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Tumor immunity is a growing field of research that involves immune cells within

the tumor microenvironment. Neutrophil extracellular traps (NETs) are

neutrophil-derived extracellular web-like chromatin structures that are

composed of histones and granule proteins. Initially discovered as the

predominant host defense against pathogens, NETs have attracted increasing

attention due to they have also been tightly associated with tumor. Excessive

NET formation has been linked to increased tumor growth, metastasis, and drug

resistance. Moreover, through direct and/or indirect effects on immune cells, an

abnormal increase in NETs benefits immune exclusion and inhibits T-cell

mediated antitumor immune responses. In this review, we summarize the

recent but rapid progress in understanding the pivotal roles of NETs in

tumor and anti-tumor immunity, highlighting the most relevant challenges in

the field. We believe that NETs may be a promising therapeutic target for

tumor immunotherapy.

KEYWORDS
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1 Introduction

Recent studies have shown that strategies that increase anti-tumor immune responses

play important roles in the fight against cancer (1, 2). Although neutrophils are the first line

of defense in innate immunity, tumour-associated neutrophils (TANs) could promote

tumor progression (3). Moreover, under certain circumstances, the tumor

microenvironment (TME) can attract neutrophils to tumor tissue and functionally

modulate them to release web-like structures to form neutrophil extracellular traps

(NETs) (4). NETs are composed of DNA fragments coated with histones and toxic

granule proteins, such as citrullinated histone H3 (H3Cit), myeloperoxidase (MPO),

neutrophil elastase (NE), cathepsin G (CG), matrix metalloproteinase 9 (MMP-9), which
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were first discovered by Volker Brinkmann (5). NETs can capture

and kill pathogens such as bacteria (6), fungi (7), viruses (8) and

parasites (9). However, dysregulated NETs are harmful to the host.

Extensive studies have confirmed that uncontrolled and excessive

NETs are involved in the pathogenesis of autoimmune disease (10,

11), cardiovascular disease (12), inflammatory disease (13) and

cancer (14). It is worth mentioning that the function of NETs in

tumors is gradually expanding. NETs are related to detrimental

outcomes in breast cancer, pancreatic cancer, and hepatocellular

carcinoma (15–17). NETs can promote tumor growth, invasion,

metastasis, and drug resistance (18–20). Although accumulating

evidence has clarified how NETs contribute to tumor progression,

the role of NETs in anti-tumor immune responses is less clear.

Therefore, further studies are necessary to elucidate the effects of

NETs on tumor immunity. This review primarily focuses on the

function of NETs in tumor and anti-tumor immunity, and highlights

their application in tumor immunotherapy.
2 NET structure and formation

NETs are large, extracellular, web-like structures composed of

DNA fibers coated with histones and granule proteins. Various

stimuli trigger NET formation, such as lipopolysaccharides (LPS),

phorbol 12-myristate 13-acetate (PMA) (5), high mobility group box

1 [HMGB1] (21), tumor-associated stimuli (tumor-associated antigen,

granulocyte-colony stimulating factor [G-CSF] (22), C-X-C motif

chemokine ligands [CXCLs] (23), cathepsin C (24), amyloid b (18),

tissue inhibitor of metalloproteinases-1 [TIMP1] (16)), different

immunological stimuli (interleukin [IL]-8/CXCL8, interferon [IFN]-

a/IFN-g/C5a, granulocyte-macrophage [GM-CSF/C5a), IL-1b, IL-17,
IL-18, IL-33, immune complex (5, 20, 25–30), and other pathogen-

associated molecular pattern molecules(PAMPs) (31, 32),

autoantibodies (33), activated platelets (34), bacteria (35, 36), viruses

(37), fungi, calcium ionophores (38), cigarette smoke (39), free fatty

acids (40), and bleomyci (41) (Table 1). These stimuli activate the cell

surface receptors of neutrophils; for example, HMGB1 recognizes

advanced glycation end products (RAGE) receptor and toll-like

receptor 4 (TLR4) (42), C3a recognizes C3a receptor (C3aR) (43),

C5a recognizes C5a receptor (C5aR) (44), CXC chemokines recognize

CXC chemokine receptors (CXCRs) (23), immune complex activate

the FcgRIIIb receptor (45), LPS and platelets activate the toll-like

receptor (TLR) (46, 47), bacterial products recognize G protein-

coupled receptors (48), fungi recognize the Dectin1 and Dectin 2

receptor (49, 50). After the stimuli activate the receptors of the

neutrophils, different intracellular signaling mechanisms are further

activated, leading to the formation of two types of NETs. The classical

form is lytic NETosis, which is considered a type of slow cell death.

Besides, this process depends on the NADPH oxidase-mediated

generation of reactive oxygen species (ROS), as evidenced by chronic

granulomatous disease patients with mutations in the NADPH oxidase

that fail to form NETs (51). Many reactive oxygen species (ROS)-

inducing factors, including PMA, C5a, LPS, TLR-4, immune

complexes, IL-8, cathepsin C, calcium ionophores activate NOX via

different molecular pathways that cause ROS generation (24, 25, 30,

52–55). Accumulation of ROS triggers the escape of MPO and NE
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from the granules (56). MPO first activates NE to degrade the

cytoskeleton in the cytoplasm (57). Subsequently, NE translates to

the nucleus to cleave histones that contributes to chromatin

decondensation (56). Blocking NE by NE inhibitor or serum

leukocyte protease inhibitor (SLPI) disrupts NET formation (56),

suggest that NE is required for chromatin extrusion. Moreover, in

the late stage of chromatin decondensation, MPO binds to chromatin

to promote further decondensation (56). In parallel, ROS synthesis also

leads to the activation of peptidyl arginine deiminase 4 (PAD4), a

calcium-dependent enzyme, which catalyzes histone citrullination,

thereby promoting chromatin decondensation (58). Further study

showed that inhibition of PAD4 in vitro greatly reduced the process

of NETosis, and PAD4 knockout mice failed to produce NETs in vivo,

indicated that PAD4 is critical for NET formation (6). Recently, Amulic

et al., have added on another critical step in NET formation: the

activation of cyclin-dependent kinases (CDKs) 4 and 6 (59). Although

the mechanism is still unclear, this study suggested CDK4/6 likely
TABLE 1 Stimuli that induce NET formation.

Stimuli References

LPS (5)

PMA (5)

HMGB1 (21)

G-CSF (22)

CXCLs (23)

Cathepsin C (24)

Amyloid b (18)

TIMP1 (16)

CXCL8/IL-8 (5)

[IFN]-a/IFN-g/C5a (25)

GM-CSF/C5a (25, 26)

IL-1b (27)

IL-17 (20)

IL-18 (29)

IL-33 (28)

Immune complexes (30)

Pathogen-associated molecular pattern molecules (PAMPs) (31, 32)

Autoantibodies (33)

Activated platelets (34)

Bacteria (35, 36)

Viruses (37)

Fungi (38)

Calcium ionophores (38)

Cigarette smoke (39)

Free fatty acids (40)

Bleomyci (41)
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function downstream ofMAPK and ROS, and CDK6 is required, while

CDK4 is partially required for NET formation (59, 60). Finally, nuclear

membrane breakage, nuclear DNA and proteins are released. Released

DNA further decorated with NE,MPO and cytosolic proteins, followed

by plasma membrane rupture and NET extrusion and eventually lysis

(56, 58). Besides, there are also noncanonical signaling triggers NET

formation independently of ROS and PAD4, which mediated by a

pore-forming protein gasdermin D (GSDMD) (36, 61). The second

type of NET is a non-cell-death form in whichNET are rapidly released

from live cells without nuclear membrane disruption or loss of

membrane disruption, which accompanied by granule proteins; this

is known as nonlytic NET formation (25, 32, 34, 62). In this process,

NETs were also found to include mitochondria DNA (mtDNA) when

neutrophils are stimulated with LPS or C5a (25). Besides, it has been

confirmed that some pathogens, such as S. aureus and C. albicans

induce a rapid nonlytic NET formation by activating TLR2 and C3

(62). Moreover, this type of nonlytic NET formation is critical to acute

invasive infection (62). Additionally, LPS-stimulated platelets could

also promote nonlytic NETosis by activating platelet TLR4 (31, 34).

However, the molecular mechanisms of nonlytic NETosis are still

poorly understood. It can be ROS dependent or independent. A

summary of NETosis induced by various stimuli is shown in Figure 1.

Apart from the physiological roles in host defense against

pathogens, uncontrolled NET formation has been found to play a

pivotal role in atherosclerosis (63, 64), coronary artery disease (65),
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autoimmune disease (66, 67), sepsis (68), metabolic disease (69),

coronavirus disease 19 (COVID-19) (37, 70), and cancer (71).
3 Evidence of NETs promoting tumor
progression

Accumulating evidence suggests that the TME can induce NET

formation in various types of cancer, including hematologic

malignancy (72–74) and solid tumors, such as breast cancer (75),

ovarian cancer (76), gastric cancer (77), hepatic carcinoma (78),

lung cancer (79), and colon cancer (80, 81). In particular, studies

have revealed that NETs are increased in the peripheral blood and

tumor tissues of patients with cancer (16, 76, 82). To date, NET

formation in tumors may be partly due to tumor cells interacting

directly and indirectly with neutrophils via the production of

cytokines, chemokines, proteases, extracellular vesicles. Recent

studies have shown that NETs can promote tumor progression

via different mechanisms (Table 2).
3.1 NETs in tumorigenesis and growth

NETs have been shown to participate in tumor initiation and

growth. For instance, non-alcoholic steatohepatitis (NASH) is a risk
FIGURE 1

Schematic representation of NET formation. Different stimuli, such as PMA, tumor-associated stimuli, immunological stimuli, IL-1b, IL-17, IL-18, IL-
33, LPS, PAMPs, some antibodies, activated platelets, bacteria, viruses, Ca2+ can induce NET formation. For lytic NETosis, external stimuli produce
different kinds of ROS-inducing receptors, activating neutrophils to produce intracellular ROS, ROS further activates MPO and PAD4, then MPO
activates NE and PAD4 citrullinates H3, therefore, leads to nuclear envelope disintegration, chromatin decondensation, cell membrane breakdown,
NET formation. For non-lytic NETosis, some stimuli, such as Staphylococcus aureus and Candida albicans-associated LPS and HMGB1 can induce
NET formation through a non-lytic manner.
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factor for hepatocellular carcinoma (HCC), and elevated levels of

NETs contribute to the progression of NASH to HCC (90). Further

study indicated that NASH-associated free fatty acids stimulate

NET formation, which increased monocyte-derived macrophages

and production of inflammatory cytokines, that contribute to HCC

initiation (90). Furthermore, gut-derived LPS induced NET

formation through activating TLR4 pathway, which further

promoted alcohol-related HCC in mice model (91).Besides, Silvia

Guglietta et al., demonstrated that C3aR-dependent NET formation

induced protumorigenic neutrophils polarization, and promoted

intestinal tumorigenesis (92). Subsequently, in a PAD4 knockout

mouse model genetically incapable of NET formation, both

subcutaneous tumors and hepatic metastases using murine
Frontiers in Immunology 04
colorectal (MC38) cells grew significantly more slowly than the

WT mice (93). Similarly, human colorectal and hepatocellular

cancer cell lines injected subcutaneously in the nu/nu mice

treated with DNAse also grew slower (93), suggesting that

inhibition of NETosis by preventing NET formation or degrading

NETs is correlated with decreased tumor growth in vivo.

Mechanistically, NETs-associated protein, NE, directly act TLR-4

on the cancer cells, leading to activation of the p38-PGC-1a
pathway, followed by increased tumor mitochondrial function

and increased tumor growth (93). The direct role of NETs in

regulating the metabolism of cancer cells might provide a

therapeutic opportunity to effectively halt tumor growth. Another

study showed that subcutaneous injection of Lewis lung carcinoma
TABLE 2 The roles of NETs in the cancer progression.

Cancer type Detected
NETs marker

NETs Formation
Mechanism

Relevance to cancer progression Potential Mechanisms Ref.

Hepatocellular
carcinoma
(HCC)

MPO-DNA/
H3cit

Cancer cell-derived IL-8 Promote tumor invasiveness and metastasis;
predict a poor prognosis

Activate TLR4/9-COX2;
increase cathepsin G; oxidize

mtDNA

(77,
83, 84)

Breast cancer MPO-DNA/
H3cit

Cancer cell-derived
cathepsin C

Promote tumor metastasis Regulate CCDC25-ILK-b-
parvin pathway; NF-kB

pathway

(15,
24)

Pancreatic cancer MPO-H3cit Cancer cell-derived
DDR1; TIMP1

Promote cancer cells migration and invasion;
promote tumor metastasis; induce immunotherapy

resistance

Activate
IL-1b/EGFR/ERK pathway;
inhibit CD8+ T cell function

(16,
19, 20,
85)

Ovarian cancer MPO-H3cit Cancer cell-derived
inflammatory factors

Promote tumor metastasis and chemotherapy
resistance

Unclear (75)

Gastric cancer
(GC)

MPO-DNA/
cfDNA/NE/
MPO-H3cit

Cancer cell-derived
TME/Postoperative
abdominal infectious

complication

Promote tumor proliferation, invasion, migration,
and metastasis

EMT,
Activates TGF-b pathway

(76,
86)

Colon cancer H3cit Cancer cell-derived IL-8 Promote cancer proliferation and metastasis EMT; Releases HMGB1 and
activates TLR9

pathways

(79,
80)

Human melanoma MPO-H3cit Cancer-associated
fibroblasts- derived

Amyloid b

Promotes tumor proliferation Unclear (18)

Bladder cancer NE-H3cit Tumor immune
microenvironment-
derived HMGB1

Promotes tumor radioresistance Unclear (87)

Lung cancer Unclear Unclear Promotes cancer invasion, metastasis Interaction of TGF-b, IFN-b,
and NE-pathways;

trap CTCs

(78,
88)

Glioma MPO-H3cit IL-8 Promotes tumor proliferation and invasion HMGB1/RAGE/IL-8 axis (53)

Acute
Promyelocytic
Leukaemia (APL)

MPO-DNA/
H3cit

Activated
platelets

Increases bleeding burden Damage the integrity of
endothelial cells

(71)

Hodgkin
Lymphoma

H3cit Unclear Correlates with concurrent fibrosis and
inflammation

Unclear (72)

Diffuse large B-cell
lymphoma
(DLBCL)

MPO-DNA/
H3cit

IL-8 Promotes tumor proliferation and migration TLR9-NFkB-STAT3-p38 (89)

Myeloproliferative
neoplasms

H3cit JAK2 Promotes thrombosis Unclear (73)
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(LLC) cells reduced tumor growth while the B16 melanoma growth

was not affected in PAD4-deficient mice (94). Further study showed

that G-CSF released from LLC tumor increased more activated

CD11bhigh neutrophils and NETs than B16 tumor, and B16 tumors

in WT mice grew faster than the tumors in PAD4-deficient mice

after G-CSF treatment (94). This highlights that, different tumors

generate different TMEs, which affect the formation of NETs. In

addition, it has been reported that increased NETs facilitated cell

proliferation and tumor growth in diffuse large B-cell lymphoma

(DLBCL) and were correlated with poor prognosis (89). The exact

mechanism was that lymphoma cells secreted IL-8 induced NET

formation, which depended on the Src and MAPK pathways, in

turn, NETs directly activated of the TLR9-NFkB-STAT3-p38
pathway to promote tumor progression (89). In glioma, NETs-

derived HMGB1 increased cell proliferation by binding to RAGE

and activating the NF-kB signaling pathway (53). Moreover, a

recent study demonstrated that DNA released from NETs

enhances pancreatic tumor growth (95). And, the mechanism of

the pro-tumorigenic effect was not directly through effects on

cancer cells, but rather the through NET-DNA induced

autophagy-dependent activation of pancreatic stellate cells,

causing increased MMP-2 and -9 production to promote cancer

progression (95). Hafsa et al. demonstrated that cancer-associated

fibroblasts are important factors mediators of NET formation. They

found that cancer-associated fibroblast-induced NETs contribute to

tumor proliferation in Bladder cancer and pancreatic

adenocarcinoma (18). Although further investigation is needed,

there is a plenty of in vitro and in vivo evidence that inhibition of

NETs decreased tumor growth in several different cancer types.
3.2 NETs in tumor metastasis

Metastasis is a hallmark of advanced stage cancer, which is the

primary cause of cancer-related mortality. Moreover, metastasis is a

multistep process, including the detachment of cancer cells from the

primary tumor, the dissemination of tumor cells to surrounding

tissues and distant organs (96). There is also evidence that NETs

result in the metastasis cascade of animal and human tumors (97, 98).

Epithelial−mesenchymal transition (EMT) is critical for tumor cells

to physically disseminate from the primary site, which is the first step

in distant metastasis (99). In breast cancer, after treatment with

NETs, MCF7 cells gained a migratory and mesenchymal phenotype,

accompanied by EMT induction (100). Moreover, the EMT program

further upregulated the expression of cancer stem cells (CSCs)

markers, such as CD44, and induced a pro-inflammatory response

in breast cancer cells (100). These results show that NETs might

contribute to breast cancer metastasis through the activation of EMT

program. In another study, NETs promoted gastric cancer cells

migration through EMT, inhibition of NETs by DNAse-1/GSK-484

upregulated the epithelial marker, E-cadherin, while downregulated

the mesenchymal marker (77). Consistently, Jin et al. found that

NETs facilitated cell migration and invasion, and EMT in pancreatic

cancer. Besides, NETs-mediated EMT is dependent on the activation

of IL-1b/EGFR/ERK pathway (85). Following this study, NETs
Frontiers in Immunology 05
decreased expression of epithelial markers E-cadherin (CDH1),

epithelial cell adhesion molecule (EPCAM) and increased

expression of mesenchymal markers vimentin (VIM), fibronectin

(FN1), which initiates EMT transcriptional programs in colon cancer

(80).This EMT-like phenotype increased cell motility and the

migration of colorectal cancer cells, which further promoted local

invasion and metastasis (80). In non-small cell lung cancer, NETs

induced EMT through activating NF‐kB/NLRP3 inflammasome

pathway by downregulating the expression of long non-coding

RNA MIR503HG, which further enhanced tumor cell metastasis

(101). Additionally, one study showed that NETs could induce

pancreatic cancer cells migration, invasion and EMT through

activating the IL-1b/epidermal growth factor receptor (EGFR)/

extracellular signal−regulated kinase (ERK) pathway (85). Taken

together, there is increasing evidence that NETs can support tumor

metastasis through inducing EMT program. In addition to EMT,

NETs also increased cancer cell migration and invasion through other

molecular signaling pathways. For example, NET markers, such as

MPO-DNA and H3Cit were increased in patients with HCC and

predicted a poor prognosis (83). Further studies revealed that NETs-

associated Cathepsin G promoted HCC cell invasion through

decreasing E-cadherin expression, which promoted HCC metastasis

(83). Moreover, HCC cells not only stimulated NET formation, but

also modified its composition by increasing the oxidized

mitochondrial DNA, which increased HCC cells invasion and lung

metastasis in vitro and vivo (84). In breast cancer, NETs could

promote cell migration and invasion by activating nuclear factor

(NF)-kB pathway (75). Another study found that NETs facilitate

gastric cancer cell migration, invasion and metastasis by activating

the transforming growth factor (TGF)-b pathway (86). Besides,

recent research demonstrated that the receptor tyrosine kinase

discoid domain receptor 1(DDR1) induces CXCL5 production to

recruit neutrophils to stimulate NET formation, leading to pancreatic

cancer cell invasion and metastasis (19). Taking into account the

above findings, NETs might contribute to metastasis initiation that

includes detachment of cancer cells from primary tumor, EMT and

increased cell migration and invasion.

Primary cancer cells acquired the migration and invasion ability

through EMT or other molecular signaling pathway, then invaded

into the surrounding tissues. These cancer cells further intravasate

to enter the circulation, where they are termed as circulating tumor

cells (CTCs) (96). CTCs must overcome fluid shear stress, immune

cells and oxidative stress to colonize distant organs (102). It has

been reported that NETs can protect CTCs from cytotoxic immune

cells with NETs-mediated physical barrier (103), thus increased

metastatic seeding. Furthermore, localized degradation of NETs by

photoregulated release of DNase I abolished the NET-mediated

capture and colonization of metastasizing colorectal cancer cells in

the liver (103). Besides, NETs were also found to promote adhesion

of tumor cells to distant organ sites by trapping circulating lung

carcinoma cells within DNA webs, which further increased

formation of hepatic metastasis (88). Inhibition of NETs

attenuated the development of hepatic metastases, suggest that

NETs were responsible for lung cancer metastasis. In another

study, NETs could interact with, trap (CTCs), which further
frontiersin.org
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contributed to tumor metastasis in lung cancer in vitro and vivo

(104).Moreover, both NETs and CTCs expressed b1-integrin
protein, which acted as a bridge mediating the interactions

between CTCs and NETs, then increased cancer cell adhesion to

distant organs (104). These findings highlight the molecular

mechanism by which NETs can trap CTCs via a protein–protein

interaction. Whether NETs-derived proteins have other molecular

mechanisms to protect CTCs from risks, such as anoikis and

apoptosis, are still unclear now. Thus, it is important to explore

the mechanism of CTCs adhesion to NETs, that might identify

NETs as potential therapeutic targets. Recently, NETs were found to

trap hepatocellular carcinoma cells, and trigger the cytotoxicity

resistance, enhanced invasiveness and angiogenesis of the trapped

HCC cells (78). Mechanically, NETs enhanced metastatic of the

trapped HCC cells by activating TLR4/9-COX2 signaling, that

induced an inflammatory response (78). Yang et al. (15)

demonstrated that NET-DNA functions as a chemotactic factor

to attract CTCs, then induces cancer cells migration, adhesion, and

distant metastases in breast cancer. Further study revealed that

NET-DNA interact with coiled-coil domain-containing 25

(CCDC25) to activate the ILK-b-parvin-RAC1-CDC42 pathway,

which may further facilitate the metastasis of cancer cells (15).

Furthermore, Xiao et al (24). found that the protease cathepsin C

activates the PR3-IL-1b axis, induces NET formation, and

contributed to the early stage of metastatic colonization in breast

cancer lung metastasis. Similar studies have shown that

complement 3 (C3) is increased in lung mesenchymal stromal

cells, and C3-C3a receptor axis promotes neutrophil recruitment

and NET formation, which facilitates breast cancer cell metastasis to

the lungs (105). And this function of C3 in the regulation of NETs

depends on Th2-drived IL-4/IL-13-STAT6 pathway (105). Taken

together, these studies confirm that NETs promote cancer

metastasis through regulating multiple steps of cancer metastasis.
3.3 NETs in tumor therapy resistance

In addition to tumor growth and metastasis, tumor therapy

resistance remains a major challenge in current research. Resistance

to tumor includes both primary and secondary resistance. Targeted

therapy is frequently associated with acquired resistance (106),

whereas immunotherapy is often associated with primary

resistance (107). In the area of malignancy, tumor-associated

neutrophils (TANs) have been shown to contribute to cancer

resistance to therapies (108). Building on the function of TANs in

cancer resistance to therapy, NET-dependent mechanisms of drug

resistance are beginning to be recognized. For example, drug-

resistant cancer cells are dormant during clinical remission and

can be reactivated leading to cancer recurrence (109). It has been

demonstrated that NETs are required for awakening dormant

cancer (110). Mechanistic analysis revealed that NET-associated

NE and MMP-9 proteins cleave laminin and activate integrin a3b1
signaling, which further induces focal adhesion kinase (FAK),

ERK1/2, myosin light-chain kinase (MLCK), and yes-associated

protein (YAP) signaling to reactivate dormant cancer cell
Frontiers in Immunology 06
proliferation (110). Moreover, NETs could trap doxorubicin

(DOX) and inhibit its diffusion into ovarian cancer cells; the

degradation of NETs could increase the DOX-induced apoptosis

of ovarian cancer cells (111), suggested that NETs induced DOX

chemotherapy resistance. Radiotherapy is an important component

of cancer treatment, however, radioresistance can lead to tumor

progression and mortality (112). One study revealed that radiation

therapy could stimulate NET formation in bladder cancer; in turn,

increased NETs contributed to tumor radioresistance (87).

Researchers further found that HMGB1 was released by tumor

cells after radiation therapy, and HMGB1 promoted NET formation

by activating TLR4 signaling (87). Inhibition of HMGB1 and NETs

significantly delayed tumor proliferation. Moreover, NET levels

were significantly higher in radiation therapy non-responders

than in radiation therapy responders, suggesting that NETs seem

to have a pivotal influence on radioresistance (87). Additionally,

another study indicated that NETs participated in the post-

radiotherapy local recurrence of in breast cancer (113). NETs are

increased in relapsed human breast cancer and are associated with

poor prognosis, and inhibition of NETs might provide new

opportunities to address post-radiotherapy resistance in clinical

trials. Overall, NETs play important roles in tumor progression

(Figure 2), further research on the molecular mechanism of NET-

mediated tumor progression is warranted.
4 NETs in immune cells

Beyond the well-known functions of NETs in the diversified phases

of tumor metastasis and tumor progression, NETs also play critical

roles in tumor immune exclusion. The tumor-promoting function of

NETs is mediated not only by diverse mechanisms, as described above,

but also by attenuating the antitumor functions of the immune system.

Accumulating evidence suggests that NETs are considerably involved

in the regulation of immune cells (114, 115).Thus, interest in

understanding how NETs interact with immune cells to modulate

the tumor immune response of tumors is increasing.
4.1 Macrophages and DCs

Macrophages and Dendritic Cells (DCs), two major Antigen

Presenting Cells (APCs), are pivotal innate immune cells that

regulate the anti-tumour immune responses (116, 117). It has been

shown that NETs activate macrophages and DCs through upregulating

important costimulatory molecules (CD80, CD86) at early times

(30 min), however, macrophages and DCs undergo apoptosis after

prolonged incubation with NETs (118). Further study showed that

NETs-derived histone H2A and to a lesser degree elastase caused

mitochondrial morphological alterations, which further induced a

caspase- and AIF-dependent apoptosis (118).These results indicated

that NETs interact with macrophages and DCs for a long time might

enhance tumor immunosuppression. Another study revealed that LPS

induced significant upregulation of surface markers of activation and

maturation on DCs, such as, CD80, CD83, and CD86 was significantly
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reduced when DCs were exposed to both NETs and LPS (119).

Moreover, NETs plus LPS significantly promoted inflammasome

activation though increased IL-1b secretion, and decreased LPS-

induced IL-10, an immunomodulatory cytokine, and IL-12, a T cell

stimulatory factor in both macrophages and DCs (119). In turn, both

macrophages and DCs could also degrade NETs (119), suggesting that

NETs acted as double-edged swords of innate immunity. Besides, the

addition of NETs to IL-4/GM-CSF-treated monocytes downregulated

the expression of the IL-4 receptor in monocytes and prevented

monocytes from fully differentiating into DCs but induced them to

differentiate into M2 macrophages (120). It has been reported that M2

macrophages such as tumor-associated macrophages (TAMs) promote

tumor growth and invasion (121). Thus, NETs might contribute to

tumor progression through promoting M2 polarization of

macrophages. Moreover, DNA released from NETs also mediated

pro-inflammatory macrophage polarization by activating the TLR-9

pathway (122). In addition, NETs induced the production of IL-8 by

macrophages through activating the TLR9/NF-kB signaling pathway,

which further aggravated atherosclerosis (123). Georgakis et al. found

NETs from patients with systemic lupus erythematosus activate

plasmacytoid DCs (pDCs) to secrete IFN-a, correlating with severe,

active disease (124). Mechanistically, immunocomplexes stimulated

neutrophils release IL-33-decorated NETs, which recognized the IL-33

receptor ST2L on pDCs, and further activating TLR9-IRF7 pathway,

leading to IFN-a secretion (124). Similarly, cigarette smoke extract-

induced NETs also promoted pDCs maturation and activation (125).

The role of pDCs in TME is still ambiguous now (126). Thus, we hold

the opinion that whether NETs-mediated pDCs activation display

active immunity functions or involved in immune tolerance is

determined by the specific tumor microenvironmental. In contrast,

another recent study demonstrated that NETs induced by oleic acid

stimulated DCs caused increased levels of CD40, CD86, and human

leukocyte antigen DR (HLA-DR), indicating that oleic acid-induced

NETs facilitated the maturation and activation of DCs (40). NE is an
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important component of NETs. A recent study indicated that NE could

impair macrophage phagocytic function through the cleavage of cell

surface receptors or opsonins (127). Furthermore, treatment of

immature DCs with NE induced the generation of CD4+FOXP3

+Tregs, which showed suppressive activity in vitro (128). NETs

regulate macrophages and DCs through different pathways,

indicating that NETs might be an important indicator for antitumor

immune response.
4.2 Natural killer cells

Natural killer (NK) cells are an important subset of innate

immune cells that are found to be essential for tumor

immunosurveillance (129). One study showed that NETs might

inhibit the function of NK cells by upregulating LGAS9 and

CEACAM1 genes, which are negative regulators for NK cells in

patients with COVID-19 (130). Other groups have confirmed that

NETs can accumulate decidual NK cells, which leads to

immunological disorders in the placenta in patients with systemic

lupus erythematosus (131). Moreover, CG, an important

component of NETs, cleaves the NK cell-associated activating

receptor NKp46, which further impairs NK cell function,

including IFN-g production and cell degranulation (132),

suggesting that NETs might inhibit NK-cell based antitumor

response. In turn, NK cells also induced NET formation via IFN-

g secretion, which further promotes thrombus formation (133).
4.3 T cells

T cells have long been regarded as a major subset of the immune

cells involved in tumor immunity. Miranda et al. demonstrated that
FIGURE 2

NETs promote tumor progression via many molecular pathways. NET can increase tumor cell proliferation by activating TLR9-NFkB-STAT3-p38
pathway; NET-DNA increased MMP-2 and -9 production, which increased tumor growth; NE released by NETs, can enhance tumor growth by
activating TLR4-p38-PGC-1a pathway; HMGB1, released by NETs, can promote tumor growth by RAGE-IL-8 axis. Moreover, NETs promote tumor
metastasis by promoting EMT, activating TLR4/9-COX2, IL-1b-EGFR-ERK, CCDC25-ILK-b-parvin, and lncRNA MIR503HG-NLRP3 pathway. Besides,
NETs-associated NE, MMP-9, and HMGB1 contribute to tumor therapy resistance.
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Toxoplasma gondii-induced NETs promote CD4+ T cell recruitment

and the secretion of IFN-g, TNF, and IL-6, indicating that NETs

contribute to the adaptive immune response (134). In addition, NET-

stimulated DCs promote primary CD4+ T cell differentiation into T

helper (Th) 1 and Th17 cells compared with DCs without stimulation

by NETs (40). Consistent with this finding, it has been shown that

NETs can directly promote naive T cell differentiation into Th17 cells

(135). Further studies have shown that histones are involved in the

NET-induced increase in Th17 cell differentiation, and this regulation

is dependent on the TLR2/MyD88 pathway. Moreover, NETs could

also activate Th17 cells, that enhanced immune cells recruitment in

atherosclerotic plaques (136). These findings demonstrate that NETs

may be acritical factor influencing the differentiation of Th17 cells. It

has also been reported that increased infiltration of Th17 cells

promoted tumor progression and was correlated with a poor

prognosis (137, 138). By inducing Th17 cell differentiation, NETs

might be important for Th17 cell-related cancer immunotherapy.

Additionally, in patients with severe COVID-19, focal NETs were

negatively associated with CD8+ T cell infiltration in lung tissues (139).

Taken together, how to target NETs to improve Th helper-mediated

anticancer immunity needs to be explored in the future.
4.4 B cells

B cells could inhibit tumor progression through secreting

immunoglobulins, promoting T cell response, and killing cancer

cells (140). In addition to macrophages, DCs, and NK cells, NETs

are also associated with B cells. For example, IL-37-DNA complexes

derived from NETs can trigger B cell proliferation and activation in

lupus erythematosus (LE) patients (141). Further study showed that

NET-derived LL37–DNA complexes gain access to endosomal

compartments of B cells and activate TLR9 pathway (141). In

addition, citrullinated histones in NETs are thought to act as a

continuous source of fresh antigens for B cells, promoting the

production of new immunoglobulin M pathogenic anti‐citrullinated

protein antibodies in rheumatoid arthritis (142).Another study

showed that NETs might contribute to B cell activation and

autoantibody secretion, which aggravates tissue damage in

hidradenitis suppurativa (114). Moreover, elevated levels of NETs

have been found to induce B-cell differentiation into plasma cells by

activating the mitogen-activated protein kinases (MAPK) p38

pathway in bullous pemphigoid (143). These findings indicate that

NETsmight regulate tumor immune response. by acting on B cells. In

summary, these studies suggest that NETs play an important but

complicated role in immune cells (Figure 3).
5 Targeting NETs for tumor
immunotherapy

Immunotherapy has provided new strategies for cancer therapy

and has increased long-term survival in subsets of patients. The

significant and wide-ranging effects of NETs in regulating tumor
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cells and immune cells have prompted the clinical investigation of

additional therapies to improve the efficacy of tumor immunotherapy.
5.1 NETs in anti-tumor immunity

Given that there is much evidence for the participation of NETs in

many types of immune cells, it is no surprise that NETs regulate tumor

immunity. For instance, in non-small cell lung cancer, bladder cancer,

and metastatic melanoma, NET density is inversely correlated with

CD8+ T cell density, suggesting that NETs might impair CD8-

mediated antitumor immunity (144). Furthermore, studies have

shown that both CD4+ and CD8+ T cells in the NET-rich TME

express significantly higher levels of T cell exhaustion-related markers,

such as programmed cell death protein 1 (PD-1), T cell

immunoglobulin domain and mucin domain 3 (Tim3), and

lymphocyte-activation gene 3 (Lag3), indicating that increased NETs

in the TME are responsible for the loss of T cell function (145). Further

research demonstrated that both mouse and human neutrophil-

derived NETs contained the immunosuppressive ligand programmed

death-ligand 1 (PD-L1), blocking of PD-L1 in NETs obviously

decreased tumor growth (145). In addition, NETs can obstruct

contact between immune cells and the surrounding target tumor

cells by wrapping and coating tumor cells and protecting them from

CD8+ T cells and NK cell-mediated cytotoxicity, which further hamper

immune-cell control of tumor metastases (23). Moreover, NETs

inhibition sensitized tumors to PD-1+CTLA-4 dual checkpoint

blockade (23). Another group reported that NETs participated in IL-

17-associated immunosuppression in pancreatic cancer (20).

Mechanistically, IL-17 recruited neutrophils, induced NETs

formation, which favors tumor CD8+ T cell inactivation and spatial

exclusion (20). Wang et al. recently demonstrated that NETs and

regulatory T cells (Tregs) co-localized in NASH-associated HCC and

that NETs could promote the differentiation of naïve CD4+ T cells into

Tregs which contributes to the initiation and progression of NASH-

HCC (146). Further study showed that NETs activated TLR4 pathway

in naive CD4+ T cells, leading to naive CD4+ T cells metabolic

processes reprogram, tilting the balance toward mitochondrial

oxidative phosphorylation (OXPHOS) to promote Treg

differentiation (146). In addition, another study demonstrated that

NETs lead to a hypercoagulable state in gastric cancer (147). Further

studies revealed that NETs upregulated angiopoietin-2 (ANGPT2), and

ANGPT2 was significantly correlated with macrophage M0, NK cell

resting, and mast cell activation, suggesting that NETs might be

involved in the regulation of the immune microenvironment in

gastric cancer. Other studies have shown that NET-related long

intergenic non-protein coding RNA 426 (LINC00426) contributes to

the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) signaling pathway in head and neck

squamous cell carcinoma (148). Taken together, these observations

suggest that the pro-tumorigenic activities of NETs are also mediated

by the attenuation of antitumor functions of the immune system,

which occurs by impairing the function of tumor-antagonizing

immune cells and the maintenance of an immunosuppressive

molecular signature in the TME.
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5.2 NETs in immunotherapy

As NETs are considerably involved in regulating the behavior of

tumor cells and immune cells, thus affecting the efficacy of tumor

immunotherapy in different ways. Therefore, targeting NETs is a

relatively new option to inhibit tumor progression and boost the

efficacy of immunotherapy, including decreasing NET formation

and/or activity in tumors. Current trials targeting NETs are mainly

based on interference with NETs formation or direct dismantling of

their structure. For example, targeting of PAD4 with GSK484

inhibitor repressed NETs formation and prevented dormant

cancer cell awakening in a breast cancer model (110); targeting

PAD4 with the novel PAD4 inhibitor BMS-P5, delayed the

appearance of symptoms and MM progression (149). In addition,

targeting the tumor-associated induction of NETs formation is also

a promising therapeutic strategy. ROS, TNF-a, IL-8, cathepsin C,

amyloid b, and CXCR-1 and -2 are all responsible for NETs release,

as mentioned above. Blocking these tumor-associated NET stimuli

with antibodies or inhibitors might prevent metastatic colonization

by abolishing NET-mediated capture of circulating tumor cells.

Other groups have also focused on the interaction mediators

present in NETs and cancer cells, such as integrin (104), TLR9
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(94) and CCDC25 (15). Functional blocking of these mediators may

also contribute to tumor treatment.

Recent report has demonstrated that NETs are associated with

immunotherapy resistance (150). NET-mediated physical barriers

inhibited contact between immune cytotoxic cells and tumor cells

and influenced immune checkpoint therapy in primary colorectal

cancer (88). Using photoregulated enzyme delivery for efficient

release of DNase I for localized degradation of NETs destroyed the

NET-mediated physical barrier, thereby enhancing the interaction

of immune cytotoxic cells with tumor cells, and sensitized immune

checkpoint therapy for primary colorectal cancer, and eliminating

NET-mediated capture and colonization of metastasizing cells in

the liver sinusoids (88). These results suggest inhibition of NETs by

DNase I facilitate the removal of immunosuppressive NETs, and

improve the efficacy of clinical treatment. Similarly, high levels of

NETs inhibited the response to anti-PD-1 therapy in a mouse

colorectal cancer model (150). Furthermore, degradation of NETs

by DNase I reduced tumor cell-induced TAN infiltration within

tumors, and increased CD8+ T cell infiltration and cytotoxicity,

which further improved the efficacy of PD-1 blockade to inhibit

tumor growth (150). In addition, NETs also mediated resistance to

immune checkpoint blockade PD-1 and cytotoxic T-lymphocyte
FIGURE 3

Schematic representation of NET in regulating immune cells. NETs can mediate immune response via complex regulations at multiple immune cells.
Macrophages and DCs: NETs promote macrophages apoptosis, polarization, cytokine production, and impair macrophage phagocytic function;
NETs can promote DCs apoptosis, maturation, activation and cytokine production. NK cells: NETs can impair NK cell function, including IFN-g
production and cell degranulation. T cells: NETs promote CD4+ T cell differentiation into Th1 and Th17 cell; NETs also promote immature DCs
differentiation into CD4+FOXP3+Tregs.B cells: NETs can induce B cells proliferation, activation, differentiation and antibody secretion.
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associated protein 4 (CTLA4) by Ovarian cancer in pancreatic

cancer (20). Besides, NETs could greatly counteract the efficacy of

NK cell therapy and contribute to HCC recurrence (151). Inhibition

of NETs enhanced NK cell infusion to kill cancer cells (151).These

findings indicated that NET-mediated immunotherapy resistance is

through protecting tumor cells from cytotoxic immune attack.

Moreover, NET-associated T cell exhaustion was abrogated by

DNase, which also supports the use of NET-targeting therapeutics

to restore proper T cell antitumor activity. In addition, chimeric

antigen receptor (CAR)-T therapy in solid tumors often resistance

to immunotherapy, and NETs can prevent the interaction of CAR-

T cells with tumor cells (152). Therefore, NET inhibition might

overcome CAR-T resistance in the future. In addition, vaccination

with DCs loaded with NETs reduced myeloproliferation in

transgenic mice, and induced CD8+ T cell responses (153),

suggesting that NETs might be used in the development of a

leukemia vaccine. Taken together, NETs have the potential to

enhance the efficacy of clinical immunotherapy by promoting T

cell tumor infiltration and enhancing cytotoxic immune cells on

tumor cells and could be used in tumor vaccines in the

future (Figure 4).
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6 Concluding remarks

While diverse studies have demonstrated the classic functions of

NETs in promoting, tumor growth, metastatic spread and cancer

therapy resistance, accumulating data in recent years have clearly

shown that NETs play an important role in immune regulation. In this

review, we summarized the functions of NETs in immune cells, anti-

tumor immunity, and tumor immunotherapy. A better understanding

of the crosstalk between NETs and anti-tumor immunity can help

overcome cancer immunotherapy resistance. However, the role of

NETs in anti-tumor immunity in other immune cells, including

macrophages, DCs, myeloid-derived suppressor cells, B cells, and,

has not been sufficiently evaluated. Moving forward, we believe that

detailed analyses of the role of NETs in immune, tumor, and TME/

stromal cells are required. Moreover, it should be noted that a number

of proteins and potentially other NETs compounds may be

detrimental for antitumor immune response. Thus, scientists need

to carry out more research to identify the role of NETs-associated

proteins in immunotherapy. These efforts would provide a substantial

basis for targeting NETs as a new/alternative choice and a new

approach for clinicians in cancer immunotherapy.
FIGURE 4

The emerging roles of NETs in the modulation of anti-tumor immunity and immunotherapy. NETs can promote CD4+ and CD8+ T cells exhaustion
and dysfunction; NET-mediated physical barrier decreases the contact of immune cytotoxic cells (CD8+ T cell, NK cell and CAR-T cell) with tumor
cells; NETs promote the differentiation of naïve CD4+ T cells into Tregs, which further contribute to tumor initiation and progression; NETs promote
macrophage M0, NK cell resting. Degradation of NETs by DNase I can enhance the efficiency of tumor immunotherapy; NET/DC vaccine may be
used for leukemia treatment.
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Glossary

ANGPT2 angiopoietin-2

C3 complement 3

CAR chimeric antigen receptor

CCDC25 coiled-coil domain-containing 25

CG cathepsin G

COVID-19 coronavirus disease 2019

CSF colony stimulating factor

CTLA4 cytotoxic T-lymphocyte associated protein 4

CXCLs C-X-C motif chemokine ligand

CXCR C-X-C motif chemokine receptor

DC dendritic cell

DOX doxorubicin

ERK extracellular signal−regulated kinase

GM granulocyte-macrophage

H3Cit citrullinated histone H3

HCC hepatocellular carcinoma

HMGB-1 high mobility group box 1

IFN interferon

IL interleukin

MM multiple myeloma

MMP-9 matrix metalloproteinase 9

MPO myeloperoxidase

NASH non-alcoholic steatohepatitis

NE neutrophil elastase

NET neutrophil extracellular trap

NF nuclear factor

NK natural killer

NOX NADPH-oxidase

PAD4 peptidyl arginine deiminase 4

PD-1 programmed cell death protein 1

PD-L1 programmed death-ligand 1

PMA phorbol 12-myristate 13-acetate

ROS reactive oxygen species

TAN tumor-associated neutrophil

Th T helper

TLR toll-like receptor

TME tumor microenvironment

Tregs regulatory T cells

TIMP1 tissue inhibitor of metalloproteinases-1
F
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