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Distinct subtypes of
endometriosis identified based
on stromal-immune
microenvironment and gene
expression: implications for
hormone therapy

Yuning Wang1†, Yun Chen1,2†, Yinping Xiao1, Jingyao Ruan1,
Qi Tian1, Qi Cheng1, Kaikai Chang1,2* and Xiaofang Yi1,2*

1Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University,
Shanghai, China, 2Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of
Obstetrics and Gynecology, Fudan University, Shanghai, China
Background: Endometriosis (EMs) is a chronic inflammatory condition that is

highly heterogeneous. Current clinical staging fails to accurately predict drug

responses and prognosis. In this study, we aimed to reveal the heterogeneity of

ectopic lesions and investigate the possible underlying mechanisms using

transcriptomic data and clinical information.

Methods: The EMs microarray dataset GSE141549 was obtained from the Gene

Expression Omnibus database. Unsupervised hierarchical clustering was performed

to identify EMs subtypes, which was followed by the functional enrichment analysis

and estimation of immune infiltrates. Subtype-associated gene signatures were

identified and further validated in other independent datasets, including GSE25628,

E-MTAB-694, and GSE23339. Additionally, tissue microarrays (TMAs) were

generated from premenopausal patients with EMs to investigate the potential

clinical implications of the two identified subtypes.

Results: The unsupervised clustering analysis revealed that ectopic EMs lesions

can be classified into two distinct subtypes: stroma-enriched (S1) and immune-

enriched (S2). The functional analysis revealed that S1 correlated with fibroblast

activation and extracellular matrix remodeling in the ectopic milieu, whereas S2

was characterized by the upregulation of immune pathways and a higher positive

correlation with the immunotherapy response. Moreover, we identified a subtype

signature composed of FHL1 and SORBS1, and constructed a subtype diagnostic

model. Based on the cohort data from the TMAs, we found that S2 was strongly

associated with the failure of/intolerance to hormone therapy.
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Conclusions: This study identified two distinct subtypes that are varyingly

associated with hormone resistance, stroma-immunity, and molecular

features, thereby highlighting the importance of this stromal-immune

heterogeneity in identifying EMs subtypes and providing novel insights into

future personalized hormone-free therapy in EMs.
KEYWORDS

endometriosis, heterogeneity, subtype, immune infiltration, fibroblast activation,
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1 Introduction

Endometriosis (EMs) is a complex chronic condition that can

cause dysmenorrhea, chronic pelvic pain, and infertility (1), and it

affects approximately 10% of reproductive aged women worldwide

(2). EMs is highly heterogeneous, and despite identical histology,

comparable clinical characteristics, and uniform therapy, individual

patient responses to hormone therapy can range from complete

remission of symptoms to progression with treatment. Long-term

disease management is a major clinical challenge, with first-line

medical therapy (oral contraceptives and progestogens) being

effective in only approximately 40% of patients who experience a

major response, which therefore causes a delay in appropriate

treatment (3, 4).

EMs has traditionally been classified based on anatomy (5).

However, it remains a disease that lacks molecular subtypes to

recapitulate the molecular profiles and present a basis for

personalized treatment. With the development of next-generation

sequencing, we now have the opportunity to further understand the

heterogeneity and molecular mechanism of EMs. Several studies

have explored the heterogeneity of EMs in the immune and stromal

microenvironments (6, 7), and classification based on these features

might provide new insights into its heterogeneous presentation (8).

In this study, we performed an unsupervised clustering analysis

of EMs based on gene expression. We identified two subtypes of

EMs that were associated with the clinical response to hormone

therapy. The functional enrichment and cell infiltration estimation

analyses revealed dysregulated pathways and cellular heterogeneity

in the different subtypes. Furthermore, subtype-related genes were

predicted and verified in a prospectively collected clinical cohort.
2 Materials and methods

2.1 Database collection

EMs transcriptomic microarray data were obtained from the

NCBI’s Gene Expression Omnibus (GEO; https://ncbi.nlm.mih.gov/

geo/), and data on the clinical features of patients examined in the

microarray analyses were obtained from EMBL-EBI’s ArrayExpress
02
(https://www.ebi.ac.uk/arrayexpress). The expression of genes of

interest was analyzed in endometriotic tissue using the ENDOMET

Turku Endometriosis Database (9). A total of 198 ectopic EMs lesion

samples (including 6 biological replicates) from patients with EMs

were analyzed from the GSE141549 dataset, which contains the

expression matrix and clinical information of 198 EMs lesions.

Additionally, three other independent transcriptomic profiles

(GSE25628, E-MTAB-694, and GSE23339) were analyzed for

further validation.
2.2 Batch effect removal

Expression values from both datasets were log2-transformed

before cross-platform normalization. The ComBat function from

the SVA package (in the R environment, version 3.6.2) (10) was

used for the meta-analysis and data cleaning to remove batch

effects. The principal component analysis (PCA) was used to

evaluate whether the known batch effects were removed. Samples

from the same dataset were considered to have no obvious batch

effect if they did not cluster together.
2.3 Consensus clustering

Normalized expression values of 198 EMs lesions from the

GSE141549 dataset were used to identify molecular subtypes by

applying the consensus clustering method, which was implemented

using the ConsensusClusterPlus package (in the R environment,

version 1.58.0) (11). Consensus clustering was implemented with

the following settings: maximum cluster number (maxK) = 10,

number of repeats (reps) = 10,000, proportion of items to sample

(pItem) = 0.8, proportion of features to sample (pFeature) = 1,

cluster algorithm (clusterAlg) = “km” (K-means), and distance =

“Euclidean”. The optimal cluster number was determined based on

the consensus matrix and the cluster consensus score. The

consensus score for k = 2 was larger than that of other clusters.

Finally, the EMs lesions were clustered into two molecular subtypes:

stroma-enriched subtype (S1) and immune subtype (S2).
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2.4 Weighted gene coexpression
network analysis

The biological function of each subgroup was investigated by

identifying clusters of co-expressed characteristic genes using the

WGCNA package (in the R environment, version 4.1.3) (12), which

was also used to construct the co-expression network. The process

also involved calculating the Pearson’s correlation matrices among

all of the genes. Using the pickSoftThreshold function, 8 was

determined to be the appropriate soft threshold to create the

weighted adjacency matrix. Subsequently, hierarchical clustering

and the dynamic tree cut function were used to assign genes to

modules. The blockwiseModules function was applied using the

following parameters: maxBlockSize = 30,000, minModuleSize = 30,

mergeCutHeight = 0.25, reassignThreshold = 0.

Pearson’s correlation coefficients with P values estimated using

the corPvalueStudent function were used to assess the correlations

between molecular subtypes and module eigengenes.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis and Gene Ontology (GO) analysis were

performed using the clusterProfiler package (in the R environment,

version 4.2.2) to explore the module-related pathways.
2.5 Analysis of cell type composition

Cell type composition scores were estimated for the S1 and S2

subtypes using the xCellAnalysis function from the xCell package

(in the R environment, version 1.1.0) (13). Correlations between

module eigengenes and computed cell type scores were visualized

for all cell types that were scored in more than 25% of the samples,

which allowed us to infer the representative cell type of each

different module.

The infiltrating cells in lesions were also estimated using

CIBERSORT (14), which yielded similar results to xCell.
2.6 Immune response prediction

The EaSIeR package (in the R environment, version 1.0.0) was

used to predict the outcome of immune therapy for the different

subtypes (15). EaSIeR provided the estimation of immune responses

for each lesion based on RNA-seq data combined with prior

knowledge, and lesions with a higher relative score had a stronger

positive correlation with the immunotherapy response.
2.7 Gene set enrichment analysis and
functional annotation

To explore the subtype-related biological processes, the GSEA

(in GSEA software version 4.2.3) was conducted for each subtype

(16). The KEGG pathway enrichment results were considered

statistically significant based on the net enrichment score (NES),

gene ratio, and P value. Gene sets with a |NES| > 1 and a NOM p <

0.05 were considered to be significantly enriched.
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2.8 Protein–protein interaction
network construction

The NetworkAnalyst (https://www.networkanalyst.ca/) online

tool was used to construct and visualize the PPI network of gene

models related to both subtypes (17). Genes with a connectivity

degree of greater than 10 were identified as hub genes.
2.9 Identification of subtype-
specific markers

Differentially expressed genes (DEGs) between the two different

subtypes were identified using the limma package (in the R

environment, version 3.50.1). Statistically significant DEGs were

identified with the P value cutoff of <0.01 and a fold change of ≥2

or ≤−2.
2.10 Predictive signature identification

Subtype-related predictive genes were assessed in the

GSE1141549 dataset using the glmnet package (in the R

environment, version 4.1-4) based on the least absolute shrinkage

and selection operator (LASSO) method and the randomForest

package (in the R environment, version 4.1.3) based on Breiman’s

random forest algorithm. The identified genes were used to build a

linear regression model to examine the associations between the

predictor genes and the molecular subtypes. The reproducibility

was validated using the enhanced bootstrap method (100 bootstrap

rounds). Subsequently, the model was tested on the three other

datasets (GSE23339, GSE25628, and E-MTAB-694). C-statistics

and Brier scores were calculated to assess the prediction

performance. The C-index values were between 0.5 and 1.0, with

0.5 and 1.0 representing random opportunity and an excellent

ability of the model to predict the subtype, respectively. The Brier

score values were between 0 and 1, with 1 representing an entirely

inaccurate forecast. A lower Brier score of a set of predictions

indicated that the predictions were better calibrated, with the best

possible Brier score of 0 representing total accuracy.
2.11 Patient cohorts and ethics

All tissue samples were obtained with informed consent from

patients and approved by the ethics service under the research

ethics committee numbers (kyy-2019-105). Premenopausal women

diagnosed with EMs were included from the Obstetrics and

Gynecology Hospital of Fudan University between January 2020

and September 2022. Samples were obtained from patients

undergoing surgical resection of EMs lesions (conservative or

radical surgery) and confirmed by pathological examination. All

participants underwent hormone therapy before surgery. Detailed

clinical information about previous EMs surgery and hormone

therapy was collected for all recruited participants. Patients who

underwent hormone therapy for less than 1 month were considered
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unexposed (18). The criteria for patients considered as failed/

intolerant to hormone therapy were as follows: 1) patients who

underwent hormone therapy for more than 1 month without any

symptom relief and 2) patients who underwent hormone therapy

for more than 1 month and who terminated treatment due to

intolerable side effects.

Patients who met the following criteria were excluded: 1)

patients with a history of any inflammatory condition,

autoimmune disease, or malignant tumor; 2) patients who

stopped treatment due to drug allergy or severe side effects; 3)

patients who underwent hormone therapy for other conditions.
2.12 Construction of tissue microarrays

All tissues used to construct TMAs were evaluated by an

experienced gynecological pathologist in advance of the presence of

EMs lesions. When typical endometrial glands were found in the

lesions, the pathological diagnosis of EMs was made. CD10

immunohistochemical staining of lesions was performed when the

pathologists failed to find typical endometrial glands (e.g., due to heat

injury). In total, 97 formalin-fixed, paraffin-embedded EMs lesions

(22 intestinal lesions; 21 deep rectovaginal lesions; 11 other deep

lesions, including ureteral or vaginal lesions; 36 ovarian lesions; and 7

peritoneal lesions) were used to construct the TMAs. The intestinal

lesions were arrayed in two different paraffin blocks, whereas the deep

rectovaginal lesions were arrayed in three different paraffin blocks.

Ureteral lesions and vaginal lesions were arrayed in one paraffin

block, ovarian lesions were arrayed in three different paraffin blocks,

and peritoneal lesions were arrayed in one paraffin block. Tissue

cylinders with a diameter of 5 mm were used to extract tissue from

the targeted area confirmed by the pathologist of each donor tissue

block, which were then deposited into recipient blocks. After the

array blocks were constructed, they were cut into multiple 4-mm
sections until all 97 tissue samples were represented on a single

section. Each section was placed on a microscopic slide and

histologically investigated after hematoxylin and eosin (H&E)

staining to determine the adequacy of the arrayed tissues. These

sections were separately placed on charged polylysine-coated slides

for immunohistochemistry (IHC).
2.13 IHC analysis

The paraffin-coated microarray sections were placed on a

heating block at 60°C for 2 hours and continuously washed with

xylene to remove the paraffin. The slides were then rehydrated in

varying concentrations of alcohol. Subsequently, 3% hydrogen

peroxide was applied for 30 min at room temperature to block

endogenous peroxidase activity. Then, the slides were incubated in

the retrieval buffer (sodium citrate solution, pH = 6.0) and heated in

the microwave to restore the antigen. The slides were pre-incubated

with serum for 1 hour to reduce non-specific background. The

slides were incubated overnight with primary antibodies diluted in

phosphate-buffered saline (PBS) at 4°C. Four monoclonal

antibodies were used to detecting PR (ab32085, 1:150), PI16
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(ab127014, 1:500), FHL1 (ab133661, 1:100), and SORBS1

(ab224129, 1:200). The next day, the slides were washed three

times with PBS (1×) for 5 min each. Subsequently, the slides were

incubated with the secondary antibody (abs20040, 1:500) for 2 h at

room temperature. The slides were developed in diaminobenzidine

solution and stained with hematoxylin. Finally, images of the

representative fields in each case were collected using the Stream

Software, and expression was quantified using Image J software. The

FHL1 and SORBS1 staining results were assessed as negative or

positive by a pathologist who was unfamiliar with the clinical

pathological data. Correlations between FHL1 or SORBS1

expression and the effects of hormone therapy were estimated

using the chi-square test. Correlations between the expression of

other genes and the effects of hormone therapy were estimated

using the t-test, with or without Welch’s correction. All analyses

were performed using GraphPad Prism v.9.0 software. P values

of <0.05 were considered statistically significant.
3 Results

3.1 Data collection and preprocessing

Microarray EMs transcriptomic data and matched clinical data

were obtained from NCBI’s GEO (https://ncbi.nlm.mih.gov/geo/)

and EMBL-EBI ’s ArrayExpress (https://www.ebi.ac.uk/

arrayexpress). In total, the data of 198 EMs samples (91 deep

lesions, 79 peritoneal lesions, and 28 ovarian lesions) from the

GSE1412549 dataset were used as the training dataset. The other

datasets, including GSE25628 (7 deep lesions), E-MTAB-694 (18

peritoneal lesions), and GSE23339 (10 ovarian lesions), were used

for further external validation. A detailed flowchart explaining the

process is illustrated in Figure 1. To remove any batch effects caused

by the data being from different platforms and different batches, the

ComBat method was applied between the datasets. The PCA was

also conducted on these datasets to establish the relationships

among the four validation datasets. As shown in Figure 2A,

samples from the four independent datasets formed different

clusters before removing the batch effects; however, they clustered

together after batch effect removal (Figure 2B). This clustering

indicated that cross-platform normalization was successful in

removing the batch effects.
3.2 Identification of ectopic lesion
transcriptome-based subtypes for
EMs patients

To understand the heterogeneity of EMs and identify potential

subtypes, the GEO dataset GSE141549 was downloaded along with

clinical data (Supplementary Table 1) to screen EMs gene

expression. EMs subtypes were identified from the high-

dimensional dataset by applying the unsupervised clustering

algorithm to classify the ectopic lesions based on the

heterogeneity of the gene expression profiles. Normalized

expression values of the 198 EMs lesions from GSE141549 were
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used to identify the different molecular subtypes. As shown in

Figure 3, the EMs lesions were finally clustered into two molecular

subtypes: S1 and S2. We observed that the S1 and S2 subtypes

contained 109 and 88 lesions, respectively. The consensus matrix

suggested a high degree of intra-group homogeneity and distinct

heterogeneity between the two subtypes (Figure 3A). The cluster

consensus value for each subgroup suggested that 2 was the optimal

number of clusters (Figure 3B). The PCA analysis suggested that the

two subtypes were separated at the transcriptional level (Figure 3C).

The detailed clinical characteristics of the 198 EMs patients

along with clinical data from the GSE141549 dataset are shown in

the additional file (Supplementary Table 1, Supplementary

Figure 1). Given that the clinical characteristics might have an

impact on the gene expression profile of lesions, the clinical

characteristics of the two subtypes were investigated by

examining the age, cycle, medication, revised American Fertility

Society(rAFS) stage, and lesion locations of the EMs cases from the

GSE141549 dataset. The proportion of lesion distribution in S1 was

different from that in S2 (Supplementary Table 1). However, there
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were no significant differences between S1 and S2 with regard to

age, menstrual cycle, and rAFS stage (Supplementary Table 1,

Supplementary Figure 2). These results indicated that the

transcriptome classification might represent certain intrinsic

biological characteristics.
3.3 Identification of gene co-expression
modules for each subtype and
functional annotation

The WGCNA was performed to identify clusters of co-

expressed genes that were characteristic of the biological function

of each subgroup. This process revealed 14 modules of highly co-

expressed genes (Supplementary Figure 3). After calculating the

correlations between each module and clinical traits, it was evident

that several gene modules were strongly positively correlated with a

subtype (MEturquoise for S1, MEblue for S2) (Figure 4A). The

functional enrichment analysis based on the KEGG database
FIGURE 1

Flowchart of this research. A flowchart for the analysis procedure to identify potential molecular subtypes and critical genes.
A B

FIGURE 2

Removal of batch effects between the datasets. Principal component analysis (PCA) of the four datasets (GSE141549, GSE25628, E-MTAB-694, and
GSE23339) before (A) and after (B) merging.
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indicated that genes in MEturquoise were mainly enriched in

pathways related to fibrosis, whereas genes in Meblue were

mainly enriched in pathways related to the immune response and

inflammation (Figure 4B). The GO analysis showed similar results

(Supplementary Figure 4).

The GSEAwas performed for functional enrichment of S1 and S2

(Supplementary Table 2). The KEGG enrichment terms revealed that

S1 was associated with fibrosis-related terms, including vascular

smooth muscle contraction and dilated cardiomyopathy, whereas

S2 was associated with immune response-related terms, including

primary immunodeficiency and allograft rejection. Notably, steroid

biosynthesis pathways were also enriched in S2 (Figure 4C).
3.4 Hub genes and immune-stroma
profiles of the different
established subtypes

Next, hub genes were identified from the representative genes of

each subtype, and PPI networks were developed for gene co-

expression modules associated with molecular subgroups; the

gene names of the top 30 nodes with the highest degree of

connectivity are labeled in Figure 4D. The hub genes identified

for S1 included PTPN11, PPKCA, CAV1, PPP1CB, PAP1A, CD44,

CCND2, and PI16, which might have the largest impact on

fibroblast activation and integrin signal transduction in milieu.

The hub genes identified for S2 included LYN, STAT1, PTPN6,

FGR, CXCR4,MYD88, CEBPA, and HCK, which have an important
Frontiers in Immunology 06
function in regulating the innate and adaptive immune responses,

responses to growth factors and cytokines, and migration of

immune cells.

We postulated that the observed gene co-expression patterns

might also be indicative of cell type features associated with EMs.

The differences in immune-related signatures between the EMs

lesions of S1 and S2 were further explored. In this study, the xCell

algorithm was used to analyze gene expression data (GSE141549)

and calculate the module eigengene and immune-stroma scores of

ectopic endometrial samples between S1 and S2. Strong positive

correlations were observed between MEblue and obvious immune

cell infiltration in S2, including that of macrophages and T

lymphocytes (Figure 5A). The results revealed that the ectopic

EMs lesions of S1 had significantly lower immune scores. In

contrast, the stroma scores for ectopic EMs lesions of S1 were

significantly higher than those of S2 (P < 0.0001). There was a

significant difference between the microenvironment scores of the

two subtypes (P > 0.05, Figure 5B). To further explore the

association between the S2 subtype and the response to

immunotherapy, we used the EaSIeR method to predict the

immunotherapy effect of different lesions according to the gene

expression profile. The results suggested that the immune signature

score of the S2 subtype was higher than that of the S1 subtype,

which might represent a better response to immunotherapy

(Figure 5C). Similar results were obtained using the CIBERSORT

algorithm (Figure 5D). Compared with the neutrophil enrichment

in the S1 subtype, higher infiltrating M0 macrophage, M2

macrophage, Treg cell, and activated dendritic cell ratios were
A

B

C

FIGURE 3

Consensus clustering analysis of the gene expression profiles for EMs cases. (A) The consensus matrix heatmap and consensus score were plotted
when k = 2. The heatmap represents the consensus matrix with a cluster count of 2, which was determined by the minimal consensus scores of the
subgroups (>0.8). (B) The bar plots represent the consensus scores of the subgroups with a cluster count ranging from 2 to 10. (C) The principal
component analysis (PCA) supported the stratification when k = 2. “cycle”: cycle phase; “medication” refers to the inability to determine the cycle
phase for patients on hormone medication; “non-medication” refers to the proliferative phase, secretory phase, or menstrual period; stage: rAFS
stage; site.merge: location of lesions; cluster: molecular subtype.
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observed in the S2 subtype of the endometrial ectopic lesions,

indicating the characteristic of immune tolerance.
3.5 Identification and validation of the
DEGs between the EMs subtypes

The gene labels identifying the two subtypes were explored by

performing differential analysis, which identified 159 DEGs. Of these,
Frontiers in Immunology 07
120 DEGs were significantly upregulated in S1, whereas 39 DEGs

were downregulated (Figure 6A, Supplementary Table 3). Subtype-

related genes were identified using LASSO and the random forest

algorithm based on the computed LASSO coefficient and the mean

decrease in the Gini coefficient (Figures 6B–D). FHL1 and SORBS1

were selected to construct a predictive model using LASSO

regression. These two genes were also differentially expressed

between ectopic lesions and endometrium samples from patients

(Supplementary Table 4). Internal validation computed by 100
A B

D

C

FIGURE 4

The underlying biological features differ between the two EMs subtypes. (A) Hierarchical cluster formation based on the soft threshold power (b = 8).
Pearson’s correlation between module eigengenes and clinical features and cluster groups in lesion tissues within GSE141549, with bordered squares
indicating significant correlations (P < 0.05, Student asymptotic P-value for correlation). Exact P values are given in Supplementary Table 1.
Abbreviations: “cycle”: cycle phase; “medication” refers to the inability to determine the cycle phase for patients on hormone medication; “non-
medication” refers to patients in phases of the menstrual cycle (not on hormone medication); “class”: molecular subtype. (B) Statistics of the KEGG
pathway annotation of subtype 1 and subtype 2. The x-axis shows the number of genes; the y-axis corresponds to the KEGG pathway annotation.
(C) The GSEA plots of representative gene sets in EMs subtypes. The green line indicates the enrichment profile. (D) PPI networks for gene co-
expression modules associated with the molecular subgroups. The gene names of the top 30 nodes with the highest degree of connectivity are
labeled. The top clusters from representative genes of subtype 1 (green color) and subtype 2 (blue color) are illustrated, and the related hub genes
(dark green and dark blue) in each cluster that were obtained from degree values are shown.
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rounds of the bootstrap method indicated excellent discrimination

(area under the receiver operating characteristic curve [AUC]: 0.97)

and calibration (0.068) (Figures 6E, F).

For external validation, three independent EMs datasets

(GSE25628, GSE23339, E-MTAB-694) were analyzed to verify the

predictive performance of this model. After removing batch effects

among the datasets, consensus clustering of endometriotic lesion

samples from the training dataset and the three independent

validation datasets is shown in Figure 7A. The final results

revealed that the AUC was 0.86 and the Brier score was 0.16

(Figures 7B, C).
Frontiers in Immunology 08
Immune infiltration estimates for the validation datasets

determined by xCell yielded similar results to those of the

training set (Figures 7D–F).
3.6 Association between the EMs subtypes
and clinical hormone therapy response

Hormone therapies are usually employed to treat EMs.

However, our understanding of the molecular EMs subtypes and

their associations with the clinical response to hormones remains
A

B

D

C

FIGURE 5

Stromal and immune cell composition alterations between the two EMs subtypes. (A) Heatmap of module eigengene–cell type correlations. The cell
types were deconvoluted from whole-tissue expression data using xCell. The bordered squares indicate significant correlations (false-discovery rate
[FDR] P < 0.05, asymptotic two-tailed P values estimated from Pearson’s correlation coefficients). (B) Comparisons of microenvironment, stromal,
and immune scores between the two subtypes (S1 and S2). (***P < 0.001, ****P < 0.0001). (C) Immunotherapy response scores obtained by EaSIeR
in the two subgroups of EMs patients. The differences in response scores between the two subtypes were identified using the Student’s t-test.
(D) Boxplot of the proportion of 22 immune cell types in the different subgroups of lesions based on CIBERSORT. (*P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001).
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incomplete. Furthermore, the significance of the EMs subtypes and

their biomarkers requires validation across cohorts of well-

annotated clinical samples and clinical features.

The unsupervised classification of the tissue transcriptome and

gene signatures in EMs patients was validated by recruiting a

validation cohort of 83 EMs patients. All patients participated in

this study anonymously because of privacy and security concerns.

The detailed baseline demographic information of the cohort is

shown in Table 1. A total of 97 ectopic EMs samples were collected

during surgery. On the basis of the above, we measured the protein

expression of the subtype markers and functional molecules

identified in Figures 6A–D using IHC and distinguished

hormone-sensitive and hormone-resistant populations. In brief,
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with the help of IHC analysis of the TMAs, FHL1 and SOBRS1-

positive and high PI16 expression patients were classified into the

S1 subtype, while FHL1 and SORBS1-negative and low PI16

expression patients were classified into the S2 subtype.

The subtype-specific gene signatures were identified in all

patients. The associations between established EMs subtypes and

clinical characteristics are reported in Table 1. Overall, the subtypes

were significantly associated with the lesion locations (P < 0.001).

Next, the correlation between FHL1 positivity and the response to

hormone therapy was examined for ectopic EMs lesions. A higher

number of hormone-resistant EMs patients were found in FHL1-

positive subgroup (S2) (Figure 8, top), which is consistent with a

previous report showing that chronic inflammation might induce a
A B

D

E F

C

FIGURE 6

Identification of DEGs and gene-signature selection in EMs subtypes. (A) Volcano map of differentially expressed genes (DEGs) between subtypes S1
and S2. (B) The LASSO logistic regression algorithm was used to identify the most robust DEGs between different molecular subgroups, and an
ensemble of key genes remained with individual coefficients. (C) The bar chart shows the variable weight of LASSO. (D) The variable weight of
random forest. (E) The ROC curve for internal validation using the enhanced bootstrap method on the GSE141549 dataset. (F) Calibration curve for
internal validation using the enhanced bootstrap method on the GSE141549 dataset. C index: 0.97, Brier score: 0.068.
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progesterone-resistant state. However, we did not observe any

correlation between SORBS1 expression and the response to

hormone therapy. As recent research has reported in human

tissues, a new universal fibroblast transcriptional subtype was

identified across tissues. The PI16-positive fibroblast serves as a

reservoir that can yield specialized fibroblasts across a broad range

of steady-state tissues and activated fibroblasts under pathological

conditions. In this study, IHC was applied to verify the expression

of the universal fibroblast marker PI16, the same as PR, which was

significantly decreased in the ectopic EMs tissues from resistant
Frontiers in Immunology 10
patients (Figures 8, middle and bottom). Overall, the highest

numbers of endometrial stromal cells and fibroblasts were

observed in the FHL1-positive subtype, indicating a subtype-

specific response, which was likely involved in the distinct

biological behavior of the different EMs subtypes.

4 Discussion

EMs is a highly heterogeneous disease with distinct clinical

manifestations and a complex pathophysiology (1, 20). More than
A

B

D

E F

C

FIGURE 7

External validation in three independent datasets, including GSE25628, GSE23339, and E-MTAB-694. (A) Consensus clustering of lesion samples for
the training dataset and the three validation datasets. (B) ROC curve for external validation using the enhanced bootstrap method in the validation
datasets. (C) Calibration curve for external validation using the enhanced bootstrap method in the validation datasets. C index: 0.87, Brier score:
0.16. (D–F) Immune and stromal cell components of S1 and S2 in the validation datasets. *p value<0.05.
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50% of women with chronic pelvic pain are estimated to suffer from

EMs; however, correlations between clinical symptoms and the

location, hormone therapy, and clinical classification of EMs

lesions remain poorly studied, with some women being

asymptomatic or progesterone-resistant. Most research considers

EMs as a single disease phenotype, potentially obscuring

informative subtype-specific associations that can identify risk

factors, biomarkers, and treatment responses (21–25). In addition,

traditional histological classification cannot guide EMs treatment,

with the hormonal responses being ineffective in approximately 2%–

30% of cases (4, 25–27). Therefore, accurately identifying the

molecular subtypes of EMs is essential to make a lesion-based
Frontiers in Immunology 11
therapeutic decision, thereby possibly maximizing patient

adherence and treatment results.

In this study, substantial heterogeneity of the ectopic tissue

transcriptome in EMs patients was revealed (Supplementary

Table 1), along with the identification of two distinct subtypes

based on the ectopic tissue gene expression profiles (Figure 3). To

understand and identify the biological processes and pathways

involved in the different subtypes, KEGG pathway annotation

statistical analyses were conducted (Figure 4). The two EMs

subtypes presented with distinct molecular pathways, stroma

compositions, immune cell infiltration patterns, and immune

response patterns during ectopic lesion formation. Distinct fibrosis
TABLE 1 Clinical characteristics of the patients received hormone therapy before surgery.

Overall (N=83) Hormone therapy P

Responsive (n=59) Failed/intolerant (n=24)

Age (years)a 39.00 [36.00, 43.50] 39.00 [36.00, 43.50] 40.00 [35.50, 43.25] 0.988

BMI (kg/m2)a 21.78 [20.44, 23.53] 21.48 [20.44, 23.38] 22.91 [20.76, 26.95] 0.164

Preoperative VAS ≥5 (%) 57 (69.5) 39 (66.1) 18 (78.3) 0.419

Previous surgeryb (%) 45 (54.2) 31 (52.5) 14 (58.3) 0.813

Cycle phase (%) 0.408

Medicine 27 (32.5) 18 (30.5) 9 (37.5)

Proliferative phase 37 (44.6) 29 (49.2) 8 (33.3)

Secretory phase 19 (22.9) 12 (20.3) 7 (29.2)

Change in medicinec (%) 18 (21.7) 6 (10.2) 12 (50.0) <0.001

DNG (%) 12 (14.5) 8 (13.6) 4 (16.7) 0.983

IUD (%) 20 (24.1) 5 (8.5) 15 (62.5) <0.001

OC (%) 22 (26.5) 13 (22.0) 9 (37.5) 0.241

GnRHa (%) 59 (71.1) 42 (71.2) 17 (70.8) 1

The length of GnRHa prescription (%) 0.565

<3 months 35(42.1) 25(42.4) 10(41.7)

3-6 months 42 (50.6) 31 (52.5) 11 (45.8)

>6 months 6 (7.2) 3 (5.1) 3 (12.5)

CA125a (mIU/ml) 35.73 [23.50, 73.11] 34.58 [23.45, 68.04] 37.42 [24.86, 77.98] 0.682

AMHa (ng/ml) 1.27 [0.39, 2.49] 1.31 [0.52, 2.55] 0.88 [0.23, 2.11] 0.245

Combined adenomyosisd(%) 61 (73.5) 44 (74.6) 17 (70.8) 0.939

Combined DEe(%) 69 (83.1) 49 (83.1) 20 (83.3) 1

Surgical complexityf(%) 0.642

A 3 (3.6) 3 (5.1) 0 (0.0)

B 30 (36.1) 21 (35.6) 9 (37.5)

C 37 (44.6) 25 (42.4) 12 (50.0)

D 13 (15.7) 10 (16.9) 3 (12.5)
amedian [IQR]; bpatients with a medical history of abdominal surgery; cpatients who switched hormone therapies before surgery; dadenomyosis detected during surgery; edeep EMs detected
during surgery; fAAGL 2021 Endometriosis Classification (19). “Medicine” refers to patients who underwent hormonal therapy within 3 months before surgery and therefore did not have normal
menstrual cycles. DNG, dienogest; LNG-IUD, levonorgestrel-releasing intrauterine system; OC, oral contraceptive; GnRHa, gonadotropin-releasing hormone analog.
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and immune infiltration patterns were observed between the two

EMs subtypes. These distinct patterns were observable across the

entire endometrial host response process, including the activation of

stromal cells and fibroblasts, the infiltration and response of immune

cells, and the production of extracellular matrix.

Consistent with previous research reports (23, 28), signaling

pathways in fibrosis-myofibrosis were evidently enriched in S1 and

were involved in the process of EMs-related fibrosis and adhesion.

Moreover, strong enrichment in primary immunodeficiency and

allograft rejection were observed in S2. This may imply that the

modulation of signaling in innate and adaptive immunity mainly

mediates the inflammation and progression of S2.

EMs heterogeneity was also confirmed by the differential analysis

of immune cell proportions. The proportion of each cell type in

ectopic tissue, especially stroma and immune cells, was found to

shape significant differences between the two subtypes (Figure 4).

Macrophages are crucially involved in lesion establishment and

maintenance by driving chronic inflammation and tissue

remodeling. Similarly, higher proportions of M2 macrophages and
Frontiers in Immunology 12
Treg cells were observed in lesions of the S2 subtype (Figure 5),

indicating immunoregulatory/immunosuppressive properties. Based

on our previous research on the role of Treg cells (29) and Th17 cells

in EMs (30), this bioinformatic study further validated that the

crosstalk between ectopic endometrial cells and immune cells

creates an atmosphere of endometriotic immunotolerance in the

ectopic milieu, which contributes to EMs progression.

To identify more stable and reliable molecular markers, 159

DEGs were identified, including 120 upregulated and 39

downregulated genes. DEGs between the two subtypes were closely

associated with cell adhesion, cell junction, and fibroblast-

myofibroblast activation. Two-gene signatures that discriminated

these two EMs subtypes were selected and validated. A two-gene

signature (FHL1 and SORBS1) was developed through stability

selection and LASSO logistic regression (Figure 6). FHL1, a

member of the four-and-a-half-LIM-only protein family, might be

involved in muscle development or hypertrophy. Another study

showed that FHL1 promotes blastocyst-epithelial adhesion (31).

Therefore, we speculated that FHL1 might mediate the excessive
FIGURE 8

Correlation between EMs subtypes, molecular pathology characteristics, and validation. FHL1 expression in ectopic lesions from patients with
hormone resistance or a clinical response (top). Progesterone receptor (PR; middle) and universal fibroblast marker PI16 (bottom) expression was
detected in the tissue microarrays using IHC data from patients in the clinical cohort. *p value<0.05; **p value<0.01.
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adhesion of endometrial epithelial cells to the ectopic milieu, which is

the opposite role. This two-gene signature was further validated to be

stable in discriminating between these two subtypes, even in the other

three independent datasets (Figure 7).

To date, several causes of progesterone resistance in patients with

EMs have been postulated, including congenital genetic causes (PR

gene polymorphisms and epigenetic modifications) and secondary

progesterone-resistant states induced by chronic inflammation (26).

Considerable evidence reveals a link between progesterone resistance

and chronic inflammatory states among patients with EMs.

Repetitive retrograde endometrial shedding is known to beget

chronic peritoneal inflammation, which further exacerbates

progesterone resistance. This could be partly caused by higher

expression of hormone receptors on the stroma-enriched areas and

glands, as well as the alteration of the PRs through chronic

inflammation. Cytokines directly decrease PR expression, possibly

through epigenetic modification (32) or disruption of receptor

function through alterations in steroid receptor chaperone proteins

(33). In addition to the hormone-resistant properties of the lesions,

undiscovered deep-hidden microlesions, pelvic adhesion, concurrent

chronic pelvic inflammation or uterine adenomyosis may also easily

lead to the poor response to hormone therapy. Inflammation and

adverse microenvironmental factors may also be implicated in

hormone unresponsiveness via alterations in the progesterone

response (26, 34). Despite the development of highly selective

progesterone, congenital or acquired hormone unresponsiveness

remains a challenge when treating partial-subtype EMs. We believe

that in the near future, nonsurgical therapy for EMs requires

innovation and expansion into new areas. The first step should

involve obtaining a deeper understanding of the disease’s core

features and diverse phenotypes and idiosyncrasies.

In this work, FHL1-positive dominant fibroblasts represented the

stroma-enriched subtype S1, which was obviously associated with a

robust hormone response and transcriptome. In contrast, subtype S2

with immune infiltration and immune tolerance signatures was prone

to hormone tolerance (Figure 8). This result might have been partly

caused by the higher expression of hormone receptors on the stroma

and alteration of PRs through chronic inflammation.

New research has shown that PI16-positive fibroblasts represent

a universal subtype that is responsible for extracellular matrix

secretion and potentially serving as a resource cell that can

develop into specialized fibroblasts (35). Given the significant

differences in the stroma-immune cell compositions between the

two subtypes, the abundance of PI16-positive fibroblasts in the

subtypes were tested, and their association with progestogen

resistance was explored. Using IHC assays through TMAs, this

study identified a two-gene signature that discriminated these two

subtypes when combined with the universal fibroblast marker PI16,

which were able to predict the clinical hormone response of EMs

patients. However, we emphasize that the assessment of the

significance for hormone therapy might have been limited by the

sample size, and further research is warranted in the future.

It is also worth mentioning that our analysis was based on

microarray data, and the tissues surrounding the lesions might

have affected the sequencing results. We analyzed the anatomical

locations of the lesions in the two subtypes as a supplement, and we
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found that most of the deep lesions were classified as S1, while

ovarian lesions were classified as S2. Notably, there was no obvious

relationship between peritoneal lesions and molecular subtypes, as

these lesions were equally distributed in the subtypes (Supplementary

Figure 5A). Moreover, during the validation of the public database

(GSE23339, GSE25628, and E-MTAB-694), we included datasets

containing sequencing data of EMs lesions from three anatomical

sites, including deep lesions (GSE25628), ovaries (GSE23339), and

peritoneum (E-MTAB-694). We found no obvious correspondence

between the lesion location and the molecular subtype

(Supplementary Figure 5B). From another perspective, current

classification was poorly correlated with symptom severity and

failed to provide information concerning the prognosis or

treatment response. Likewise, the classifications based on the

anatomical location did not include any information about the

molecular features or microenvironment of these lesions, nor did

they fully recognize the etiology of the disease. We have come to

realize that EMs has high potential for molecular heterogeneity,

including mutations, gene expression profiles, and intra-lesion

spatial heterogeneity (such as that in a large endometrioma or deep

nodules) (36). We believe the heterogeneity of the lesion itself, rather

than the anatomical location, is more likely to drive the diversity and

heterogeneity of EMs and underpin the different molecular subtypes.

Another limitation is that intra-lesion heterogeneity in

endometriosis has been reported by researchers, although it has not

been studied extensively (36–38). In the dataset GSE141549 used in

this study, 198 lesions contained 192 independent lesion tissues and 6

biological replicates. We found differences in gene expression profiles

even between tissues derived from the same lesion. We believe these

replicates derived from the different sampling sites within the same

lesion, and such difference may partly reflect the intra-lesion

heterogeneity. However, large-scale studies, as well as single-cell

sequencing and spatial transcriptomics are needed for the further

understanding of intra-lesion heterogeneity in endometriosis.

In summary, the integrated bioinformatics analysis identified

candidate DEGs and pathways in EMs that enhance our

understanding of the underlying molecular events of EMs. These

candidate genes and pathways could be therapeutic targets for EMs.

The classification of EMs into two subtypes further improves our

understanding of the underlying pathogenesis of EMs and provides

new insights for future studies.
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