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Background: Neutrophil extracellular traps (NETs) have been shown to play a

pivotal role in promoting metastasis and immune escape in hepatocellular

carcinoma (HCC). Therefore, noninvasive tests to detect the formation of NETs

in tumors can have significant implications for the treatment and prognoses of

patients. Here, we sought to develop and validate a computed tomography (CT)-

based radiomics model to predict the gene expression profiles that regulate the

formation of NETs in HCC.

Methods: This study included 1133 HCC patients from five retrospective cohorts.

Based on the mRNA expression levels of 69 biomarkers correlated with NET

formation, a 6-gene score (NETs score, NETS) was constructed in cohort 1 from

TCIA database (n=52) and validated in cohort 2 (n=232) from ICGC database and

cohort 3 (n=365) from TCGA database. And then based on the radiomics features

of CT images, a radiomics signature (RNETS) was developed in cohort 1 to predict

NETS status (high- or low-NETS). We further employed two cohorts from

Nanfang Hospital (Guangzhou, China) to evaluate the predictive power of

RNETS in predicting prognosis in cohort 4 (n=347) and the responses to PD-1

inhibitor of HCC patients in cohort 5 (n=137).

Results: For NETS, in cohort 1, the area under the curve (AUC) values predicting 1,

2, and 3-year overall survival (OS) were 0.836, 0.879, and 0.902, respectively. The

low-NETS was associated with better survival and higher levels of immune cell

infiltration. The RNETS yielded an AUC value of 0.853 in distinguishing between

high-NETS or low-NETS and patients with low-RNETS were associated with

significantly longer survival time in cohort 1 (P<0.001). Notably, the RNETS was

competent in predicting disease-free survival (DFS) and OS in cohort 4 (P<0.001).
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In cohort 5, the RNETS was found to be an independent risk factor for

progression-free survival (PFS) (P<0.001). In addition, the objective response

rate of HCC patients treated with PD-1 inhibitor was significantly higher in the

low-RNETS group (27.8%) than in the high-RNETS group (10.8%).

Conclusions: This study revealed that RNETS as a radiomics biomarker could

effectively predict prognosis and immunotherapy response in HCC patients.
KEYWORDS

hepatocellular carcinoma, neutrophil extracellular traps, computed tomography,
radiomics, prognosis, programmed death receptor-1
Introduction

Hepatocellular carcinoma (HCC), the most commonly

occurring primary liver cancer, remains a global health challenge

and is the third leading cause of cancer-related death worldwide (1).

The tumor immune microenvironment (TIME), which is composed

of various tumor-infiltrating immune cells, is thought to greatly

affect tumor progression and response to immunotherapy (2).

Currently, blocking the signaling of the programmed cell death

receptor-1 (PD-1) and programmed cell death receptor ligand-1

(PD-L1) pathways with monoclonal antibodies is a new

immunotherapeutic approach for treating advanced HCC cases.

However, the response rates to this treatment have been low and the

overall prognosis for HCC patients does not seem to improve with

this treatment, probably because of the TIME heterogeneity (3–5).

Therefore, tools that can accurately determine the TIME status

could be invaluable in guiding treatment for HCC patients.

Neutrophils that infiltrate tumors, also called tumor-associated

neutrophils (TANs), often play pro-tumorigenic roles and support

tumor progression in response to microenvironmental cues released

by tumor and stromal cells (6, 7). Neutrophil extracellular traps

(NETs), which are extracellular web-like structures of DNA

chromatin complexes extruded from dying neutrophils, were once

thought to mainly function as snares that caught and killed harmful

microorganisms (8). There is increasing evidence to prove that in

cancers, NETs play important role in promoting metastasis (9–11).

Recent analyses suggested that studies on NETs are becoming

increasingly momentous in research on liver cancer. For example,

one study indicates that the elimination of NETs may slow the

progression of steatohepatitis-related liver cancer (12). In addition,

the formation of NETs is known to trigger pro-tumorigenic

inflammatory responses and fuel HCC metastasis (13).

Furthermore, NETs have been reported to protect cancer cells from

being attacked by the immune system and reduce the effectiveness of

immunotherapy (14–16). Thus, scoring model that can evaluate the

formation potential of NETs in tumors can be useful as biomarkers

for predicting survival and in estimating if immunotherapy could be

of benefit to HCC patients.

By using the expression profiles of genes associated with NETs

formation in biopsy specimens, we are able to directly measure the
02
abundance of NETs in tumor tissues. Recent studies have shown

that the integration between machine learning algorithms and

NETs-related gene signatures own the potential to be reliable

biomarkers in predicting prognosis and the response to

immunotherapy in several types of malignant tumors (17, 18).

However, this method has some major limitations, including the

requirement for an invasive procedure and a forbiddingly high cost

for patients. The emergence of radiomics, which uses quantitative

medical imaging features, maybe a viable alternative to the method

mentioned previously (19, 20). Computed tomography (CT) is now

in standard use for diagnosing, staging and monitoring therapeutic

efficacy in liver tumors. CT-based radiomics have shown that it is

capable of achieving successful assessment and predictive ability in

prognostic aspect for HCC patients (21–23). Given the increasing

use of immunotherapy in advanced HCC cases, the role of CT

radiomics in characterizing TIME necessitates more exploration

and amelioration. Some research has shown that certain

radiological features of tumors are closely related to specific gene

expression profiles; this provides a unique opportunity for

developing non-invasive complementary approaches to detect

NETs in the TIME (24, 25).

This study has three objectives. One, to identify a NETs-related

gene signature (NETs score or NETS) that correlated with patients’

prognosis and could differentiate ‘cold’ or ‘hot’ TIME. Two, to

establish a link between the NETs score and tumor radiomics

features obtained from contrast-enhanced CT. And three, to build

a novel radiomics model (radiomics NETs score or RNETS) to

predict survival and to identify HCC patients for whom

immunotherapy would be beneficial.
Materials and methods

Study design and data collection

This study retrospectively included five cohorts and the

flowchart in Figure 1 describes the entire study design. The HCC

patients with RNA sequence data, baseline CT images and the

corresponding clinical data from The Cancer Imaging Archive

(TCIA, n=52) were collected as training cohort (Cohort 1) to
frontiersin.org
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firstly develop a prognostic NETs-related gene signature (NETs

score, NETS), and then construct a CT-based radiomics model

(radiomics NETs score, RNETS) that correlated with expression

patterns of NETS by using machine learning algorithms. Two

external validation cohorts with RNA sequence data and

complete follow-up data were downloaded from International

Cancer Genome Consortium (ICGC, n=232, Cohort 2) and The

Cancer Genome Atlas (TCGA, n=365, Cohort 3) to validate the

prognostic value of NETS. Besides, HCC patients with baseline CT

information from Nanfang Hospital (Guangzhou, China) who

underwent curative resection between January 2013 and October

2018 (Cohort 4, n=347) were used to evaluate the predictive value of

RNETS in predicting the risk of postoperative recurrence, while

those receiving immunotherapy with unresectable HCC between

January 2019 and October 2021 (cohort 5, n=137) from Nanfang

Hospital were used to evaluate the predictive power of RNETS in

predicting the response to immunotherapy.

For patients without previous treatment, CT imaging data at

baseline were collected for RNETS establishment and evaluation.

Besides, for patients who were refractory to the standard first-line

therapy (loco-regional treatments or targeted therapies) and

received immunotherapy as second-line treatment, imaging data

for analysis were collected based on the inclusion criteria as follows:

1. available CT imaging data within 30 days prior to PD-1 inhibitors

therapy; 2. with ≥ 1 measurable target lesion. Follow-up data were

collected from the initiation of treatment until 31 October 2022.

Disease-free survival (DFS) was defined as the time from surgery to

tumor recurrence at any site or death from any cause. Progression-

free survival (PFS) was set to the time period from the execution of

immunotherapy to disease progression or death from any cause.

The responses to PD-1 inhibitors were defined as partial response

(PR), complete response (CR), stable disease (SD), or progressive

disease (PD), and evaluated by CT or magnetic resonance imaging

(MRI) at 3 months and 6 months according to the RECIST version

1.1 (26).
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Establishment and evaluation of
NETs score

A total of 69 NETs-related genes were collected from previous

studies (8, 27) and are shown in Table S1. Cox proportion hazards

regression with the least absolute shrinkage and selection operator

(LASSO) was applied to tune the optimal value of the penalty

parameter (l) and derive the genes with the highest predictive value

from training cohort with non-zero coefficients identified. The

calculation formula for NETs score is presented as follows:

f (x) =o
n

i=1
(Pibi)

Where n, P, and b denoted the number of selected genes, the

normalized gene expression level, and the coefficient index derived

from LASSO regression, respectively. The expression level was

obtained by log2-transformed FPKM+1 of each gene. The

‘survminer’ package was employed to pick out the cut-off point

for the NETs score, according to which, patients were divided into

two groups (high-NETS and low-NETS). Subsequently, Kaplan-

Meier curves were plotted and the log-rank method was employed

to compare the survival distributions of the two groups. Utilizing

‘pROC’ R package and ‘timeROC’ R package to output receiver

operating characteristic (ROC) curves and evaluate the predictive

value according to the area under the curves (AUC).
Immune infiltration assessment

The CIBERSORT deconvolution algorithm was used to quantify

the infiltration levels of 22 classes of immune cells in the high- and low-

NETS groups (28). In this step, we analyzed the data of normalized

gene expression values combined with the LM22 signature and

performed 1,000 permutations in R studio (v4.1.0). ESTIMATE was

used to calculate different scores to describe the immune
FIGURE 1

Flowchart of overall study.
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microenvironment, such as the infiltration level of immune cells

(ImmuneScore), and stromal content (StromalScore) (29). Box plots

were generated based on the scores obtained by the two NETS groups.
Functional pathway enrichment analysis

Differentially expressed genes (DEGs) between the high- and

low-NETS groups were obtained by using the empirical Bayesian

approach via the ‘limma’ package. The significance criteria for

selecting the DEGs were set as the false discovery rate (FDR)<

0.05 and the absolute value of the log2 (fold change) was set to ≥ 1.5.

We then performed Gene Set Enrichment Analysis (GSEA) using

the ‘GSEAbase’ R package to recognize the hallmark pathways in

low- and high-NETS groups respectively.
CT image segmentation and radiomics
feature extraction

The CT images from the portal venous phase were fetched for

extracting image features. We made use of the ITK-SNAP software

(v4.0) (www.itksnap.org) to perform the delineation for the regions

of interest (ROIs), in which two radiologists (Reader 1 and Reader 2,

both with > 5 years of experience) manually segment the entire

tumor on each axial slice. The CT images were resampled to a voxel

size of 1×1×1 mm3 to standardize the voxel spacing. Voxel intensity

values were discretized by a fixed bin width of 25 hounsfield unit

(HU) to reduce image noise and normalize intensities; wavelet

filtering was employed to all the CT series.

Subsequently, 1316 radiomics features were extracted from each

ROI using the Pyradiomics Python package (version 3.0). Seven

types of features were included: 1) Shape; 2) First Order Statistics; 3)

Gray Level Co-occurrence Matrix; 4) Gray Level Run Length

Matrix; 5) Gray Level Size Zone Matrix; 6) Neighboring Gray

Tone Difference Matrix, and; 7) Gray Level Dependence Matrix.
Feature selection and RNETS
score calculation

Before further analysis, to eliminate the differences in the value

scales, we carried out a standardization process for all the extracted
Frontiers in Immunology 04
image features with z-scores. For feature selection, Spearman’s rank

correlation analysis was performed and features with correlation

coefficient values higher than 0.9 were considered to be redundant

and would be filtered out. The LASSO regression was then

employed to determine the features with the highest predictive

value for the NETS with the penalty parameter tuning conducted by

5-fold cross-validation. The radiomics signature (RNETS) was

constructed through a linear combination of the selected features

weighted by their corresponding coefficients in the training cohort.

The whole workflow of radiomics model is depicted in Figure 2.
Statistical analysis

All statistical analyses and visualization plots were carried out in

R studio (version 4.1.0, http://www.r-project.org) and SPSS 22.

Correlations between continuous variables were estimated using

the Spearman test. Comparisons between two or more group were

carried out using either the Wilcox test or the Kruskal-Wallis test.

The nomogram and calibration curves were established by using the

‘RMS’ package. All P values are two-sided and lower than 0.05 are

regarded as statistical significance.
Results

Clinical characteristics

This study retrospectively included 1133 pathologically-

confirmed HCC patients from five cohorts. Of these, 52 patients

(Cohort 1) were from TCIA database [34 (65.3%) men and 18

(34.7%) women with mean age 61.02 ± 14.13 years], 232 patients

(Cohort 2) were from ICGC database [171 (73.7%) men and 61

(26.3%) women with mean age 67.25 ± 10.11 years], 365 patients

(Cohort 3) were from TCGA database [246 (67.4%) men and 119

(32.6%) women with mean age 59.65 ± 13.34 years]. In addition,

among these patients from Nanfang Hospital (Guangzhou, China),

310 patients (89.3%) in Cohort 4 were male (mean age: 54.63 ±

11.21 years) and 123 patients (89.8%) in Cohort 5 were male (mean

age: 50.82 ± 11.28 years). Of these 137 patients in Cohort 5, 39

(28.4%) received PD-1 inhibitors as first-line treatment, 98 (71.6%)
FIGURE 2

Detailed workflow of radiomics model (RNETS).
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received PD-1 inhibitors as second-line treatment who had

undergone loco-regional treatments and targeted therapy

(Sorafenib or Lenvatinib) prior to immunotherapy. More detailed

clinical characteristics of these two Nanfang Hospital cohorts are

listed in Table 1.
Development of scoring model based on
NETs-related genes

To better apply the NETs-initiation biomarkers to clinical

management of HCC, these 69 NETs-related genes were further

filtered by LASSO regression analysis to identify six hub genes with

lambda.1se values of 0.3077334 (Figure S1). These six genes (BST1,

IL-6,MAPK3, SELP, SELPLG and TLR4) were used to build a NETs-
Frontiers in Immunology 05
related risk signature called “NETs score”, which was calculated for

each patients according to the following formula: NETs score =

(-0.164×BST1) + (-0.055×IL6) + (1.419×MAPK3) + (-0.518×SELP)

+ (-0.714×SELPLG) + (-0.574×TLR4). The NETs score (NETS) was

a good indicator for the prognosis of HCC patients in the training

cohort, and the area under the curve (AUC) values were 0.836,

0.879, and 0.902 for 1, 2, and 3-year overall survival (OS),

respectively (Figure 3A). The same calculation were performed in

cohort 2 and cohort 3 as the validation dataset (Figures 3B, C). The

best NETs score cut-off point of 0.8033756 was used to divide

patients into high-NETS and low-NETS groups. The low-NETS

group had a survival advantage over the high-NETS group in the

training cohort (P<0.001) (Figure 3D). The similar results were also

observed in validation datasets (cohort 2, P<0.001; cohort 3,

P<0.001) (Figures 3E, F).
TABLE 1 Clinical characteristics in two Nanfang Hospital cohorts.

Cohort 4
(n=347)

Cohort 5
(n=137)

Age (years), mean (SD) 54.63 (11.21) 50.82 (11.28)

Gender (%)

Female 37 (10.7) 14 (10.2)

Male 310 (89.3) 123 (89.8)

Aetiology (%)

HBV 298 (85.9) 129 (94.2)

HCV 21 (6.1) 1 (0.7)

Others 28 (8.1) 7 (5.1)

AFP (ng/ml), (%)

≤ 400 236 (68.0) 56 (40.9)

> 400 111 (32.0) 81 (59.1)

ALBI grade (%)

1 184 (53.0) 40 (29.2)

2 161 (46.4) 83 (60.6)

3 2 (0.6) 14 (10.2)

Child-Pugh grade (%)

A 327 (94.2) 106 (77.4)

B 20 (5.8) 30 (21.9)

C 0 (0) 1 (0.7)

ECOG PS

0 331 (95.4) 79 (57.7)

1 + 2 16 (4.6) 58 (42.3)

Cirrhosis

Absent 116 (33.6) 26 (19.0)

Present 229 (66.4) 111 (81.0)

(Continued)
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Immune microenvironment heterogeneity
underlying the NETS

The results from the CIBESORT algorithm showed that

immune-activated cells, including plasma cells, activated CD4

memory cells and CD8 T cells were significantly higher

infi l tration in the low-NETS group (Figure 4A). The

ImmuneScore, StromalScore, and ESTIMATEScore values

decreased as the NETs score increased (Figures 4B-D). Compared

with the high-NETS group, the low-NETS group exhibited

significantly higher expression levels of immune checkpoint genes

(Figure 4E). Moreover, through GESA (Table S2), several immune

response related pathways were also activated in the low-NETS

group (Figure S2). In summary, these results suggest that an

immunological ‘hot’ microenvironment exists in the low-NETS

group, which tends to respond better to immunotherapy.
Construction of a radiomics biomarker
correlated with the NETS

The Spearman correlation analysis was utilized to filter out

redundant image features, following which, four radiomics features

were eventually selected using the LASSO regression to construct a

predictive radiomics biomarker for NETS status (high- or low-

NETS) in the training cohort (Figures 5A, B). The association

between the four radiomics features and six NETs-related genes

were depicted in Figure 5C. The RNETS was significantly different

between high- and low-NETS groups (P<0.001) (Figure 5D). The
Frontiers in Immunology 06
AUC value for distinguishing between high- and low-NETS was

0.853 in the training cohort (Figure 5E).
Prognostic value of the
radiomics biomarker

The RNETS cut-off value of 0.8033756 was used to divide

patients into high-RNETS and low-RNETS groups. Patients with

low-RNETS were associated with significantly longer survival time

in the training cohort (P<0.001) (Figure 6A). The AUC values of

ROC curves were 0.813, 0.718, 0.724 for the 1-year, 2-year and 3-

year OS, respectively (Figure 6B). The utility of the RNETS was

further evaluated in the cohort. Kaplan-Meier curves showed that

the low-RNETS group had significantly longer DFS and OS period

as compared to those in the high-RNETS group in cohort 4

(P<0.001) (Figures 6C, D). Multivariate Cox regression analysis

showed that the RNETS was an independent risk factor for

postoperative recurrence. In addition, the BCLC stage and AFP

levels were also significantly positively associated with the DFS in

cohort 4 (Table 2). To broaden its clinical application, the variables

were then integrated to develop a nomogram model (Figure 6E).

The calibration curve showed there was a good consistency between

the predicted value of recurrence and the actual observed value

(Figure 6F). Importantly, in cohort 4, the AUC values of the

nomogram for predicting DFS (0.860) were higher than those of

RNETS, AFP and BCLC stage (Figure 6G), indicating that the

nomogram has enhanced power in predicting recurrence as

compared to RNETS, AFP levels or BCLC stage alone.
TABLE 1 Continued

Cohort 4
(n=347)

Cohort 5
(n=137)

BCLC Stage (%)

0 22 (6.3) 0 (0)

A 225 (64.8) 0 (0)

B 57 (16.4) 36 (26.3)

C 43 (12.4) 101 (73.7)

Embolus (%)

Absent 313 (90.5) 52 (38.0)

Present 33 (9.5) 85 (62.0)

Tumor number (%)

≤ 3 308 (89.0) 46 (33.6)

> 3 38 (11.0) 91 (66.4)

Tumor size (cm), median [IQR]) 4.80 [3.10, 7.40] 9.20 [6.80, 12.70]

CRP (median [IQR]) / 18.19 [5.20, 28.60]

NLR (median [IQR]) / 3.08 [2.20, 3.71]

RNETS (mean (SD)) 0.25 [0.00, 0.47] 0.21 (0.33)
AFP, a-fetoprotein; BCLC Stage, Barcelona Clinic Liver Cancer stage; ECOG PS, Eastern Cooperative Oncology Group performance status.
ALBI, albumin-bilirubin; CRP, C-reactive protein; NLR, Neutrophil-lymphocyte ratio.
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Predictive value of the RNETS for anti-PD-
1 immunotherapy response

In cohort 5, the RNETS was significantly lower (mean: 0.0254)

in the objective response group (CR/PR) than in the SD/PD group

(0.2443) (Figure 7A). When dividing the patients into different

RNETS groups with cut-off point of 0.0804, we found that the

objective response rate (ORR) was significantly higher in the low-

RNETS group than in the high-RNETS group (27.8% vs 10.8%)

(Figure 7B). Moreover, 77.8% of patients in the low-RNETS group

had disease control (PR, CR and SD). In the high-RNETS group,

only 55.4% of patients had disease control (Table 3). Notably,

Kaplan-Meier curve showed that the RNETS was significantly

negatively associated with the PFS (P<0.001) (Figure 7C). These

results indicated that the RNETS correlated with the clinical

outcomes of anti-PD-1 immunotherapy. Multivariate Cox

regression analyses revealed that RNETS, CRP levels, and AFP

levels were independent prognostic factors for PFS (Table 4). To

establish and validate a risk-scoring model for PFS, we created a

nomogram integrating RNETS, AFP levels and CRP levels

(Figure 7D). Calibration curve demonstrated the predicted value

of disease progression was in accordance with the actual observed

value (Figure 7E). Our results confirmed that the predictive value of

the nomogram outperformed those of the individual RNETS, AFP

levels and CRP levels for predicting PFS in patients receiving

immunotherapy (Figure 7F). Subgroup analyses of treatment lines
Frontiers in Immunology 07
were performed to assess the performance of RNETS in evaluating

the response to anti-PD-1 immunotherapy (Figure S3).

Interestingly, patients with second-line therapy in low-RNETS

group still had higher ORR (27.5% vs 10.3%, P=0.027) and longer

PFS time (P=0.00016). Although there is currently not statistical

significance, RNETS showed a gradually negative trend with

immunotherapy benefit in first-line therapy subgroup (RNETS-L

v s RNETS-H, ORR: 28 .6% v s 12 .0%, P=0 .225 ; PFS

analysis, P=0.077).
Discussion

As only a fraction of HCC patients have shown impressive

efficacy to immune checkpoint blockade (30), there is an urgent

need to discover robust predictive biomarkers for tracking patient’s

response to immunotherapy in advanced HCC cases. Unfortunately,

there are currently no reliable predictive biomarkers to support

clinicians in predicting which patients would respond favorably or

unfavorably to immunotherapy. Although PD-L1 and tumor

mutation burden (TMB), are two of the most extensively studied

predictive biomarkers for cancer immunotherapy (31–33), their

predictive value in gauging patient responses to immunotherapy in

HCC has been relatively limited (34, 35).

In cancers, the TIME acts as a major role in tumor metastasis,

relapse, and resistance to treatment, due to which it has been under
A B

D E F

C

FIGURE 3

Prognostic value of NETs score. (A) Receiver operating characteristic (ROC) curves of NETs score for predicting overall survival (OS) at 1 year, 2
years, and 3 years, respectively in cohort 1, (B) cohort 2, (C) and cohort 3. (D) Kaplan-Meier curves of OS for patients with different NETs score in
cohort 1, (E) cohort 2, (F) and cohort 3.
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intensive investigation. To dissect TIME subtypes may help identify

patients who would be likely to respond to immunotherapy. Since

neutrophils are an integral part of the TIME, they could function as

bridges between the tumor parenchyma and the immune

microenvironment (36). Elevated neutrophil–lymphocyte ratio

(NLR) in peripheral blood and high infiltration level of TANs in

TIME are correlated with poor prognosis in HCC patients (37, 38).

In addition, NETs, which are unique derivates of neutrophils, have

been linked to progression and metastasis in certain solid tumors

(10, 11, 39), and especially in HCC (12, 40). In this work, we have

identified a constitutive NETs-related gene signature (NETS) to

predict survival of HCC patients. We have noticed that these

patients in high-NETS group were associated with poor prognosis.

Neutrophils are the most abundant immune cells in

peripheral blood and play a fundamental role in inflammatory
Frontiers in Immunology 08
responses (41); however, their contribution to immune escape in

malignancies is still controversial. Recent work has confirmed that

TANs play an immunosuppressive role in primary liver cancer

and that targeting TANs could be a potentially effective form of

immunotherapy for treating liver cancer (42). In addition, the

mechanism by which NETs promote immune escape is gradually

becoming clearer; for example, it has been shown that NETs act as

physical barriers that cover the cancer cells and shield them from

immunotherapy (43). Studies have also shown that NETs can

suppress T-cell responses to tumors by inducing metabolic and

functional exhaustion in these immune cells (44). Our results also

demonstrated that the NETS could be used to define TIME

subtypes in HCC. Patients in the low-NETS group likely have

an immunological ‘hot’ microenvironment, which may allow

them to respond better to immunotherapy.
A

B D

E

C

FIGURE 4

Diverse features of immune environment between NETS-H and NETS-L groups. (A) The infiltration levels of 22 immune cells between two groups
analyzed by CIBERSORT algorithm. (B-D) The immune score, stromal score and estimate score analyzed in NETS-H and NETS-L groups,
respectively. (E) The expression level of immune checkpoint genes between two groups. NETS, NETs score; NETS-H, high NETs score; NETS-L, low
NETs score.
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Using ELISA, IHC, and RNA-sequence data, it is possible to

assess the abundance of NETs in peripheral blood and tumor

tissues. However, these methods are expensive and complicated,

which makes their large-scale application impractical. In China, CT

examinations are widely used to diagnose liver cancer even in

remote areas with underdeveloped medical resources. Therefore,

using CT image-based radiological features for prognostics—

especially if they reflect immune-related responses—will be of

great clinical and economic value. In studies related to HCC,

radiomics was usually used to predict clinical outcomes after

surgery or responses to locoregional therapy (22, 23). However,

most HCC patients already suffer from an advanced stage of cancer

at the time of diagnosis and usually cannot opt for surgical
Frontiers in Immunology 09
treatment. For such HCC patients, immunotherapy can prolong

their survival time and even help them reach a stage where

translational surgery becomes a treatment option. In this study,

we have developed a radiomics model-based score which we have

named the RNETS, as a biomarker for clinicians to use for a quick

prognostic indication of the immunological status of a tumor from

CT images. In two internal HCC cohorts, the RNETS performed

well enough to predict postoperative recurrence of the tumor and

response to anti-PD-1 immunotherapy in HCC patients. The

present study found that RNETS is associated closely with clinical

benefit in patients received immunotherapy as second-line

treatment. However, due to the limited number of first-line

immunotherapy cohort, studies with a larger sample size should
A B

D E

C

FIGURE 5

Construction of RNETS in training cohort. (A) Plot of tuning parameter log (l) selection in LASSO model with 5-fold cross-validation. (B) Plot of
coefficient profiles for all the radiomics features. (C) The correlation between the four radiomics features and six NETs-related genes. (D) The
difference of RNETS between NETS-H and NETS-L groups. (E) The predictive value of RNETS for distinguishing NETS-H and NETS-L groups in
cohort 1 (training). NETS, NETs score; NETS-H, high NETs score; NETS-L, low NETs score.
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be implemented to further validate that RNETS is capable of

predicting immunotherapy benefit for HCC patients, regardless of

the therapy line.

There still remain some limitations in this study. First, the

sample size in the training cohort from the TCIA database is rather

small due to a scarcity of cases that have CT image information.

Second, the number of NETs-related genes that have been identified

is small and may be insufficient for a comprehensive assessment of

NETs formation in TIME. Third, since serum NETs expression had

been shown to be indirect means for inferring the NETs formation

in tumor tissues, we believe that the results in this study will be
Frontiers in Immunology 10
more profound if we had integrated the information about NETs

abundance in peripheral blood into overall analysis. Fourth, this

study only covers NETs-related gene signature and tumor

heterogeneity is enormous, future projects based on these results

should be developed including various key pathway (for example,

ferroptosis, hypoxia, epithelial-mesenchymal transition) related

prognostic gene signatures and select the optimal radiomics

model for implementation in clinical practice. Finally, this study

was retrospective, and the results need to be validated using a

prospective research framework.

In conclusion, we have developed a radiomics biomarker, the
frontiersin.o
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FIGURE 6

Prognostic value of RNETS. (A) Kaplan-Meier curves of overall survival (OS) for different RNETS groups in cohort 1 (training). (B) Receiver operating
characteristic (ROC) curves of RNETS for predicting OS at 1 year, 2 years, and 3 years, respectively in cohort 1 (training). (C, D) Kaplan-Meier curves
of disease-free survival (DFS) and OS for different RNETS groups in cohort 4. (E) Nomogram for predicting the risk of postoperative recurrence in
cohort 4. (F) Calibration curves of the nomogram model. (G) ROC curves of recurrence status for the nomogram and three variables in cohort 4.
AFP, a-fetoprotein; BCLC, Barcelona Clinic Liver Cancer.
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TABLE 2 Univariate and multivariate Cox regression analyses of risk factors for disease-free survival in Cohort 4.

Univariate
HR (95% CI) P value Multivariate

HR (95% CI) P value

AFP, ng/ml

≤ 400 1.0

> 400 1.76 (1.34-2.32) <0.001 1.67 (1.26 - 2.22) <0.001

Age 0.99 (0.98-1.01) 0.254

ALBI grade

1 1.0

2 1.02 (0.77-1.33) 0.914

3 1.4 (0.34-5.67) 0.641

BCLC

0+A 1.0

B+C 2.54 (1.92-3.35) <0.001 2.1 (1.58 - 2.80) <0.001

Child-Pugh grade

A 1.0

B 0.95 (0.53-1.7) 0.852

Cirrhosis

Absent 1.0

Present 1.02 (0.77-1.36) 0.868

ECOG PS

0 1.0

1 1.56 (0.87-2.8) 0.138

Embolus

Absent 1.0

Present 1.46 (0.96-2.24) 0.080

Aetiology

HBV 1.0

HCV 0.52 (0.24-1.10) 0.089

Others 0.76 (0.46-1.25) 0.280

RNETS 2.81 (2.02-3.92) <0.001 2.73 (1.94 - 3.83) <0.001

Gender

Female 1.0

Male 0.88 (0.57-1.35) 0.558

Tumor number

≤ 3 1.0

> 3 1.37 (0.9-2.08) 0.143

Tumor size 1.03 (0.99-1.07) 0.153
F
rontiers in Immunology
 11
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1134521
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xin et al. 10.3389/fimmu.2023.1134521
A B

D

E

F

C

FIGURE 7

Predictive value of RNETS for anti-PD-1 immunotherapy response in cohort 5. (A, B) The treatment response to PD-1 inhibitors in high-RNETS and
low-RNETS groups. (C) Kaplan-Meier curves of progression-free survival (PFS) for different RNETS groups. (D) Nomogram for predicting the risk of
disease progression after PD-1 inhibitor therapy. (E) Calibration curves of the nomogram model. (F) Receiver operating characteristic (ROC) curves of
progression status for the nomogram and three variables. CRP, C-reactive protein; AFP, a-fetoprotein; SD, stable disease; PD, progressive disease;
PR, partial response; CR, complete response.
TABLE 3 The relationship between tumor response and RNETS groups in patients treated with PD-1 inhibitors.

high-RNETS
(n=83)

low-RNETS
(n=54) P

Treatment line (Immunotherapy) 0.595

First-Line 25 (30.1) 14 (25.9)

Second-Line 58 (69.9) 40 (74.1)

Treatment response

CR 0 (0) 1 (1.9)

PD 37 (44.6) 12 (22.2)

PR 9 (10.8) 14 (25.9)

SD 37 (44.6) 27 (50.0)

ORR(CR+PR) 9 (10.8) 15 (27.8) 0.020

DCR(CR+PR+SD) 46 (55.4) 42 (77.8) 0.013
F
rontiers in Immunology
 12
Variables are expressed as number of patients (%).
CR, complete response; DCR, disease control rate; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.
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RNETS, which links NETs-related gene expression patterns in the

TIME to radiomic features obtained from CT images. This scoring

model can effectively and noninvasively predict the clinical

outcomes and responses to immunotherapy in HCC patients.
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TABLE 4 Univariate and multivariate Cox regression analyses of risk factors for progression-free survival in Cohort 5.

Univariate
HR (95% CI) P value Multivariate

HR (95% CI) P value

AFP, ng/ml

≤ 400 1.0

> 400 2.71 (1.69-4.37) <0.001 2.11 (1.29 - 3.48) 0.003

Age 0.98 (0.96-1) 0.040

ALBI grade

1 1.0

2 0.96 (0.59-1.56) 0.868

3 1.68 (0.84-3.39) 0.145

Child-Pugh grade

A 1.0

B+C 1.09 (0.67-1.78) 0.728

Cirrhosis

Absent 1.0

Present 1.56 (0.88-2.77) 0.128

CRP 1.01 (1-1.01) 0.001 1.01 (1 - 1.01) 0.048

ECOG PS

0 1.0

1 + 2 0.94 (0.61-1.44) 0.766

Embolus

Absent 1.0

Present 0.92 (0.6-1.42) 0.717

Aetiology

HBV 1.0

HCV 1.33 (0.18-9.57) 0.779

Others 1.11 (0.45-2.75) 0.817

NLR 1.15 (1.06-1.25) 0.001

RNETS 3.4 (1.86-6.2) <0.001 2.49 (1.29 - 4.81) 0.007

Gender

Female 1.0

Male 0.84 (0.43-1.62) 0.599

Tumor number

≤ 3 1.0

> 3 1.02 (0.65-1.59) 0.936

Tumor size, cm 1.04 (0.99-1.09) 0.125
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