown similar effects in cervical cancer (58).

Several studies from the field of oncology have demonstrated that

exosomes promote FAP expression and that lncRNA Gm26809 and

LINC00355 play essential roles in this process by recoding for

fibroblasts (59, 60). The mechanisms by which non-coding RNAs

regulate FAP are not yet well-studied, especially in relation to RA.

Thus, additional studies are required to identify the transcriptional

regulators and reveal evidence for the epigenetic and biomechanical

regulation that will promote the development of FAP-

targeted therapy.
4 Functions of FAP-mediated FLSs

FAP is always expressed on the surface of fibroblasts associated

with various diseases (61–63). This protein plays a unique role in most

physiological and pathological processes and has previously received

considerable attention in areas such as cancer and heart disease.

However, FAP is not an essential protein for life activity. A previous

study of mice with myocardial infarction found that FAP knockout did

not result in significant developmental defects (64). Therefore, FAP

overexpression may play a more crucial role in pathological activities.

The role of FAP in RA has received increasing attention in recent years

(65). As one of the surface markers of FLSs, FAP is always

overexpressed in RA-FLS (66), which co-acts with other cells and

proteins to confer FLSs with the corresponding function and promote

RA development (Table 1; Figure 2).
4.1 Immune response

FLSs can contribute to synovial immunity by directly secreting

cytokines to activate T cells and recruit relevant immune cells,

including lymphocytes and macrophages, to reach the inflamed

tissue, resulting in a local infiltrative state (97, 98). The extracellular

structural domain of FAP includes an eight-bladed b-propeller
domain, which is thought to provide an abundant T cell epitope

(67) to participate in T cell-mediated cellular immune processes.

FLSs are also used as an immunosurveillance regulator in cancer

and show a rich immune cross-linking effect with T cells, for

instance, when CD4+ T cells are co-cultured with FLSs, which

promotes the adhesion of monocytes (68). Meanwhile, RA-FLSs can
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bind to T cell receptors to stimulate T cell differentiation and act as

an antigen-presenting cells for T cells (69), extracting and

presenting autoantigens and human type II collagen to antigen-

specific T cells. FLSs in inflamed synovial tissues release numerous

chemokines, including CD13, IL-21, and IL-27 (99–101), which can

act as chemoattractants for T cells, and the TGF-b/SMAD pathway

is thought to be involved in the cross-linking between FLSs and

immune cells in RA (102). RA-FLSs can show direct intercellular

contact with T cells (103), promoting T cell activation and

infiltration. One study reported that activated RA-FLSs can play a

dual role between regulatory T cells (Treg) and responder T cells

(Tresp), shifting the original homeostasis toward a pro-

inflammatory state (104). In addition, FAP has been shown to act

as an activator of CD40 in tumor models of mice, enhancing

dendritic cell activation and initiating T cell action (70). FAP has

been speculated to participate as an important surface marker in the

interaction of FLS with T cells.

B cells participate in the pathogenesis of RA by producing

autoantibodies and can act as an efficient class of antigen-presenting

cells (105). RA-FLSs can express a series of B cell nutrients such as B

lymphocyte stimulator and vascular cell adhesion molecule-1 in

enhancing intercellular adhesion (106), while overexpression of

hypoxia-inducible factor-1a (HIF-1a) promotes the upregulation

of the cell contact mediator IL-15 on the RA-FLS surface (107),
Frontiers in Immunology 05
resulting in prolonged B cell survival and a reduced apoptosis rate.

B cells can overexpress TNF-a, which induces RA-FLS activation

through the ERK1/2 and Janus kinase/signal transducer and

activator of transcription (JAK/STAT) signaling pathways (72). A

study on the influenza A virus showed that FAP is involved in a

series of interactions between fibroblastic reticular cells and B cells,

and FAP depletion leads to the loss of B cells and reduces the degree

of B cell immune response (73). However, the correlation between

FAP and B cells in RA remains unclear, although we suspect some

potential interactions, similar to other disease areas, require

further exploration.

The immune response to citrulline protein is one of the typical

pathological features of RA. A previous study confirmed that the

immune process associated with citrulline protein influenced the

degree of clinical symptoms in RA. Patients with undetectable levels

of serum anti-citrullinated protein antibodies (ACPAs)

outperformed serum ACPA+ patients in terms of joint swelling

scores and blood sedimentation. Besides, ACPA expression can be

found in synovial effusions of swollen joints even in serum ACPA-

RA patients (108). These results underscore the importance of the

immune process at the local synovium in RA. The presence of

citrullinated enzymes, including peptidyl arginine deiminase

(PADI), and citrullinated proteins in the synovial tissue, and the

presence of more citrullinated enzyme substrates on the surface of
TABLE 1 Correlation factors, targets and biological responses associated with FAP-mediated FLSs functions.

Functions Correlation Factors Targets Biological Responses Fields of study Ref.

Immune
response

CD40 T cells Initiate T cell action, provide epitopes and binds
receptors, regulate phenotypic transformation

RA, Oncology (67, 68, 69,
70, 71)

TNF-a B cells Regulate the degree of immune response RA, Influenza (72, 73)

TGF-b, CCL-2 FLSs Amplify the immune response Oncology (74, 75)

Macrophages Promote inflammatory response, regulate phenotypic
transformation

Atherosclerosis,
Oncology

(76, 77)

Inflammatory
response

inflammatory factors cartilage Promote cartilage inflammation RA (78)

phospho-eIF2a ERS Imbalanced ERS produces high levels of cytokines Dermatology (79)

mTOR ECM Alter lipid metabolism and collagen deposition Oncology, IPF (80, 81)

Outward
invasion

collagen fibres, a2AP ECM ECM remodeling Oncology (82, 83,
84)

avb6-integrin, MMPs Promote cell invasion Oncology (38)

Cell
migration

IL-1b, TGF-b, RhoA GTPase,
DPP-4, b1-integrin

FLSs, MSCs Constitute cell pseudopods and promote differentiation
of MSCs to FLSs

Oncology (85, 86, 87,
88)

ACPA Neutrophils,
NETs

Activate FLSs RA (89, 90)

Synovial
proliferation

P53, P21 FLSs Regulate the cell cycle and relieve contact inhibition RA (66)

RIPK3, MLKL Neutrophils Inhibit necrotic apoptosis RA (91)

Local
angiogenesis

local
abnormal
cells

Generate blood vessels to meet oxygen and nutrient
requirements

RA (92)

VEGF, MMP-1, MMP-9 endothelial
cells

Endothelial cell proliferation promotes angiogenesis Oncology, Corneal
stroma, Adipose Tissue

(93, 94, 95,
96)
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1135384
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1135384
FLSs all make FLS the main location for this immune process.

Although the possibility that FAP is involved by virtue of its unique

enzymatic activity is worth investigating, clear experimental

evidence is lacking so far. Moreover, an in vitro experiment in

patients with RA demonstrated that a Th1 cell-activated

microenvironment significantly enhances the activity of the major

histocompatibility complex (MHC) class II shared epitope on the

FSL surface (109). Meanwhile, studies have shown that a class of

follicular helper T cells that need to be recognized by MHC class II

in RA can promote inflammatory response (110). This series of

processes increases the opportunity for FLSs to act as a reservoir for

immunogenic molecules and to participate in autoimmune

processes by assisting in the initiation or amplification of adaptive

immune responses associated with RA (111). However, the

involvement of FAP in this pathway remains elusive. Future

studies should aim to explore more potential relationships

between FAP and related citrulline proteins or other FLS surface

proteins, which may improve our understanding of FAP-mediated

immune function.

Such an immune profile also brings about an “immune-

inflammatory” chain reaction. As mentioned earlier, the

citrullinated proteins play an important part in RA, and related
Frontiers in Immunology 06
citrullinated autoantigens have been shown to promote the

secretion of inflammatory factors in FLSs (112). In addition, the

co-culture of FLSs with their recruited T cells produced a hyaluronic

acid-rich synovial microenvironment in the ECM, which also

significantly enhanced the expression of inflammatory cytokines,

including IL-1, IL-6, IL-8, and TNF-a (68). FAP is expressed by

FLSs in response to pathological conditions in the RA synovium,

which is widely believed to act as a key regulator in the pathological

microenvironment (113). Because of its potential association with T

cells and its powerful immunomodulatory capacity, FAP may be

involved in inflammation-related phenotypic changes in FLSs

through multiple immune-related pathways. A previous study in

vascular smooth muscle cells proposed that one of the disease

characteristics of FAP- female mice is a reduction in macrophages,

which consequently reduces inflammation (76), demonstrating that

the immune-inflammation pathway is an important modality of

FAP regulation and providing ideas for RA-FAP-related research.

FAP expression performs regulatory functions in the

interaction of FLSs with immune cells. Such cellular interactions

are currently being studied extensively in the field of oncology and

include suppression of self-reactive T cell proliferation and signal

transduction, recruitment of Tregs and promotion of their
FIGURE 2

A Schematic view of cellular functions of FAP-mediated FLSs in RA. Arrows (↓) indicate positive impact, while inverted Ts (⊥) indicate negative
impact. The dotted arrows (—) indicate studies that exist but have not yet been validated in the RA field.
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differentiation (71), and acceleration of the release of cytokines such

as TGF-b and CC motif chemokine ligand 2 (CCL-2) (74, 75),

which positively promote feedback activation of high FAP

expression (114). FAP has been confirmed to promote

macrophage production in the tumor microenvironment and lead

to an imbalance of M1/M2 macrophages (77), suggesting that FAP

contributes to the recruitment and infiltration of other immune

cells such as myeloid-derived suppressor cells (MDSCs) and

neutrophils (115, 116). Unfortunately, these mechanisms have not

been demonstrated in the RA synovial environment, highlighting

an urgent need for research on cellular cross-linking in which FAP

may intervene.

In summary, FAP can play an important role in initiating and

maintaining abnormal adaptive immune responses by mediating

the interaction of FLSs with immune cells, controlling the secretion

of a variety of cytokines, and participating in the remodeling of the

local immune environment. Due to the presence of abundant

functional proteins on the surface of FLS, the absence of FAP in

influenza has been reported to not overly affect immune function

(117). A study in cancer-associated fibroblasts confirmed that FAP

suppresses immune cell response by enhancing MDSC recruitment

by promoting the STAT3 C-C motif chemokine ligand 2 signaling

(118). Meanwhile, some studies have also indicated that FAP has

immunosuppressive effects, and that CD4+/CD8+ T cell activity is

increased after removing FAP+ cells in mice (119). These findings,

which are outside the field of RA and have been reported

inconsistently, highlight the importance of carefully considering

whether FAP on the surface of FLSs is an indispensable player in the

immunomodulatory function in RA and elucidating the role of FAP

in immunomodulation.
4.2 Inflammatory responses

The inflammatory response demonstrated by FLSs plays an

important role in the development of chronic inflammation in RA.

When RA-susceptible individuals are exposed to stimuli such as

environmental changes and injuries, the autoimmune response in

the body is activated, resulting in the formation of an inflammatory

microenvironment for RA and the accumulation of pro-

inflammatory factors that cause continuous activation of FLS

(120, 121). Activated RA-FLSs directly secrete inflammatory

factors and chemokines that promote and maintain joint

inflammation and retard its resolution. FAP contributes to the

inflammation process. A clinical study on non-small cell lung

cancer reported an increase in the peripheral neutrophil-to-

lymphocyte ratio in patients with high FAP chromosome

percentages (122). An in vivo study suggested that FAP deficiency

in the synovial tissue of RA mice ameliorates inflammatory

destruction of joints by histomorphometry (78). Both studies

highlight the important role of FAP in the inflammatory

response. Inflammatory responses mediated by immune pathways

have been reported to play a major role in the inflammatory

phenotype. Outside of these mechanisms, a number of

physiological or pathological activities can cause inflammation

to occur.
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Endoplasmic reticulum stress (ERS) is a manifestation of

cellular self-regulation. Unbalanced ERS in RA can exert pro-

inflammatory properties by producing various relevant cytokines

while enhancing the activation of FLSs by multiple toll-like receptor

ligands (123), which has been shown to exacerbate the progression

of inflammation in RA. Researchers studying primary human skin

fibroblasts have shown that the activation of the structural domains

in FAP is associated with upregulation of the ERS target phospho-

eIF2a (79), and that overexpressed FAP may enhance the

pro-inflammatory capacity of ERS in the process. Thus, an

unidentified FLS-FAP-ERS pathway is likely to exist in the RA

microenvironment. In addition, FAP expressed by pre-adipocytes

has been shown to regulate signals such as the mammalian target of

rapamycin (mTOR) by mediating ECM remodeling and to alter

lipid metabolism (80), while FAP-mTOR-related signaling has been

shown to alter collagen deposition in idiopathic pulmonary fibrosis

(IPF) (81). Similar mechanisms in RA remain to be validated.

Using imaging analysis in patients with fibrotic disease and RA,

existing clinical studies have identified a positive correlation

between FAP expression and the degree of inflammatory lesions

such as lymphoplasmacytic aggregation and joint destruction (124,

125). These findings support our belief that FAP is involved in the

activation of the inflammatory phenotype from a molecular

perspective. On this basis, the specific molecular mechanisms of

FAP and RA-FLS inflammation-related signaling pathways are

worthy of further investigation.
4.3 Outward invasion

As a member of the DPP family, FAP shows a specific structure

and possesses a unique endopeptidase activity that is lacking in DPP-

4 and can cleave peptide chains on its own (126). Collagen fibers—a

major component of the extracellular matrix (ECM)—can be digested

as a physiological substrate for FAP (127), which occurs after the

cleavage of normal collagen fibers by matrix metalloproteinase-1

(MMP-1) secreted by FLS (82). Correspondingly, a2-antiplasmin

(a2AP) in peripheral tissues has been described as a potential

substrate for FAP. a2AP becomes a more potent fibrinolytic

inhibitor after cleavage by FAP, leading to impaired fibrinolysis,

which contributes to pathological fibrous lattice formation and

accelerated fibrin deposition in the synovium (83, 84). These

processes have been demonstrated in the field of oncology, and a

similar response can be presumed to occur in the joint

microenvironment of RA, with the digestion of ECM by FAP

ultimately driving the peripheral invasion of FLSs. Although these

fibrin-related pathological responses will ultimately contribute to the

development of RA, the underlying mechanisms need to be

understood in depth (128, 129). Maintenance of an activated state

and recognizing specific substrates for cleavage and digestion is an

important way for FAP to participate in the pathological ECM

remodeling process through its biological enzymatic activity. This

gives FLSs the most direct invasive power over the surrounding area.

Several studies have also demonstrated that FAP can activate

relevant signals in the absence of enzyme catalytic activity (130),

resulting in a stronger invasive capacity of cells (131). The ERK,
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nuclear factor kappa-B (NF-kB), and TGF-b signaling pathways are

thought to be involved in the process of invasion along with FAP

(132–134). FAP can synergize with cytokines such as integrin and

urokinase plasminogen activator receptors. For example, FAP is

activated by avb6-integrin during tumor progression, which

contributes to the recruitment of relevant aggressive cytokines,

including MMPs, in activated cancer-associated fibroblasts (38).

In the synovial environment in RA, MMPs are important for

cartilage degradation and act as markers of osteoclast expression,

directly destroying local joint bone (135). On the basis of these

findings related to FAP, we hypothesize that similar response

pathways may exist in RA, which may be a new direction to

explore FLS-induced bone erosion.

Studies of skin system disorders show that high expression of

FAP directly or indirectly increases the invasive ability of keloid

fibroblasts, and that selective inhibition of FAP leads to reduced

invasion (136). However, the effect of FAP+ FLS invasion on bone

destruction during RA progression is controversial. Previous studies

have suggested an increase in bone destruction after FAP inhibition

(137). This conclusion is not entirely convincing because the

environment in which FAP expression occurred in these studies

did not accurately match the synovial characteristics in RA patients

(138). The more mainstream view is that FAP expression is strongly

associated with increased bone destruction (139), and that FAP

expression in synovial tissue is consistently higher in active RA

patients than in patients in remission or normal adults (140, 141).

Moreover, high levels of FAP mediate bone and cartilage

destruction, in which members of signaling pathways such as

Wnt have been shown to be an important regulator through the

RA-FLS (142).
4.4 Cell migration

Symmetrical joint swelling is often observed in RA, with the

progressive manifestation of adjacent joint spread and multi-system

symptoms such as cardiac and pulmonary symptoms outside the

joints in severe cases (143). Local migration of activated FLSs to

healthy tissue outside the primary diseased joint is an integral part

of such disease progression (144). We believe that the high

expression of FAP also facilitates this process by acting

synergistically with cytokines such as IL-1b and TGF-b. FAP
positively stimulates the induction of differentiation of human

bone marrow-derived MSCs to FLSs, reducing cell adhesion and

inducing cell body contraction by inhibiting intracellular signals

such as RhoA GTPase (85, 86) and thereby facilitating cell

migration. Although the number of similar studies related to RA

is currently low, studies of FAP in other disease areas, especially

studies on cancer-associated fibroblasts, can provide a reference.

Previous melanoma-associated studies have reported that cells

showed greater migration ability after the induction of FAP

expression in fibroblasts (145).

Moreover, in cancer-associated studies, FAP and DPP-4 have

been shown to form heterodimers that form pseudopod-like

complexes on the cell surface, providing conditions for

subsequent cell migration (87). The association of FAP with b1-
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integrin has also been shown to play a key role in cell migration. The

addition of an integrin inhibitor to FAP+ fibroblasts has been

previously reported to reverse the migration phenotype (88).

Meanwhile, FAP exhibits strong bioregulatory activity in the

cross-linking of fibroblasts with other cells and contributes to the

induction of other cells’migration. For example, FAP+ fibroblasts in

human breast tumor stroma can greatly increase cancer cell

migration and induce epithelial-mesenchymal transition. This

process is often accompanied by the activation of ERK and

expression of MMP-1 (146). However, these FAP-mediated

cellular activities have almost exclusively been demonstrated in

oncology, and no concurrent evidence for the synovial

microenvironment of RA has been reported to date. Cell

migration involves complex physiological transduction

mechanisms, and blocking mitogen-activated protein kinase

(MAPK), phosphoinositide 3-kinase (PI3K)/serine-threonine

protein kinase (AKT), NF-kB, and other signaling pathways is

currently thought to inhibit the cell migration process associated

with RA-FLS (147, 148).

In the synovial tissue of RA, immune cells often appear to

infiltrate at a high level (149) and FLSs can be involved in the

recruitment of immune cells such as Th17 (150), with various types

of activated immune cells being attracted to FLSs and migrating

toward the diseased synovial membrane (151). Immunomodulation

is also involved in the FLS self-migration process. Migration of FLSs

may be related to the increase in ACPA after synovial inflammatory

injury, and the inhibition of citrulline enzyme binding to

citrullinated proteins may help reduce the expression of ACPA

and thus the migration of FLSs (152). As mentioned previously,

FAP exhibits biological activity that is potentially associated with

citrulline enzymes such as PADI, which may accelerate FLS

migration. ACPA-containing IgG antibodies have been reported

to stimulate the formation of neutrophil extracellular traps (NETs)

by neutrophils recruited by RA-FLSs in a concentration-dependent

manner (89). NETs are large DNA-based reticulation structures

released by neutrophils that are highly activated in response to

stimuli, and they have been extensively studied in oncology (153).

In RA, NETs can induce FLS activation and enhance their

migration and invasion abilities (90). FLSs continue to migrate

and invade the cartilage lining and more distant skeletal joints

(154), and this cellular activity resembles distant metastasis of

cancer cells. Abundant NETs that can attract cancer cells have

been shown to exist in target organs that are vulnerable to distant

invasion by cancer cells. Cancer cells show specific receptors for

NETs on their surfaces (155). Similar cellular responses may

presumably occur in RA during joint involvement and the

formation of extra-articular lesions, and FAP serves as one of the

receptors on the surface of FLSs that may recognize each other with

NETs and be a targeted therapeutic surface biomarker for blocking

RA progression.
4.5 Synovial proliferation

In the RA synovial microenvironment, which is characterized

by the accumulation of inflammatory factors such as TNF-a, the
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lining layer gradually transforms into a proliferative tissue structure

with an invasive capacity (156). Activated FLSs maintain the

proliferation and formation of the synovial layer almost

exclusively as enlarged synovial layer cells, even dispersing in the

synovial fluid to penetrate into the joint cavity (157). During the

progression of RA, FLSs exhibit resistance to apoptosis (158).

Overexpression of FAP has an important effect on the

proliferative capacity of FLSs.

In addition to its role as a mediator in the immune regulation of

FLSs, PADI intervenes in FLS proliferation and apoptosis. In vivo

experiments have demonstrated that RA-FLSs increased PADI-4

expression under hypoxic conditions and significantly promoted

the proliferation of FLSs through a feedback loop, while PADI-4

knockdown promoted FLS apoptosis (159). However, the

relationship between FAP and PADI-4 levels is still unclear. An in

vitro study in RA-FLSs found that FAP expression released the

contact inhibition between cells and participated in cell cycle

regulation through cytokines such as P53 and P21 (66). Meanwhile,

several cancer-associated studies have shown that high expression of

FAP promotes cell cycle progression, while FAP silencing is

accompanied by cell cycle silencing (160, 161). FAP is an upstream

regulator of the Rs-ERK signaling pathway and can serve as a

proliferation marker for a range of cells, including lung

adenocarcinoma and oral squamous carcinoma cells (162, 163).

The imbalance between survival expression factors and apoptosis

inhibitory factors is also a cause of FLS overproliferation. RA-FLSs

can be activated by the stimulation of cytokines such as IL-38, which

induce the expression of pro-inflammatory cytokines (IL-6 and TNF-

a) and angiogenic factors (vascular endothelial growth factor [VEGF]
and HIF-1a) (164) that control RA-FLS proliferation and apoptosis

in a concentration-dependent manner. Other studies have confirmed

that IL-33 can also promote this process and that the NF-kB pathway

may be involved (165). However, the role of FAP in this process

remains to be investigated.

Contrary to its pro-inflammatory effect, ERS can also induce

apoptosis in FLSs, providing microenvironmental protection in the

arthritic synovium (166). Activated RA-FLSs show some resistance

to ERS-induced apoptosis (123); this response may be attributed to

differential protein expression on the FLS surface, which may reflect

the double effect of FAP pro-inflammation and inhibition of

apoptosis during ESR imbalance, but the exact mechanism

remains poorly understood.

Several studies have shown that FAP is involved in the non-

apoptotic death of other cells. For example, necrotic apoptosis of

neutrophils in RA can be blocked by high expression of FAP when

the enzymatic function of FAP plays a potential role, with the

involvement of receptor-interacting protein kinase-3 (RIPK3) and

mixed linage kinase-like (MLKL) (91). All these facts prove that

FAP is important in cell growth and cell death processes such as

proliferation and apoptosis. Under the influence of related

mechanisms, growing FLSs and other cells further contribute to

inflammation and cellular invasion through a feedback loop.
Frontiers in Immunology 09
4.6 Local angiogenesis

Angiogenesis promotes pathological synovial development

following the excessive local inflammatory response and immune

imbalance (167). The generation of new blood vessels is regulated

by angiogenesis-stimulating and angiogenesis-inhibiting factors,

and a disturbed microenvironment can upset this balance. In the

presence of local infiltration of immune cells with inflammatory

factors and abnormal proliferation of synovial tissue, the new

vascular system is generated at an accelerated rate to meet oxygen

and nutrient requirements (92). A direct clinical link between poor

patient prognosis and angiogenesis at the synovial site has been

demonstrated in RA (168).

High expression of FAP in colorectal cancer is thought to

promote angiogenesis (169). FAP+ cells enhanced abnormal

angiogenesis by co-interaction with glioma cells (93), and FAP

levels were positively correlated with angiogenesis in gastric cancer

(170). Inhibition of FAP reduced the vascular density in epithelial

tumors (171). The enzymatic activity of FAP may play a role in

angiogenesis, for example, by binding growth factors such as

neuropeptide Y (NPY) as substrates (172). NPY is a potent pro-

angiogenic factor (173, 174), and the possibility that it can become

more active after being catalyzed by FAP should be investigated in

more detailed studies. Research in the field of oncology shows that

FAP increased the expression of pro-angiogenic factors such as

VEGF and decreased the level of anti-angiogenic molecules through

paracrine communication (93), with the AKT and ERK signaling

pathways being involved in this process (175, 176). A pro-

angiogenic signaling molecule, matrix metalloproteinase-9 (MMP-

9), is often co-expressed with FAP in corneal neovascularization,

which may account for the angiogenetic phenotype (94). Activated

FLSs in RA can express VEGF, angiopoietins, etc., as major players

in the process of angiogenesis (95), and other matrix remodeling

transcripts such as MMP-1 and TGF-b1 have been shown to be

synchronously upregulated with FAP in dedifferentiated mature

adipocytes (96). These studies suggest an inevitable link between

FAP and local angiogenesis. However, the mechanism underlying

their cross-linked expression in RA has not yet been defined.

Current research in many disease areas has linked FAP to

angiogenesis in the microenvironment, which may provide

insights into understanding the generation of local abnormal

synovial vessels (vascular opacities) in RA.
5 Therapeutic strategies targeting FAP

Although several treatments for RA are available, patients still

show a persistent inflammatory state and experience a high risk of

physical disability (177). Systemic anti-inflammatory therapy has

been reported to improve targeting synovitis in patients (178).

Infiltration of the local synovial membrane by multiple

inflammatory and immune cells results in increased secretion of
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large amounts of inflammatory factors and chemokines, which

cause cartilage erosion. The existing biologically targeted agents

aim at key cytokines, mainly TNF and the IL-6 family (179, 180),

and have been reported to reduce disease activity and achieve partial

remission of RA, but they may cause undesired immune

suppression. Therefore, more specific targeted therapeutic

modalities are needed and activated FLS surface biomarkers

should be identified for targeted therapy (156). Several clinical

trials have been performed to evaluate the clinical value of

molecular markers such as CDH-11 and CD90 (181, 182), but no

significant targeted therapeutic effect have been found to date. In

fact, using FAP as a target and killing FLSs selectively has been

tested in synovial membrane ex vivo, and several studies have

demonstrated that this is a viable way forward (8, 65).

Although FAP can be detected in tissues, tissue-based

evaluations do not seem to be an effective quantitative

measurement. Using the reaction rate of substrates such as 3144-

aminomethylcoumarin and fibroblast growth factor 21 to calculate

the FAP level is one approach (183, 184), but the accuracy of such

measurements may be affected by the reaction microenvironment

and the presence of other enzymes. These limitations indicate the

need to identify a highly selective substrate for FAP (185), which

can be applied to the preparation of clinical drugs that act through

the binding of the enzyme to the substrate specifically.

Another viable strategy is to develop highly selective inhibitors

of FAP enzyme activity. However, due to the similarity of FAP to

members of the DPP family, identification of a suitable specific

inhibitor is a significant challenge. A previous study proposed that

the compound Ac-Gly-BoroPro may act as an inhibitor of FAP with

7-fold more selectivity than other DPPs (186). Another novel

inhibitor, IOCB22-AP446 (6d, IC50 = 89 pM), was reported to be

36-fold more potent than other effective inhibitors reported to date

(187). However, most inhibitors will still act in combination with

DPP-4, which has the highest similarity to FAP (188). Although

FAP inhibitors have great therapeutic potential, their effects on RA

are still unknown. Luna Ge et al. found that the FAP inhibitor [18F]

AlF-NOTA-FAPI-04 was an effective radiotracer with high uptake

in the arthritic synovium and was suitable for RA-FLS imaging.

Thus, this radiotracer can be applied for disease identification and

diagnosis (189). However, inhibitors only block FAP activity and do

not cause harm to FAP+ cells; therefore, when used in RA-FLS, the

effect of such drugs may not be satisfactory because other proteins

such as CD90 and CD34 are still expressed on the surface of FLS.

The application of FAP inhibitors in the clinical treatment of RA

has not been sufficiently studied, indicating the need for additional

studies to verify whether they are effective and safe.

A study on cardiac fibrosis reported that modified T cells that

express chimeric antigen receptors (CARs) against disease-

associated antigens can target FAP to clear activated cardiac

fibroblasts (190). This approach has been approved for use in

hematologic malignancies (191), but conventional CAR-T cells

are not very stable and often cause off-target effects. Because

CAR-T cells can remain in the body for a long time, they cause a

continuous release of cytokines, which may easily induce damage to
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other tissues, and the resultant side effects are difficult to prevent

(192). In recent years this approach has been tried in the treatment

of RA with good experimental results (193), but since it is not yet

clinically applicable and no investigator has linked it to FAP-

targeted therapy, its pros and cons still need to be evaluated.

Another approach for tumor treatment involves the activation

of combinations called “prodrugs” by FAP (194). The prodrug

consists of a therapeutic cytotoxic agent composed of a polypeptide

chain that can be hydrolyzed by FAP. The action of the prodrug is

limited by the structural features, and upon entry into an

environment with high FAP expression, the polypeptide chain is

specifically hydrolyzed to release the cytotoxic drug it carries. The

prodrug uses the enzymatic action of FAP to kill FAP+ cells, a

mechanism more often used in tumor therapy to help the drug

unlock its target more precisely and avoid damage to normal tissue

from non-specific cytotoxic drugs (195). To treat RA, drugs that can

achieve targeted therapy against synovial tissue and maintain stable

blood concentrations should be designed.

The physiological characteristics of FAP, which is barely

expressed in normal tissues and is exposed to the cell surface as a

membrane protein, allow researchers to use it as a potential target

for treatment (196). To develop targeted FAP for the treatment of

RA, researchers should determine whether it is important to kill

FAP+ FLSs or to inhibit FAP activity. The results of surface

molecular identification of local tissue cells in the synovium can

suggest the relative amount of FAP+ FLSs, which will facilitate

selection of the appropriate approach.
6 Conclusion

The presence of FAP+ FLSs in RA synovial tissue often predicts

poor clinical outcomes. FLSs play a key role in RA by regulating

various cellular phenotypes throughout the course of the disease.

Thus, understanding the pathological changes in FLSs may help

develop new therapeutic approaches for the treatment of RA. FAP is

currently one of the prominent markers that has received much

attention, but most of the research on FAP has been conducted in

oncological diseases, and its significance in RA has not been explored

in depth. In this article, we summarize the role and mechanisms of

FAP-mediated FLSs in the pathogenesis of RA on the basis of the

available evidence, inevitably drawing on some research advances in

other disease areas in the process. Under these conditions, it is

important to carefully consider whether FLSs play a similar role in

different diseases and whether changes in the microenvironment have

a differential impact on FAP. This aspect needs to be explored in

depth by more studies. The unique activity of FAP allows it to confer

specific biological functions to FLSs. This property can be used to

study the synovial joint microenvironmental changes induced by

FAP expression. However, there remain many unanswered questions

regarding the detailed molecular mechanisms of interaction between

FAP and FLSs. Further in-depth studies are advocated to clarify these

unanswered questions in the RA field.
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