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Background: In the pathogenesis of osteoarthritis (OA) and metabolic syndrome

(MetS), the immune system plays a particularly important role. The purpose of this

study was to find key diagnostic candidate genes in OA patients who also had

metabolic syndrome.

Methods: We searched the Gene Expression Omnibus (GEO) database for three

OA and one MetS dataset. Limma, weighted gene co-expression network

analysis (WGCNA), and machine learning algorithms were used to identify and

analyze the immune genes associated with OA and MetS. They were evaluated

using nomograms and receiver operating characteristic (ROC) curves, and finally,

immune cells dysregulated in OA were investigated using immune

infiltration analysis.

Results: After Limma analysis, the integratedOA dataset yielded 2263DEGs, and the

MetS dataset yielded the most relevant module containing 691 genes after WGCNA,

with a total of 82 intersections between the two. The immune-related genes were

mostly enriched in the enrichment analysis, and the immune infiltration analysis

revealed an imbalance inmultiple immune cells. Further machine learning screening

yielded eight core genes that were evaluated by nomogram and diagnostic value

and found to have a high diagnostic value (area under the curve from 0.82 to 0.96).

Conclusion: Eight immune-related core genes were identified (FZD7, IRAK3,

KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4), and a nomogram for the

diagnosis of OA and MetS was established. This research could lead to the

identification of potential peripheral blood diagnostic candidate genes for MetS

patients who also suffer from OA.
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differentially expressed genes, osteoarthritis, metabolic syndrome, machine learning,
immune infiltration
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1 Introduction

Osteoarthritis (OA) is one of the common degenerative diseases

of the musculoskeletal system in orthopedics, often involving one or

more joints, and has a high prevalence worldwide (1), and

according to WHO, there is a 10% chance of OA occurring in

people over 60 years of age worldwide (2). So far, the causative

factors and pathogenesis of OA are not clear, but most scholars

believe that its pathogenesis is a combination of several factors, such

as obesity, aging, trauma, excessive joint strain, metabolic disorders,

inflammation, and genetics (3).

Metabolic syndrome (MetS) is a metabolic disorder

characterized by abdominal obesity, dyslipidemia, hyperglycemia,

and hypertension (4). According to the National Institute for

Health and Nutrition Examination Survey, around one in five

adults in the United States suffer from MetS (5). Most patients

with metabolic syndrome are associated with varying degrees of

obesity, which increases stress on the entire musculoskeletal system

and poses a higher risk for the development of osteoarthritis and

various other musculoskeletal disorders. Osteoarthritis and

metabolic syndrome share common mechanisms of inflammation,

oxidative stress, and metabolic dysfunction in their etiology (6).

Traditionally, osteoarthritis is a non-inflammatory disease affected

by trauma or metabolic dysregulation, and age-related joint

degeneration is thought to be a causal factor in the development

of the disease (7, 8). However, a growing body of evidence suggests

that low-grade inflammation may be a key factor driving the

pathogenesis of OA (9). Inflammation and metabolic disorders

play a very important role in the progression of osteoarthritis (10,

11). Risk factors, including diabetes, hypertension, and

hyperlipidemia, are largely involved in osteoarthritis through the

release of inflammatory and adipokines that accelerate the

progression of osteoarthritis by driving articular cartilage

degeneration and bone marrow lesions (12). Several theories

describe how MetS risk factors affect the progression of OA, such

as high blood pressure can cause subchondral ischemia, abnormal

lipids can cause lipid deposition in chondrocytes, and high blood

glucose can cause oxidative stress and low inflammation, eventually

leading to cartilage destruction (13). In addition, central obese

patients also have abnormal leptin and lipocalin levels, which can

further aggravate the development of OA (6, 14). To date, metabolic

syndrome-associated osteoarthritis (MetS-OA) has been well

characterized as a distinct phenotype of osteoarthritis (15, 16),

and the goal of this model is to investigate the relationship between

inflammatory response and metabolic disorders in order to improve

the concept of treating MetS and to aid in the reduction of

inflammatory response in OA patients. There is some evidence to

support this, but the mechanism of action in metabolic syndrome-

related osteoarthritis is still being investigated. In recent years,

comprehensive bioinformatics analysis has been used to identify

novel genes associated with various diseases that can serve as

diagnostic and prognostic biomarkers. However, the common

diagnostic and interlinked genes of OA and MetS are not known.

Therefore, this study used a bioinformatics approach to screen for

biomarkers associated with immune infiltration in both, which
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could help identify immune-related potential diagnostic markers

for OA in patients with MetS.
2 Materials and methods

2.1 Microarray data

The datasets used were all from the NCBI Gene Expression

Omnibus (GEO) database (17), and the OA datasets were

GSE169077, GSE55457, and GSE55235 (18); while the MetS dataset

was GSE98895 (19). Figure 1 depicts the study flowchart.
2.2 Data processing and differential
gene screening

The following steps were all carried out using the R software

(https://www.bioconductor.org/), starting with “affy” to calibrate,

log-transform, and normalize the three OA datasets, then merging

them and using “SVA” to remove batch effects, with p-values set to

0.05 and |log2 fold change (FC)|>1.5, and “limma” for differential

gene screening. Table 1 presents detailed dataset information,

including the microarray platform, sample groups, and numbers.
2.3 Weighted gene co-expression
network analysis

WGCNA (20) was used to investigate the gene modules most

closely linked to MetS. First, the top 50% of genes with the highest

median absolute deviation (MAD) were filtered. The expression

matrix was then filtered to remove ineligible data. Third, use a “soft”

threshold power (b) for co-expression of similarity to calculate

adjacency. Then, using dynamic tree cuts and hierarchical

clustering, a topological overlap matrix (TOM) was created to

group genes into modules by random colors, and a gene

dendrogram was constructed using a TOM-based measure of

phase dissimilarity and a minimum gene cluster size (n=100).

Fifth, for the next step of the study, the dissimilarity of the

module genes was calculated, and the average linkage hierarchy

clustering was performed. It is finally visualized.
2.4 Functional enrichment analysis

Sangerbox (http://www.sangerbox.com/tool) was used for Gene

Ontology (GO) (21) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) (22) enrichment analysis.
2.5 Machine learning

Machine learning algorithms are used to screen the core genes

for OA diagnosis. “glmnet” (23) was used for LASSO (24)
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regression, and “randomForest” (25) was used for RF (26) analysis.

The two intersecting genes were used as the core genes for

OA diagnosis.
2.6 Nomogram construction and
evaluation of recipient operating
characteristics

Nomogram was created for the screened genes using the “rms”

(27) R package, and its value in the clinic was determined by the

area under the curve (AUC) and 95% CI using ROC. When the

AUC exceeds 0.7, it is considered to have diagnostic value.
Frontiers in Immunology 03
2.7 Immune infiltration analysis

The CIBERSORT algorithm is used to determine the proportion

of immune cells in cells or tissues (28). The bar graphs show the

proportion of each type of immune cell in various samples, and the

“corrplot” (29) R package is used to generate a heat map of

the correlation between 22 immune cells. The vioplot was used to

visualize the differences between the OA and normal immune

cell groups.
2.8 Statistical analysis

R software version 4.2.2 and Sangerbox were used for all

statistical analyses. To compare normally distributed continuous

variables between two groups, the Independent Student’s t-test was

used, and the Wilcoxon rank sum test was used to analyze non-

normally distributed variables. Every statistical test was two-sided.

The statistical significance level was set at p-Value <0.05.
3 Results

3.1 Differentially expressed genes

The integrated OA dataset yielded a total of 2263 DEGs after

LIMMA analysis, with 1341 up-regulated genes and 922 down-

regulated genes. Figures 2A, B show the heat map and volcano map

generated from the above data. Furthermore, the MetS dataset

yielded 1449 DEGs, including 605 up-regulated genes and 844

down-regulated genes (Figures 3A, B).
3.2 Selection of key modules

In MetS, use WGCNA to filter critical modules. When the soft

threshold =14, the scale-free network performs best (Figures 3C, D).

Figure 3E depicts the clustering tree graph for both groups and the

ten randomly colored gene modules obtained (Figures 3F, G). The

yellow module (691 genes) had the highest MetS correlation

(Figure 3H) and can be used as a key module in the following

analysis. Figure 3I shows the results of a correlation analysis for the
FIGURE 1

Study flowchart, GSE, gene expression omnibus series; WGCNA,
weighted gene co-expression network analysis; Limma, linear
models for microarray data; DEGs, differentially expressed genes.
TABLE 1 Basic information of GEO datasets used in the study.

GSE series Type Sample size Platform

Control Osteoarthritis

GSE169077 RNA 5 6 GPL96

GSE55457 RNA 10 10 GPL96

GSE55235 RNA 10 10 GPL96

Control Metabolic
syndrome

GSE98895 RNA 20 20 GPL6947
fro
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genes in the yellow module, which showed a positive

correlation (r=0.62).
3.3 Functional enrichment analysis of
metabolic syndrome

The intersection of 1449 DEGs and 691 modular genes yielded a

total of 108 genes (Figure 4A). The “PI3K-Akt signaling pathway”

and “glycerophospholipid metabolism” were primarily enriched in

KEGG analysis (Figure 4B). According to GO analysis, the main

enrichment in biological process (BP) terms was in “B cell

activation involved in immune response” and “cellular response

to DNA damage stimuli” (Figure 4C). It is primarily found in “cell

membrane,” “nuclear lumen,” and “vesicles” in terms of cellular

component (CC) ontology (Figure 4D). It was primarily enriched in

“molecular function regulators,” “enzyme regulator activity,” and

“signaling receptor binding” in molecular function (MF)

analysis (Figure 4E).
3.4 Enrichment analysis of osteoarthritis
with metabolic syndrome

To further explore whether key MetS-related genes might be

associated with the pathogenesis of OA, 82 genes were identified by

the Venn diagram from the intersection of OA DEGs and MetS key

module genes (Figure 5A). According to KEGG analysis, 82 genes

were primarily enriched in “inflammatory mediator regulation of

TRP channels,” “cellular senescence,” and “MAPK signaling
Frontiers in Immunology 04
pathway,” all of which are closely related to the immune system

(Figure 5B). GO analysis revealed that they were primarily enriched

in “immune response,” “cell death,” and “immune system process”

(BP); “integral component of endoplasmic reticulum membrane,”

“stereocilium mem-brane” and “immunological synapse,” (CC);

and “catalytic activity,” “ATP binding,” and “sequence-specific

DNA binding” (MF) (Figures 5C–E).
3.5 Core genes screening using
machine learning

The Lasso regression and RF algorithms were used to identify

core genes and create relevant nomograms for ROC analysis. Lasso

regression screened 10 candidate genes (Figures 6A, B), and the RF

algorithm identified 30 most important genes (Figures 6C, D), and

the two were taken to intersect (Figure 6E), resulting in the

identification of eight genes (FZD7, IRAK3, KDELR3, PHC2,

RHOB, RNF170, SOX13, and ZKSCAN4).
3.6 Determining diagnostic value

We created a nomogram (Figure 7A) and plotted ROC curves

based on the eight candidate genes to assess the diagnostic value of

each gene. The calculated AUCs and 95% confidence intervals were

as follows: FZD7 (AUC 0.86, CI 0.96–0.76), IRAK3 (AUC 0.92, CI

0.99–0.84), KDELR3 (AUC 0.94, CI 1.00–0.87), PHC2 (AUC 0.89,

CI 0.99–0.80), RHOB (AUC 0.96, CI 1.00–0.90), RNF170 (AUC

0.82, CI 0.94–0.70), SOX13 (AUC 0.83, CI 0.94–0.72), ZKSCAN4
A

B

FIGURE 2

Heatmap and valcano plot for the DEGs identified from the integrated OA dataset. (A) Each row shows the DEGs, and each column refers to one of
the samples of OA cases or controls. The red and blue represent DEGs with upregulated and downregulated gene expression, respectively. (B) Red
and green plot triangles represent DEGs with upregulated and downregulated gene expression, respectively. OA, Osteoarthritis: DEGs, differentially
expressed genes.
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(AUC 0.90, CI 0.99–0.81) (Figures 7B–I). The findings indicated

that the acquired genes had a high value for the diagnosis of OA in

combination with MetS.
3.7 Immune infiltration analysis

We discovered that genes associated with MetS can also play a

role in OA, primarily in immune regulation. An in-depth

examination of the nomogram and ROC revealed that they could
Frontiers in Immunology 05
be used as potential biomarkers for the diagnosis of OA, which was

confirmed by immune infiltration.

The percentage of 22 immune cells in each sample is shown in

the bar graph for both datasets (Figure 8A). Voltammograms

showed higher levels of B cells memory, Macrophages M0,

Dendritic cells activated, Mast cells resting and Eosinophils in OA

patients, and lower levels of T cells CD4 memory resting,

Macrophages M2, Mast cells activated and Neutrophils

(Figure 8B). Correlation analysis of the 22 immune cell types

showed that NK cells resting was positively correlated with
A B

D E

F G

IH

C

FIGURE 3

Identification of DEGs via Limma and module genes via WGCNA in MetS. (A) The heatmap displays the top 50 upregulated and downregulated DECs
identified from MetS dataset. Each row represents the intersection of genes, and each column represents one of MetS cases or controls. Red and blue
represent upregulated and downregulated ge expression. (B) The volcano plot shows all DEGs, of which red and green triangles refer to significant
DEGs. (C, D) b= 14 is selected as the soft threshold with the combined analysis of scale independence and average connectivity. (E) Clustering
dendrogram of the MetS and control samples. (F) Gene co-expression modules represented by different colors under the gene tree (G) Heatmap of
eigengene adjacency. (H) Heatmap of the association between modules and Mers. The yellow module is shown to be correlated significantly with MetS.
Numbers at the top and bottom brackets represent the correlation coefficient and p-value, respectively. (I) Correlation plot between module
membership and gene significance of genes included in the yellow module WGCNA, weighted gene co-expression network analysis, Limma, linear
models for microarray data; DEGs, differentially expressed genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1134412
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1134412
Neutrophils (r=0.62), T cells CD4 naive was positively correlated

with T cells CD4 memory activated (r=0.52), Mast cells activated

was negatively correlated with Mast cells resting (r=-0.67), and

Macrophages M2 was negatively correlated with T cells gamma

delta (r=-0.52) (Figure 8C). In conclusion, OA patients have varying

degrees of multiple immune cell infiltration that may be potential

regulatory points for the treatment of OA.
4 Discussion

OA is one of the most significant causes of disability in middle-

aged and older adults and places a significant burden on public
Frontiers in Immunology 06
health (30). Several biomarkers for OA have been identified in

recent studies, including osteoclast protein (OPN), cartilage

oligomeric matrix protein (COMP), cartilage acidic protein 1, and

CRTAC1 (31, 32). Studies that combine these two diseases are

relatively rare. There were currently no markers for diagnosing OA

using nomogram and machine learning methods, so we combined

both bioinformatics analysis and machine learning and evaluated

their diagnostic value using nomogram and ROC. Notably, we

identified eight key immune-related candidate genes (FZD7, IRAK3,

KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4) and

developed a nomogram for the diagnosis of OA in MetS patients.

We were able to approximate the odds of developing OA in

MetS patients by simply testing the peripheral blood of MetS
A B

D

E

C

FIGURE 4

Enrichment analysis of the intersection of genes in MetS. (A) Venn diagram shows that 108 genes are identified from the intersection of DEGs via Limma and
yellow module genes via WGCNA. (B) KEGG pathway analysis of the intersection of genes. Different colors represent various significant pathways and related
enriched genes. (C–E) GO analysis of the Intersection of genes, including biological process, cellular component, and molecular function, respectively. The
y-axis represents different GO terms, the x-axis represents gene ratio enriched in relative GO terms, the circle size refers to gene numbers, and the color
represents p-value. MetS, Metabolic syndrome: KEGG, Kyoto Encyclopedia of Genes and Genomes GO, Gene Ontology: WGCNA, weighted gene co-
expression network analysis: Limma, linear models for microarray datac DEGs, differentially expressed genes.
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patients with known expression of core genes, given that the MetS

samples used in this study were all from peripheral blood. Because

of its simplicity and effectiveness, peripheral blood testing is used in

the diagnosis of many diseases (33, 34). Following that, we will

develop a more refined model that can accurately reflect gene

expression and assign it a numerical value to make it more

accurate for diagnosis (35). When significant changes in target

indicators occur in MetS patients, early monitoring and

intervention can be performed, which is more valuable for

diagnosing MetS combined with OA.

Frizzled 7 (FZD7) belongs to the G protein-coupled receptor

family and is a 7-channel transmembrane cell surface receptor and a

key factor in the Wnt signaling pathway (36). Frizzled proteins have

a universal structure: a cysteine structural domain (CRD) that fills

the extracellular space, followed by a structural domain containing

seven putative transmembrane fragments (37). CRD can interact
Frontiers in Immunology 07
with Wnts and form a complex that reduces b-catenin
phosphorylation (38). The FZD family proteins mediate the Wnt/

b-catenin signaling pathway and contribute to the overall

pathological progression of OA, especially in the remodeling of

cartilage (39, 40). Exos derived from hADSC have been shown to

contain MiR-376c-3p, which has the ability to target WNT3 or

WNT9a and inhibit the Wnt/b-catenin signaling pathway, reducing

synovial fibrosis and chondrocyte degradation in OA patients. In

conclusion, FZD7 can regulate cell proliferation, differentiation,

migration, and tumorigenesis development by activating

downstream signaling pathways through binding to Wnt ligands

(41, 42).

IRAK3, an interleukin-1 receptor-associated kinase (IRAK)

family member, is primarily expressed in immune cells such as

macrophages, monocytes, dendritic cells, and epithelial cells (43).

As an important regulatory protein of the TLRs/IL-1R pathway, it is
A B

D

E

C

FIGURE 5

Enrichment analysis of common genes from OA with MetS. (A) Venn diagram shows that 82 common genes are identified from the intersection of
genes in OA using Limma and MetS using WGCNA. (B) KEGG analysis of 82 common genes. (C–E) GO analysis (hiological process, cellular
component, and molecular function) of 82 common genes. OA. Osteoarthritis: MetS, Metabolic syndrome, WGCNA, weighted gene co-expression
network analysis.
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involved in the inhibition of Toll-like receptor signaling. In

addition, IRAK1 and IRAK2 can dissociate from the myosin

complex, and IRAK3 inhibits it, rendering IRAK1 and IRAK2

unable to interact with TRAF6 and thus inhibiting NF-B pathway

activation, and reduces inflammation by reducing the production of

pro-inflammatory factors (44). Of course, another possibility is that

the MyD88-IRAK puposome interacts with IRAK3, which

stimulates NF-B activation via complex formation, where both

MEKK3 and TRAF6 can form complexes with IRAK3, which is

also dependent on the NF-B pathway, to promote anti-

inflammatory-related expression (45). An experiment discovered

that miR-33b-3p regulated IRAK3 and that it was effective in

alleviating IL-1-induced apoptosis and inflammation. Overall, this

appears to be a promising OA target (46).
Frontiers in Immunology 08
KDELR3, a member of the KDEL family, is in charge of

encoding a protein related to the endoplasmic reticulum (ER)

(47). The ER influences not only the synthesis and transport of

lipids and steroids but also the activity of hormones and glucose

metabolism. As a result, KDELR3 expression varies significantly

between individuals, with higher levels of expression in non-

atherosclerotic tissues. In addition, several studies have found that

KDELR3 is significantly aberrantly expressed in a variety of

malignancies, including prostate adenocarcinoma and

hepatocellular carcinoma (48, 49). As a result, we hypothesize

that KDELR3 plays a critical role in OA patients.

The HD1 structural domain of PHC2 is close to its FCS zinc finger

structural domain, which is capable of interacting with the catalytic ring

structural domain of RING1B. RING1B, a core component of
D

A B

E

C

FIGURE 6

Machine learning in screening candidate diagnostic biomarkers for OA with MetS (A, B) Biomarkers screening in the Lasso model. The number of
genes (n-10) corresponding to the lowest point of the curve is the most suitable for OA with MetS diamos. (C, D) The random forest algorithm
shows the error in OA; control group and genes are ranked based on the importance score. (E) Venn diagram shows that eight candidate diagnostic
genes are identified via the above two algorithms OA. Osteoarthritis: MetS Metabolic syndrome.
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Polycomb Repressive Complex 1 (PRC1), can monoubiquitinate

histone H2A (H2AK119ub1) and plays a catalytic role at lysine 119.

It is a key regulator of the estrogen receptor alpha (ER) transcriptional

process (50), through which estrogen regulates biological processes like

reproductive maturation, energy homeostasis, and skeletal growth by

binding to ERa (51). Most importantly, estrogen action on ERa can

increasemiR-140 expression levels and decrease the expression levels of

matrix metalloproteinase-13 (MMP-13) in human articular

chondrocytes (52). It has also been shown that PHC2 can bind to

the Vcam1 locus and act to reduce systemic immunodeficiency (53). It

is reasonable to believe that PHC2 can have an impact on the

progression of OA.

RHOB is a Rho GTPase with a C-terminus and an N-terminus, the

latter of which contains a G domain, also known as the RhoA-like

domain (54). Because chromosome 2 retains RHOB’s genetic

information and lacks the alternative RHOB precursor mRNA, only

one RHOB protein sequence can be translated (55). RHOB can be

induced by transforming growth factor beta (TGF) signaling and is

immune to p53 regulation, allowing for a timely response to non-

genotoxic (polysaccharide, hypoxia, inflammatory factors) and

genotoxic stimuli (radiation) (56). RHOB deficiency inhibited

pathological angiogenesis in ischemic retina patients, implying that

RHOB alleviates symptoms by promoting the formation of lymphatic

vessels following injury or in the presence of inflammation (57).

Interestingly, RHOB also activates IL-1b (interleukin 1b), LPS

(lipopolysaccharide), and TNFa (tumor necrosis factor a) in an

inflammatory setting (54), contrary to previous observations.
Frontiers in Immunology 09
However, its mechanism of action in OA is unclear and remains to

be investigated. In general, RHOB can regulate a variety of cellular

processes, including vesicle trafficking, apoptosis, DNA repair,

angiogenesis, proliferation, migration, and invasion (58).

RNF170 is a novel E3 ubiquitin ligase that mediates the

ubiquitination of the endoplasmic reticulum calcium channel

sarcoglycan 1,4,5 trisphosphate receptor leading to the

degradation of the sarcoglycan 1,4,5 trisphosphate receptor via

the proteasome pathway and subsequently affecting the calcium

flow and content in the endoplasmic reticulum lumen and

cytoplasm. By specifically targeting TLR receptor molecules,

RNF170 mediates polyubiquitination of lysine at position 766 on

the TIR domain of TLR3 (59), resulting in the degradation of TLR3

receptor molecules via the proteasome pathway and reducing the

effect on TLR3 downstream signaling. activation of the TLR3

downstream signaling pathway, thereby inhibiting the production

of inflammatory factors and type I interferons (60). A search of the

GEO database revealed that RNF170 protein expression was

significantly increased in human monocytes after infection with

human immunodeficiency virus (HIV) (61), and when the body’s

fibroblasts underwent an immune response to cytomegalovirus

infection, the expression level of RNF170 protein in fibroblasts

showed a trend of first increasing and then decreasing (62), and in

general, RNF170 is extremely important in natural immunity.

SOX13 is a member of the SOX protein family, and its coding

gene is located at 1q31.3-32.1, which is found in a wide range of cells

and tissues. SOX13 contains 604 amino acids, including three
D
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FIGURE 7

Nogrim comtraction and the diagnostic value evaluation (A) The visible nomogram for diagnosing OA with MetS (B–I) The ROC curve of each
candidate gene (RHOR, KDELR3, TRAKA, PHC2, ZKSCANA, SOX13, RNF 170 and FZD7) and nomogram show the significant OA with MetS diagnostic
value. OA. Osteoarthritis, MetS, Metabolic syndrome; AUC, area under the curve.
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specific functional regions, namely the leucine zipper region, the

glutamine-rich sequence region, and the HMG functional region

(63). Its expression in three embryonic cell lineages suggests that it

may be involved in various developmental processes, with

expression detected in the neural tube, developing brain, kidney,

liver, mesenchymal, and chondrogenic progenitor cells, and has a

significant impact on sex determination, neurogenesis and

endochondral bone formation (64). Innate lymphocytes, including

type 1, type 2 (ILC2) and type 3 (ILC3) subpopulations, are

increasingly recognized as key regulators of tissue homeostasis

and inflammation through the release of cytokines (65), with

NCR ILC3s producing mainly IL-17A, which is regulated by

DNA binding inhibitor 2 (ID2), transcription factor 1, and SRY
Frontiers in Immunology 10
(sex-determining region Y)-box transcription factor 13 (Sox13)

(66). Fida et al. simultaneously tested 297 cases of primary biliary

sclerosis (PBC), 22 cases of autoimmune cholangitis, 29 cases of

autoimmune hepatitis, and 90 patients with T1DM for SOX13-Ab

and found a high rate of positivity (67). In addition, Sox13, as an

autoimmune antigen, can also modulate T-cell specificity, and in

summary, it is reasonable to suspect that SOX13 can modulate the

inflammatory response in OA.

ZKSCAN4, a zinc finger protein family member, localizes to

chromosome 6p21-p22.1 and regulates genomic stability, stem cell

generation, and telomere elongation (68, 69). It is found in a variety of

tissues, including the cervix, testes, and trachea, as well as the kidneys,

adrenal glands, mouth, skin, lungs, brain, spleen, uterus, liver,
A

B

C

FIGURE 8

Immune cell infiltration analysis between OA and control. (A) The proportion of 22 kinds of immune cells in different samples visualized from the
burplot. (B) Comparison regarding the proportion of 22 kinds of immune cells between OA and control groups visualized by the vioplot.
(C) Correlation of 22 immune cell type compositions, *,p < 0.05, **,p < 0.01, ***,p < 0.001. Both horizontal and vertical axes demonstrate immune
cell subtypes OA, Osteoarthritis.
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intestines, and muscles (70). Several authors examined European and

Asian populations using genome-wide association studies (GWAS) of

genes and discovered significant differences in some genes between

healthy people and rheumatoid arthritis patients, especially ZKSCAN4,

ABCF1, BTN3A3, BRD2, FLOT1, HLA-DMA, HLA-G, HLA-F,

HSP90AB1, IER3, and TUBB (71). ZKSCAN4 improves the HDM2

promoter region’s association with YY1 by modifying the HDM2

chromatin structure to promote its expression (72). HDM2 is a

ubiquitin protein ligase that not only promotes the degradation but

also the transcription of the tumor suppressor p53. Under hypoxia, p53

promotes cell survival by promoting the production of cellular

metabolic energy in OA, inhibiting reactive oxygen species (ROS)

production and ROS detoxification (73). Although there are no

functional studies to validate ZKSCAN4, it can be speculated that it

is tightly linked to OA.

Previous research has revealed that immune and inflammatory

responses are present in all phases of OA. The position of inflammatory

factors and cellular infiltration in the progression of OA, as well as the

various manifestations of OA in different immune settings, provide a

theoretical foundation for further research into the relationship

between immunity and OA. Many diseases are now recognized as

being influenced by the immune microenvironment, and in OA

patients, both cartilage damage and repair processes involve immune

cells (74). It has been established that B cells and macrophages, as the

primary immune cells, are involved in cartilage damage and repair, in

addition to NK cells, T cells, and DCs (75). In addition, mast cells

(MC), T cells, and macrophages can be found in large numbers in the

synovial tissue of OA patients. A unique pattern of immune infiltration

has recently been identified, characterized by increased polarization of

CD4+ T cells to activated Th1 cells and increased secretion of

immunomodulatory cytokines (76). This has similarities to our

findings, with OA patients having higher levels of CD8+ T cells, B-

cell memory, activated dendritic cells, M0 macrophages, and

eosinophils, and lower levels of Mast cells activated, T cells CD4

memory activated, M2 macrophages and Neutrophils. Above all,

understanding inflammatory signaling mechanisms is critical for OA

diagnosis and treatment.
5 Conclusion

Based on bioinformatics analysis and machine learning, we

systematically identified eight related candidate genes (FZD7,

IRAK3, KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4)

and provided a template for the diagnosis of OA combined with

MetS. We also noticed that the immune system of MetS patients

with OA is out of balance, that the percentage of immune cells can

be affected by the immune microenvironment, and that the

screened genes could be used for clinical diagnosis and treatment.
6 Limitation

There are some restrictions on our research. First, despite

pooling three OA datasets, the samples are still tiny, and because

of the small sample size, the diagnostic value of the column line
Frontiers in Immunology 11
graphs is quite high. Additionally, we wanted to choose a different

sample to verify the diagnostic results. The eligible ones weren’t

accessible, and the Mets dataset was already small. As a result, we

were unable to confirm the results. After that, the findings should be

verified in a bigger study with a larger sample size. Second, even

though the interactions between candidate hub genes and

dysregulated immune cells warrant further study, the eight

candidate hub genes are primarily concentrated in regulatory

immune pathways.
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