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Crosstalk between oxidative
stress and neutrophil
response in early ischemic
stroke: a comprehensive
transcriptome analysis

Changqing Mu1†, Yanzhi Wang2,3†, Chen Han1†, Hui Song2,3,
Qian Wu1, Junyi Yang1, Na Guo1, Yumei Ma1,
Chenguang Zhang1, Jian Zhang2,3* and Xu Liu1*

1Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang,
Liaoning, China, 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public
Health, Shenyang, Liaoning, China, 3Key Laboratory of Medical Cell Biology, Ministry of Education,
China Medical University, Shenyang, Liaoning, China
Background: Ischemic stroke (IS) is the second leading cause of mortality

worldwide, continuing to be a serious health concern. It is well known that

oxidative stress and neutrophil response play vital roles in the pathophysiology of

early IS. However, the complex interactions and critical genes associated with

them have not been fully understood.

Methods: Two datasets (GSE37587 and GSE16561) from the Gene Expression

Omnibus database were extracted and integrated as the discovery dataset.

Subsequent GSVA and WGCNA approaches were used to investigate IS-

specific oxidative stress-related genes (ISOSGS). Then, we explored IS-specific

neutrophil-associated genes (ISNGS) using CIBERSORT analysis. Next, the

protein-protein interaction network was established to ascertain candidate

critical genes related with oxidative stress and neutrophil response.

Furthermore, these candidate genes were validated using GSE58294 dataset

and our clinical samples by RT-qPCR method. Finally, functional annotation,

diagnostic capability evaluation and drug-gene interactions were performed by

using GSEA analysis, ROC curves and DGIDB database.

Result: In our analysis of discovery dataset, 155 genes were determined as

ISOSGS and 559 genes were defined as ISNGS. Afterward, 9 candidate genes

were identified through the intersection of ISOSGS and ISNGS, PPI network

construction, and filtration by degree algorithm. Then, six real critical genes,

including STAT3, MMP9, AQP9, SELL, FPR1, and IRAK3, passed the validation

using the GSE58294 dataset and our clinical samples. Further functional

annotation analysis indicated these critical genes were associated with

neutrophil response, especially neutrophil extracellular trap. Meanwhile, they

had a good diagnostic performance. Lastly, 53 potential drugs targeting these

genes were predicted by DGIDB database.
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Conclusion: We identified 6 critical genes, STAT3, FPR1, AQP9, SELL, MMP9

and IRAK3, related to oxidative stress and neutrophil response in early IS, which

may provide new insights into understanding the pathophysiological

mechanism of IS. We hope our analysis could help develop novel diagnostic

biomarkers and therapeutic strategies for IS.
KEYWORDS

ischemic stroke, oxidative stress, neutrophil response, neutrophil extracellular trap,
bioinformatics analysis, weighted gene co-expression network analysis
1 Introduction

As a devastating neurological disease, ischemic stroke (IS) is a

major cause of death and adult disability worldwide, thus imposing

a substantial socioeconomic burden (1). Globally, nearly 7.6 million

patients suffered from IS in 2019, and the incidence of IS is

increasing progressively year by year (2). In the United States

alone, total IS-related costs were estimated at $12.6 billion in

2012 and are expected to climb up to $241 billion by 2030 (3, 4).

Thus, an increasing number of studies have been performed to

explore potential drugs for IS treatment. However, till now,

recombinant tissue plasminogen activator (rtPA) remains the

only effective drug authorized by FDA. Meanwhile, due to a

narrow therapeutic window, only 5% of IS patients benefit from

rtPA (5). Therefore, there is an urgent need to explore the

underlying pathophysiological mechanisms of early IS in order to

find possible therapeutic targets.

During the initiation and progression of early IS, excessive

oxidative stress is generated due to cerebral ischemia-reperfusion (I/

R) process (6). These detrimental reactive oxygen species (ROS)

could cause endothelial injury and abnormal neuron death,

exacerbate subsequent neurological deficits and even lead to

individual death. In addition, peripheral inflammation has been

considered as another important participant in early IS. As the first

leukocyte subset infiltrating the ischemic brain, neutrophils can

cross injured endothelium and release various pro-inflammatory

mediators to activate microglia, aggravating neuroinflammation

following cerebral ischemia (7). Then, the microglia would

destroy the blood-brain barrier (BBB) and subsequently recruit

more activated neutrophils to migrate from peripheral blood to the

ischemic brain tissue. In addition to the vicious circle between the

peripheral and central inflammation, neutrophils could also form

neutrophil extracellular traps (NETs), which have been shown to

promote cerebral thrombosis and brain I/R damage in early IS (8).

However, the critical genes related with oxidative stress and

neutrophil response are still unclear and deserve further study.

In recent years, transcriptomic bioinformatics has been used to

investigate the molecular mechanism of various human diseases,

showing great promise in helping researchers deepen the

understanding of disease etiology and explore potential

therapeutic targets (9). Previous bioinformatics analyses have
02
already found several hub genes that play important roles in

stroke pathogenesis (10, 11). However, to our knowledge, no

studies have identified the IS-related critical genes involved in

both oxidative stress and neutrophil responses simultaneously.

Hence, in this study, we first used GSE16561 and GSE37587 as

discovery datasets to identify candidate critical genes associated

with oxidative stress and neutrophil response in early IS. Then, six

real critical genes (STAT3, MMP9, AQP9, SELL, FPR1, and IRAK3)

were further validated in another dataset GSE58294 and our clinical

samples using reverse transcription-quantitative polymerase chain

reaction (RT-qPCR) method. Subsequent functional annotation

analysis showed these 6 critical genes were related with

neutrophil response, including neutrophil extracellular trap.

Moreover, the 6 critical genes had a good diagnostic performance

for IS. Lastly, we predicted 53 potential drugs that may exert

neuroprotective effects in early IS by targeting these genes. We

hope our study could provide new enlightenment for individualized

diagnosis and treatment of IS.
2 Material and methods

2.1 Data selection and description

The GEO database (http://www.ncbi.nlm.nih.gov/geo) was used

to search the term “ischemic stroke” for early ischemic stroke (IS)

gene expression profiles. The criteria for filtering the obtained

datasets were as follows: (i) expression profile type is microarray

data containing genome-wide mRNA expression, (ii) each dataset

includes at least 20 IS patient samples, (iii) whole blood samples are

collected within 48 hours from known onset of symptom. Finally,

we selected the datasets of GSE37587, GSE16561, and GSE58294.

The details of the datasets were listed in Table S1.
2.2 Data preparation and study design

The following bioinformatics analysis was conducted with R

software (version 4.0.5). The background correction, normalization

and log2-transformation were performed on the data of the three

datasets. ID conversion was subsequently conducted in line with the
frontiersin.org
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probe annotation information. Then, eliminating the batch effects

via ComBat in “sva” package, GSE37587 and GSE16561 were

integrated into a large expression matrix as the discovery dataset.

In addition, the principal component analysis (PCA) was

performed to test the quality of the merged data. The flow

diagram of the comprehensive analysis is shown in Figure 1.
2.3 Identification and function annotation
of IS-specific oxidative stress-related
gene set

The oxidative stress gene set of WikiPathways subset of

Canonical pathways was obtained from the Molecular Signatures

Data base (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/).

First, the enrichment scores of each sample from the discovery

dataset were computed by the gsva algorithm and “gsva” package.

Second, the Bayesian algorithm in the “limma” package was used to

find differential pathways between IS and controls. Third, using the

“wgcna” package, a scale-free co-expression network of the genes
Frontiers in Immunology 03
with the top 25% variance was established and the IS-specific

oxidative stress-related module was defined. Finally, in the

selected module, the genes with |gene significance (GS) value| for

IS> 0.2, |GS value| for oxidative stress > 0.2 and |Module

Membership (MM) value| > 0.8 were determined as the IS-

specific oxidative stress-related gene set (ISOSGS). Furthermore,

the “ClusterProfiler” package was employed to identify enriched

function annotation of ISOSGS, which included Gene Ontology

(GO) terms consisting of biological processes (BP), cellular

components (CC), and molecular function (MF) as well as the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
2.4 Identification of IS-specific neutrophil-
related gene set

CIBERSORT deconvolution algorithm was applied to estimate

the abundance of 22 types of infiltrated immune cells among 131

samples of the discovery dataset. Afterward, comparing neutrophil-

high group with neutrophil-low group based on the estimated
FIGURE 1

Flow chart of the transcriptomic bioinformatics analysis for early ischemic stroke.
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fractions, genes with |log2 fold change (FC)| > 0.5 and P < 0.05 were

identified as neutrophil-related differentially expressed genes

(DEGs) by the “limma” package. Likewise, IS-specific DEGs

between IS and controls were achieved. Ultimately, the

overlapped genes between neutrophil-related DEGs and IS-

specific DEGs were considered as IS-specific neutrophil-related

gene set (ISNGS).
2.5 Ascertainment of critical genes
associated with oxidative stress and
neutrophil response

A protein-protein interaction (PPI) network of the genes taking

the intersection of the ISOSGS and ISNGS was further constructed

using the Search Tool for the Retrieval of Interacting Genes

(STRING) database (https://string-db.org/). For PPI construction,

seven active interaction sources (text-mining, experiments,

databases, co-expression, neighborhood, gene fusion and co

−occurrence) were used, and only nodes of query proteins with

confidence score > 0.15 were enrolled in the network. Then, the

established network was imported into Cytoscape software (version

3.8.2) and the genes were ranked by degree algorithm using the

plugin cytohubba. Lastly, the genes of PPI network with degree > 10

were screened as candidate critical genes.
2.6 Dataset and clinical samples validation
for candidate critical genes

The GSE58294 dataset was set as replication cohort and

analyzed for verifying the expression differences of candidate

critical genes. All samples were dichotomized into neutrophil-

high and neutrophil-low groups, as well as oxidative stress-high

and oxidative stress-low groups by the median of neutrophil

proportions using CIBERSORT and oxidative stress scores by

GSVA, respectively. Subsequently, the expression differences of

candidate critical genes were compared between IS and controls,

neutrophil-high and neutrophil-low groups, oxidative stress-high

and oxidative stress-low groups using t-test.

To further verify the differential expression of candidate critical

genes, another case-control gene expression analysis involving 20 IS

patients and 20 controls was performed using whole blood samples.

The clinical characteristics of these samples were listed in Table S2.

This study was approved by the ethical committee of The First

Affiliated Hospital, China Medical University. Informed consent

was obtained from all participating individuals.

Specifically, peripheral blood samples were collected in EDTA-

coated blood tubes, and samples were immediately pretreated,

including plasma depletion, RBC lysis and addition of TRIzol

reagent (Invitrogen, USA). The time from sample collection to

RNA extraction was no more than 2 hours. Subsequently, total RNA

was extracted, reverse-transcribed into cDNA, and stored at -80°C

until use. The Takara PrimeScript RT Master Mix and SYBR Green

Premix were used in the reverse transcriptase reaction and PCR

amplification, respectively. The PCR primer sequences applied in
Frontiers in Immunology 04
the experiment are shown in Table S3. All samples were examined

in triplicate. The PCR validation results were quantified through the

2-DDCt method (livak method) with the normalization to GAPDH.

Lastly, candidate genes replicated with the GSE58294 dataset

and further validated by our clinical samples were identified as real

critical genes.
2.7 Functional annotation and diagnostic
capability evaluation for critical genes

For assessing the activation/suppression of signaling pathways

associated with critical genes in early IS, a gene set enrichment

analysis (GSEA) based on KEGG pathways in the MSigDB database

was conducted using the “ClusterProfiler” package. The pathways

with |normalized enrichment score (NES)| > 2 and q value < 0.05

were considered as significantly activated/suppressed. Additionally,

to evaluate the diagnostic power of critical genes for early IS,

receiver operating characteristic (ROC) curves and areas under

the curve (AUC) were calculated and plotted by the “pROC”

package. AUC > 0.7 was considered to be a good indicator of

diagnostic performance.
2.8 Exploration of potential drugs targeting
critical genes

The Drug-Gene Interaction Database (DGIDB, http://

www.dgidb.org/) is a web resource integrating drug-gene

interactions and druggability data. For exploring potential

therapeutic opportunities, a drug-gene network of critical genes

was constructed using the drug-gene interactions predicted by

DGIDB (version 4.2.0). The drug-gene interaction network was

visualized by using Cytoscape software.
2.9 Statistical analysis

Continuous variables were summarized as mean ± SD and

categorical variables as numbers (percentages). Normality

distribution of continuous variables was tested with the Shapiro-

Wilk test. Differences of continuous variables between groups were

evaluated by the Student’s t test. Categorical variables were

compared by Chi-square test or Fisher’s exact test. A two-sided P

value of 0.05 was considered statistically significant. Statistical

analyses were performed using R (version 4.0.5) and GraphPad

Prism 8 (GraphPad Software, Inc).
3 Results

3.1 Data preprocessing

After background correction, normalization, log2-

transformation, ID conversion and batch calibration, the

discovery dataset was merged by GSE37587 (containing 68 early
frontiersin.org
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IS) and GSE16561 (containing 39 early IS and 24 healthy controls).

Then, we performed a PCA analysis and used the PCA scatter

diagrams to show the results before and after batch correction. We

found that samples from two different datasets were obviously

distributed in two non-adjacent areas before data integration, but

almost concentrated in the same area after removing the batch

effect, demonstrating the data reliability of the discovery dataset

(Figure S1).
3.2 Identification of ISOSGS

First, following the data preparation, the changes in each pathway

activity in early IS and controls of the discovery dataset were
Frontiers in Immunology 05
evaluated through gene set variation analysis (GSVA) using

WikiPathways (664 gene sets) from MSigDB. At thresholds of

adjusted P value < 1E-05 and |log2 FC| > 0.3, 52 significantly

differential pathways were identified (49 up-regulated and 3 down-

regulated). As shown in the heatmap, the oxidative stress pathway is

included among the top up-regulated pathways, implying the

importance of oxidative stress in early IS (Figure 2A). In the

subsequent analysis, we set GSVA scores of oxidative stress as one

of the sample traits and introducedWGCNA to explore the potential

genes associated with both IS and oxidative stress. Initially, a total of

4, 516 genes with the top 25% variance of discovery dataset were

involved in the analysis. Then, no outliers were detected after

hierarchical clustering of all samples (Figure S2A). Next, under

scale-free R2 > 0.85, a minimal beta value of 7 was chosen as the
A

B

C

D

E

FIGURE 2

Identification of IS-specific oxidative stress-related genes (ISOSGS). (A) Heatmap of differential pathways showing significantly up-regulated oxidative
stress pathway in early IS. (B) Cluster dendrogram of 17 gene modules. (C) The heatmap of module-trait relationships. (D) Scatter diagrams of
module membership vs. gene significance for IS in yellow module; (E) Scatter diagrams of module membership vs. gene significance for oxidative
stress state in yellow module.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1134956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mu et al. 10.3389/fimmu.2023.1134956
soft-threshold power (Figures S2B and 2C). Consequently, WGCNA

identified 17 co-expression modules (Figure 2B). The relationships of

these modules with sample traits (IS, age, gender and oxidative stress)

were demonstrated in the correlation heatmap (Figure 2C). The

yellowmodule among 17 modules showed statistically significant and

highest correlations with IS (Pearson co-efficient = 0.5, P = 1E-09)

and oxidative stress (Pearson co-efficient = 0.53, P = 6E-11), but not

age (P = 0.1) and gender (P = 0.06). Thus, we defined yellow module

as the IS-specific oxidative stress-related module. Furthermore,

Figures 2D, E displayed the correlations between the MM value for

each gene in the yellow module and the corresponding GS value for

IS as well as oxidative stress, respectively. Finally, in the yellow

module (with 503 genes), 155 genes with |GS value for IS| > 0.2, |GS

value for oxidative stress| > 0.2 and |MM value| > 0.8 were ascertained

as ISOSGS.
3.3 Functional enrichment analysis
of ISOSGS

GO and KEGG analysis further investigated the potential

biological functions involved in ISOSGS, where the enrichment

results for BP, CC, and MF terms as well as KEGG pathways were

exhibited in the bubble plots. Interestingly, BP enrichment of
Frontiers in Immunology 06
ISOSGS were found associated with immune response, immune

effector process, myeloid leukocyte activation, myeloid leukocyte

mediated immunity, myeloid cell activation involved in immune

response, leukocyte activation, leukocyte degranulation, leukocyte

activation involved in immune response, neutrophil activation,

neutrophil degranulation, neutrophil mediated immunity and

neutrophil activation involved in immune response (Figure 3A).

Meanwhile, the most significant CC and MF were secretory granule

membrane and immune receptor activity, respectively (Figures 3B,

C). Besides, for the KEGG pathways, ISOSGS were mainly enriched

in the following signaling pathways including neutrophil

extracellular trap formation, chemokine signaling pathway,

autophagy, FoxO signaling pathway and endocytosis (Figure 3D).
3.4 Identification of ISNGS

Since previous enrichment results confirmed that ISOSGS

might play a critical role in the neutrophil response, the

neutrophil distribution characteristics and its associated genes in

early IS were further investigated. Specifically, we first used

CIBERSORT deconvolution algorithm to estimate the fraction of

22 sorts of immune cells in each sample. Compared with healthy

controls, a higher proportion for neutrophils (P = 1.51e−08) were
A B

C D

FIGURE 3

Bubble diagrams displaying the top 20 significant enrichment terms for the ISOSGS. (A) BP terms; (B) CC terms; (C) MF terms; (D) KEGG terms.
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found in IS samples (Figure 4A). Moreover, using the limma

method, a set of 1,075 neutrophil-related DEGs were obtained

between neutrophil-high and neutrophil-low group (Figure 4B).

Similarly, we identified 559 IS-specific DEGs by comparing the

transcriptome profiles of IS patients with healthy control

participants (Figure 4C). Lastly, we intersected neutrophil-related

DEGs with IS-specific DEGs and gained 402 overlapped genes

defined as ISNGS, which was illustrated in the Venn diagram.
3.5 Identification and validation of
critical genes

To identify the candidate critical genes related to both

oxidative stress and neutrophil response, 72 overlapping
Frontiers in Immunology 07
genes by the intersection of ISOSGS and ISNGS were put into

the STRING database to build a PPI network. Subsequently,

through Cytoscape plugin cytohubba, 9 candidate critical genes

with degree > 10 were selected, including STAT3, MMP9,

AQP9 , SELL , FPR1 , IRAK3 , CREBBP , C5AR1 and

IGF2R (Figure 4D).

Then, we conducted a dataset validation for the above

obtained 9 candidate critical genes using the GSE58294 dataset.

At the beginning of validation, the GSVA and CIBERSORT

analyses were performed, the results of which again verified the

up-regulation of oxidative stress status and neutrophil

proportions in IS patients compared with controls (Figures S3A,

B). Moreover, the expression differences of these genes between IS

patients and controls, neutrophil-high and neutrophil-low groups

as well as oxidative stress-high and oxidative stress-low groups
A

B

C

D

FIGURE 4

Identification of IS-specific neutrophil-related genes (ISNGS) and selection of the candidate critical genes. (A) Violin plot showing the difference in
the infiltration proportion of 22 immune cells between IS patients and controls. (B) Heatmap displaying different gene expression patterns between
neutrophil-high and neutrophil-low groups. (C) Heatmap displaying different gene expression patterns between IS and control groups. (D) The
constructed PPI network ascertaining candidate critical genes by degree algorithm.
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were evaluated, respectively. As shown in Figures 5A–C, the log2-

transformed expressions of 7 candidate genes, including STAT3,

MMP9, AQP9, SELL, FPR1, IRAK3 and IGF2R, are significantly

up-regulated in IS samples, oxidative stress-high group and

neutrophil-high group. Lastly, these 7 candidate critical genes

were further validated with our clinical samples by RT-qPCR

method. As shown in Figures 6A, B, among these 7 candidate

genes, 6 genes (STAT3, MMP9, AQP9, SELL, FPR1 and IRAK3)

were experimentally proved to be up-regulated in the blood

samples of IS patients and thus identified as real critical genes.

In addition, the blood routine examination results also showed

that the percentage of neutrophils in IS patients significantly

increased compared with the controls, which was consistent

with the trends of two CIBERSORT analysis results (Figure 6C).
Frontiers in Immunology 08
3.6 Potential biological signaling pathways,
diagnostic capability and predicted drugs
for critical genes

To understand the important roles of these six critical genes,

GSEA was applied to explore KEGG pathways that each critical

gene could affect in early IS. As shown in Figure 7, all these six genes

are involved in five signaling pathways, including neutrophil

extracellular trap (NET) formation, HSV-1 infection, phagosome,

ribosome, and alcoholism pathways. In addition, three critical genes

(MMP9, AQP9, and SELL) may be involved in the regulation

of lysosomes.

Subsequently, the diagnostic capability of these 6 critical genes

in early IS was assessed using the discovery dataset. As shown in
A

B

C

FIGURE 5

Validation for differential expression of candidate critical genes using GSE58294 dataset between (A) IS and control groups, (B) oxidative stress-high
and oxidative stress-low groups, (C) neutrophil-high and neutrophil-low groups, respectively.
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Figure 8A, the AUC values of ROC curves were 0.88, 0.86, 0.87,

0.77, 0.79, and 0.89 for STAT3, MMP9, AQP9, SELL, FPR1, and

IRAK3, respectively. Moreover, in the validation dataset, the AUCs

of six critical genes were confirmed to be greater than 0.7 (STAT3:

0.84, MMP9: 0.82, AQP9: 0.91, SELL: 0.90, FPR1: 0.75 and IRAK3:

0.94), indicating that they had a good diagnostic performance for

early IS (Figure 8B).

Finally, drug-gene interactions of 6 critical genes were predicted

using the DGIdb database to explore potential novel drugs for early

IS. After searching, we found drug-gene interactions of 5 genes

except for IRAK3 and enrolled the interactions to construct a drug-

gene network. As shown in Figure 8C, five potential gene targets

(STAT3, MMP9, AQP9, SELL, and FPR1) and 53 promising drugs/

ingredients constituted the drug-gene network. The obtained gene

targets and drugs may provide new possibilities for the treatment of

early IS and warrant further experimental study.
4 Discussion

Despite numerous deaths, permanent disabilities and high

public burden worldwide caused by IS, the understanding of its

pathogenesis and effective treatments remains limited thus far (12).
Frontiers in Immunology 09
Oxidative stress and inflammation, two well-known pathological

mechanisms, may play crucial roles in the initiation and

progression of early IS. Meanwhile, their interaction may further

promote the expansion and aggravation of cerebral damage (13).

Therefore, exploring the genes involved in both oxidative stress and

inflammation may help uncover the novel biomarker and potential

therapeutic target in the early stage of IS.

In our study, a comprehensive transcriptome bioinformatics

analysis was performed to investigate critical genes related to

oxidative stress and inflammation in early IS. Initially, we found

ISOSGS based on GSVA and WGCNA approaches. Interestingly,

their enrichment results included neutrophil degranulation,

neutrophil activation involved in immune response and

neutrophil extracellular trap formation, suggesting that some

certain genes in ISOSGS may play pivotal roles in various

neutrophil response following stroke. Next, we ascertained ISNGS

adopting CIBERSORT and DEG analysis. Then, the following

procedures consisting of the intersection of ISOSGS and ISNGS,

PPI network construction and degree algorithm filtering, dataset

and clinical samples validation were performed step by step.

Eventually, six critical genes related to both oxidative stress and

neutrophil response were identified (STAT3, MMP9, AQP9, SELL,

FPR1, and IRAK3).
A

B C

FIGURE 6

Validation for the difference of candidate critical gene expression and neutrophil percentage using clinical samples. (A) Verification for candidate
critical genes using qRT-PCR analysis. (B) Venn plot of candidate critical genes and validated real critical genes. (C) Violin plot showing the difference
of Neutrophils (NE), lymphocytes (LY), monocytes (MONO), eosinophils (EO) and basophils (BAAO) percentage in IS patients compared with controls.
** P value < 0.01 in the comparison between IS and healthy controls. ***P value < 0.001 in the comparison between IS and healthy controls.
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STAT3, a relatively conserved member of the STATs family,

transduces signal pathways for transcriptional regulation of cellular

homeostasis, proliferation, inflammation, etc (14). Previous

experiments have observed that STAT3 expression levels were

increased in the rat brain regions ipsilateral to middle cerebral

artery occlusion (MCAO) relative to the sham group (15, 16).

Moreover, Adly et al. also found elevated levels of STAT3 in the

peripheral blood of patients with IS compared to controls,

indicating that STAT3 may act as a vital player in the

pathogenesis of IS (17). Mechanically, Agrawal et al. found that in

an oxygen-glucose deprivation and reperfusion (OGD-R) model of

PC12 cells, considerable reactive oxygen species (ROS) were

generated, which could trigger the expression of STAT3 (18).

Furthermore, in the MCAO mice, the up-regulated STAT3 could
Frontiers in Immunology 10
enhance IL-1b expression, thereby facilitating the recruitment and

adhesion of circulating neutrophils to the damaged cerebral tissue

(19–21). Then, the recruited circulating neutrophils were hyper-

activated and generated more ROS and pro-inflammatory

cytokines, ultimately exacerbating neuroinflammation and

ischemic cerebral injury (22).

Regarding MMP9, a previous meta-analysis by Misra et al.

showed that the circulating levels of MMP9 were elevated in the

patients with IS and could been considered as a potential biomarker

for the diagnosis of ischemic stroke (23). Moreover, a prospective

observational study involving 3,186 IS patients demonstrated that

the increasing levels of MMP9 in the acute phase of IS were

associated with severe disability and mortality (24). Currently, the

raised MMP-9 levels following IS were thought to be mainly derived
A B

C D

E F

FIGURE 7

Single-gene GSEA analysis for 6 real critical genes. (A) STAT3, (B) MMP9, (C) AQP9, (D) SELL, (E) FPR1, (F) IRAK3.
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from peripheral neutrophils (25, 26). Liu et al. found that ROS and

reactive nitrogen species (RNS) could promote the expression and

activation of MMP9 in a rat MCAO model, and thus enhance

blood-brain barrier (BBB) permeability by degradation of tight

junction proteins (27). Subsequently, the damaged BBB could

promote more neutrophils infiltration, which in turn produced
Frontiers in Immunology 11
more MMP9 and ROS, eventually amplifying oxidative stress and

neuroinflammation after stroke (28).

As a G protein-coupled receptor, FPR1 is distributed in various

immune cells such as macrophages, monocytes, dendritic cells, and

neutrophils while it has been shown to be involved in several

neurological diseases, including intracerebral hemorrhage,
A

B

C

FIGURE 8

ROC curves for diagnostic performance evaluation and gene-drug interaction relationship for critical genes. (A) ROC curves of 6 critical genes in
discovery dataset. (B) ROC curves of 6 critical genes in validation dataset. (C) Drug-gene network showing the potential interactions between 5
critical genes and 53 predicted targeted drugs.
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dementia, and traumatic brain injury (29–32). Regarding IS, Li et al.

observed that after 1.5 hours of MCAO and 24 hours of reperfusion,

wild-type mice had larger cerebral infarct volumes and higher

neurological deficit scores compared with Fpk1 knockout mice,

indicating that FPR1 played a vital role in the pathogenesis of IS

(33). Mechanistically, FPR1 was essential for neutrophil migration

from the spleen and peripheral blood to the ischemic brain tissue,

where neutrophils could exert their pro-oxidative and pro-

inflammatory properties (33). On the one hand, in the

neutrophils expressing FPR1, the binding of FPR1 and damage-

associated molecular patterns (DAMPs) might promote

extracellular influx and intracellular release of Ca2+ and

subsequently cause NADPH oxidase activation by Ca2+/PKC

signaling pathway, thereby generating more superoxide anion and

ROS (34, 35). On the other hand, it can also accelerate the synthesis

of pro-inflammatory factors including TNF-a, IL-1b, IL-6, IL-8 and
MCP-1 through NF-kB pathway (36, 37).

SELL, also known as L-selectin, encodes type I transmembrane

glycoprotein expressed on peripheral leucocytes with an actual

molecular weight ranging from 70 to 100 kDa (38). As an

adhesion molecule, it regulates the adhesion and migration of

multiple immune cells and is involved in the I/R injury in a

variety of organs, including the kidney and liver (39, 40). As for

IS, Wei et al. recently identified SELL P213S polymorphism as a

potential biomarker for IS susceptibility in the Chinese population

(41). Moreover, compared with 280 healthy controls, serum SELL

levels were higher in 265 IS patients, suggesting that SELL may play

an important role in the occurrence and progression of IS (41). This

could be explained by the following biological mechanisms. Similar

to FPR1, cross-linking of SELL could activate NADPH oxidases

which subsequently potentiated neutrophil oxidative burst,

resulting in the generation of large amounts of ROS and more

neuronal death (42, 43). In addition, with the help of PECAM-1,

SELL could accelerate neutrophil migration across TNF-activated

endothelial monolayers, which may facilitate circulating neutrophil

infiltration into the ischemic cerebral regions (44).

As an aquaglyceroporin initially found in human circulating

leukocytes, AQP9 is thought to selectively transport a variety of

substances, including water, urea, etc (45, 46). In a previous

experiment, Badaut et al. detected a marked increase of AQP9

levels in the mice brain following transient cerebral ischemia (47).

Moreover, our study identified AQP9 in peripheral blood as a

critical gene associated with early IS by bioinformatics analysis.

From the perspective of mechanism, the following pathways suggest

that AQP9 may play a role in the pathophysiological process of IS.

For one thing, through a Rac1-dependent pathway, AQP9 was

phosphorylated and relocated to the plasma membrane following

fMLF and PMA activation (48). Then, AQP9 could generate a

localized osmotic gradient and promote the local diffusion of

polymerization-competent actin monomers by interacting with

accumulated ions at the plasma membrane such as Na+, H+ and

Cl- (48). Subsequently, remodeling of actin cytoskeleton led to

changes in neutrophil volume and shape, ultimately facilitating

trans-endothelial migration of circulating neutrophils into ischemic

brain tissue (49). For another, AQP9 expressed in neutrophils could

promote membrane transport of ROS, which triggered the
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activation of NLRP3 inflammasome (50, 51). Then, NLRP3

inflammasome could further upregulate the levels of caspase-1

and IL-1b, and exacerbate CNS inflammation and ischemic

cerebral injury (51).

IRAK3, an inactive kinase of the IRAK family, is a well-known

negative regulator of TLR signaling, thereby inhibiting

inflammation and preventing tissue damage (52). Regarding

cerebral I/R injury, Wang et al. found that activation of IRAK3 by

pretreatment with TLR ligands prior to ischemia significantly

prevented subsequent brain injury (53). Furthermore, Irak3

knockout mice exhibited more severe brain damage after cerebral

ischemia compared with wild-type mice (54). These results

indicated that IRAK3 may protect against I/R injury following IS.

Mechanistically, IRAK3 inhibited the dissociation of IRAK1 and

IRAK4 from MyD88 as well as their interaction with TRAF6, thus

preventing the activation of NF-kB and downregulating the release

of pro-inflammatory cytokines, such as IL-1b, IL-6 and TNF-a (52,

55). Besides, IRAK3 may suppress mROS production by reducing

TRAF6 recruitment to mitochondria (56). Moreover, with the TLR

stimulation, IRAK3 was activated and in turn negatively regulated

TLR signaling, which could eventually suppress the recruitment and

localization of neutrophils to ischemic brain regions (57).

As network complexes composed of chromatin DNA, histones,

and granular proteins, NETs can capture and eliminate bacteria,

fungi or viruses and are divided into NADPH-oxidase (Nox)-

dependent NETs and Nox-independent NETs (58). Recent

evidence suggested that excessive NETs could damage the host

tissue in various diseases, including infection, autoimmune diseases

and cardiovascular disease (59, 60). Regarding IS, our GSEA

analysis identified 6 critical genes abovementioned were

associated with NETs in early IS. Mechanistically, both FPR1 and

SELL could regulate the activity of NADPH oxidase and thus

facilitate Nox-dependent NETs generation (35, 42, 61). In

addition, protein arginine deiminase 4 (PAD4) leads to Nox-

independent NETs formation by increasing histone citrullination,

while STAT3 could affect PAD4 expression by regulating HMGB1/

TLR4 signaling pathway. In contrast, IRAK3 might block TLR4

signaling to reduce PAD4 expression (52, 61, 62). MMP9, which has

been confirmed to be significantly externalized from neutrophils,

may be involved in NET generation by decorating decondensed

chromatin fibers released from neutrophils (63). Besides, through

the ROS/NLRP3/caspase-1 pathway, AQP9 increased the

expression of gasdermin-D that could puncture the plasma and

nuclear membranes to release NETs (64, 65). On the one hand,

intravascular NETs could induce cerebral thrombosis by providing

a scaffold for platelets, red blood cells and multiple coagulation

factors (66). On the other hand, NETs components from the brain

parenchyma, such as histones and myeloperoxidase, could rapidly

exert neurotoxicity and aggravate cerebral ischemic injury (67).

Lastly, we predicted 53 potential drugs that may exert

neuroprotective effects in early stroke by targeting 5 genes

(STAT3, MMP9, AQP9, SELL, FPR1). Among them, curcumin

could prevent cerebral I/R damage, which could be partially

explained by reducing MMP9 expression and inhibiting NETs

formation (68, 69). Moreover, another three potential drugs,

phloretin, cucurbitacin B, and bimosiamose, which are the
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inhibitors of AQP9, STAT3, and SELL, respectively, have been

reported to improve neurologic deficits after rat cerebral ischemia

by reducing oxidative stress (70–72). However, for most predicted

drugs, especially FPR1 inhibitors, direct experimental evidence for

their pharmacological effect on stroke is currently lacking. Thus,

further molecular experiments are required to investigate the

therapeutic effect of these predicted drugs in brain I/R injury by

targeting oxidative stress and neutrophil response in early IS.

There were several merits involved in our study. To our

knowledge, this was the first comprehensive transcriptome analysis

to identify critical genes involved in both oxidative stress and

neutrophil response and predict some potential drugs targeting

these genes, which may provide new insights into the treatment of

early IS. Additionally, we not only used a transcriptome-scale design,

but also analyzed the data using multiple methods, including GSVA,

WGCNA, and CIBERSORT, etc. Thus, our results are systematic,

comprehensive, and reliable. However, some limitations should be

recognized in our comprehensive analysis. First of all, studies with

larger sample size are required to further validate our results, and

screening pathways and genes also need to be further confirmed.

Secondly, a PPI network was constructed to explore the potential

biological mechanism of early IS. However, the criteria for building

PPI were relatively subjective, so the results of PPI might need to be

interpreted carefully. Thirdly, we systematically analyzed the roles of

these six critical genes in oxidative stress and neutrophil response

mainly using bioinformatics methods, and some in vitro and in vivo

studies are still required to confirm their roles in early IS. Last but not

least, the use of whole blood RNA analysis was the main limitation of

our study, although the neutrophil response in early stroke could be

detected by the transcriptome analysis using whole blood samples. As

shown in the Figure S4, compared with controls, the neutrophil

specific markers, such as ELANE, MPO and S100A8, were

significantly up-regulated in IS group in the discovery dataset and

our clinical whole blood samples. However, many of the target genes

that are assumed to be linked with neutrophils are also highly

expressed in other leukocytes. Thus, in the future, we hope to

selectively extract neutrophils for further study to explore the

potential crosstalk between oxidative stress and neutrophil response.
5 Conclusions

In conclusion, we identified 6 critical genes in early IS, including

STAT3, FPR1, AQP9, SELL, MMP9 and IRAK3, that were

significantly up-regulated and participated in both oxidative stress

and neutrophil response, especially neutrophil extracellular trap.

Our findings may provide new insights into understanding the

pathogenesis mechanism and developing novel diagnostic

biomarkers and therapeutic strategies for IS.
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SUPPLEMENTARY FIGURE S1

Data preprocessing of the discovery dataset merging two datasets. (A) PCA
diagrams for GSE16561 and GSE37587 datasets before batch effect elimination.

(B) PCA diagrams for IS and controls before batch effect elimination. (C) PCA
diagrams for GSE16561 and GSE37587 datasets after batch effect elimination.
(D) PCA diagrams for IS and controls after batch effect elimination.

SUPPLEMENTARY FIGURE S2

Samples clustering and determination of optimal soft threshold in theWGCNA. (A)
Sample clustering dendrogram. (B) Analysis of the scale-free index for a set of soft

thresholds (b). (C) Analysis of the mean connectivity for a set of soft thresholds.

SUPPLEMENTARY FIGURE S3

Validation of the oxidative stress status and neutrophil infiltration pattern in

the GSE58294 dataset. (A) Heatmap of differential pathways showing
significantly up-regulated oxidative stress pathway in early ischemic stroke.

(B) Violin plot showing the difference in the infiltration proportion of 22
immune cells between IS patients and controls.

SUPPLEMENTARY FIGURE S4

Expression difference of neutrophil specific markers using discovery dataset
and clinical samples. (A) Expression difference for neutrophil specific markers

using discovery dataset. (B) Expression difference for neutrophil specific

markers using qRT-PCR analysis.
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