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In recent years, a wide range of cancer immunotherapies have been developed

and have become increasingly important in cancer treatment across multiple

oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer

promising options to improve patient outcomes. However, a major limitation of

these treatments consists in the development of immune-related adverse events

(irAEs) occurring in potentially any organ system and affecting up to 76% of the

patients. The most frequent toxicities involve the skin, gastrointestinal tract, and

endocrine system. Although mostly manageable, potentially life-threatening

events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up

to 30% and 55% of the patients treated with ICI-monotherapy or -combination

therapy, respectively. Imaging, in particular computed tomography (CT), magnetic

resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission

tomography/computed tomography (18F-FDG-PET/CT), plays an important role in

the detection and characterization of these irAEs. In some patients, irAEs can even

be detected on imaging before the onset of clinical symptoms. In this context, it is

particularly important to distinguish irAEs from true disease progression and

specific immunotherapy related response patterns, such as pseudoprogression.

In addition, there are irAEs which might be easily confused with other pathologies

such as infection or metastasis. However, many imaging findings, such as in

immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be

delayed underling the importance for adequate imaging features characterization

in the appropriate clinical setting in order to provide timely and efficient patient

management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably

detect these toxicities and potentially have predictive value for identifying

patients at risk of developing irAEs. The purpose of this article is to provide a

review of the main immunotherapy-related toxicities and discuss their

characteristics on imaging.
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Introduction

Immunotherapies, in particular immune checkpoint inhibitors

(ICIs), have led to a paradigm shift in cancer treatment in only a few

decades and provide promising therapy options across many oncologic

diseases (1). The market release of monoclonal antibodies (mABs)

targeting the T-lymphocyte-associated protein-4 (anti-CTLA-4) as the

first US Food and Drug Administration approved ICI for advanced-

stage melanoma in 2011 was followed by the approval of mAbs

targeting other ICIs such as programmed cell death protein-1 (anti-

PD-1) and PD-1 ligand (anti-PD-L1) (2, 3). Importantly, the sites of

action of anti-CTLA-4 and anti-PD-1/PD-L1 antibodies are different.

Thus, anti-CTLA-4 acts at the lymph node level at the time of priming,

while anti-PD-1/PD-L1 becomes active later in the activation cascade

and directly at the tumor site. Their complementary mechanisms of

action allow the combined use of these two types of treatment for

certain indications (4). Being extensively studied, these novel therapies

have demonstrated unprecedented prolongation of patient survival

compared with non-ICI treatment (5). This is the case for cancers such

as metastatic melanoma, non-small cell lung cancer, renal cell

carcinoma, bladder cancer, and refractory Hodgkin’s lymphoma for

which only limited treatments options were available before the advent

of immune checkpoint blockade (6). Based upon the success gathered

by ICIs, many novel molecules are currently being investigated.

However, the unique mechanism of action of ICIs, eliciting a T-

cell mediated immune response, has led to two major problems.

First, ICI therapy causes specific tumor response patterns, including

imaging progression prior to response (pseudoprogression), the

paradoxical acceleration of tumor growth kinetics after initiation of

immunotherapy (hyperprogression), and the coexistence of

responding and non-responding lesions within the same patient

(dissociated responses), which are less commonly observed

following cytotoxic chemotherapy and targeted therapies (7, 8).

These response characteristics lead to a complete revision of the

traditionally used Response Evaluation Criteria in Solid Tumors

version 1.1 (RECIST 1.1) to accurately assess the tumor response

after immunotherapy; the immune-related response criteria (irRC)

and subsequently the immune-related RECIST criteria (irRECIST)

were introduced (9–11). Second, ICIs can lead to immune-related

adverse events (irAEs), which may occur in the majority of patients

(up to 76%) with off-target effects potentially affecting any organ

system or tissue due to an over activated immune system (12).

Several irAE mechanisms have been described, including increasing

T-cell activity against antigens present in healthy tissue,

upregulation of pre-existing autoantibodies and inflammatory

cytokines, as well as enhanced complement-mediated

inflammation by direct binding of anti-CTLA-4 antibody’s to

CTLA-4 expressed in normal tissue (13). Many of these events

are mild and manageable. However, life threatening events,

requiring ICI therapy discontinuation, occur in 3%-30% of

patients treated with ICI-monotherapy and in up to 55% of

patients receiving ICI-combination therapy (12, 14, 15). In

clinical practice, it remains a major challenge to detect and

adequately address these toxicities. Many hospitals have

implemented clinical units specialized in irAEs to ensure optimal
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patient management. Imaging has also proven to be valuable in this

setting as 70% of irAEs can be diagnosed already on ultrasound

(US), 79% on computed tomography (CT), 83% on magnetic

resonance imaging (MRI) and up to 74% on 2-deoxy-2-[18F]

fluoro-D-glucose positron emission tomography/CT (18F-FDG-

PET/CT) (16). This is all the more interesting as for some

patients, irAEs can be detected on imaging even prior to the

onset of clinical symptoms (8, 17, 18). This underscores the

importance for radiologists and nuclear medicine physicians to

become familiar with irAEs and recognize their imaging features,

especially as there is some overlap between these toxicities and

immunotherapy-related response patterns.

The purpose of this article was to provide a detailed review of

main immunotherapy-related toxicities and to discuss their

characteristics on imaging.
Clinical relevance of immune-related
adverse events

Immunotherapies, although generally considered to be safer than

standard chemotherapies, have a different spectrum of toxicities,

most of which are due to excessive immune reactions that can

potentially affect any organ system and tissue (13, 19–21). In

general, the onset of irAEs is less predictable than for cytotoxic

chemotherapy-related side effects which usually appear shortly after

treatment initiation. By contrast, the median time from ICI therapy

initiation and appearance of irAEs ranges from 2 to 16 weeks but can

occur any time during or after the treatment (22, 23). Nonetheless,

the risk of irAEs is 3 times higher in the first 4 weeks of treatment,

consisting mainly of dermatologic disorders (24, 25). However,

delayed irAEs manifesting ≥90 days after discontinuation of

immunotherapy may occur in 5.7% of the patients (26, 27).

In general, most frequent irAEs include dermatologic,

gastrointestinal, and endocrine toxicities (15, 27, 28). Conversely,

neurological, cardiological and pulmonary toxicities have been

described as most lethal (15, 29). The occurrence of a certain type

of irAEs is highly dependent on a particular drug. A recent meta-

analysis, which included 36 head-to-head phase II and III

randomized trials, showed that the most common drug-

dependent toxicities are hypothyroidism, nausea, and vomiting

for atezolizumab (anti-PD-L1 mAb), endocrine toxicities for

nivolumab, arthralgia, pneumonitis and hepatic toxicities for

pembrol izumab (ant i -PD1 mAb) , and dermato log ic ,

gastrointestinal and renal toxicities for ipilimumab (anti-CTLA-4

mAb) (12). In addition, the severity of these toxicities also highly

depends on the drug target, with atezolizumab (probability 76%,

pooled incidence of grade 1-5 adverse events 66.4%) having the best

safety profile, followed by nivolumab (56%, 71.8%), pembrolizumab

(55%, 75.1%), and ipilimumab (55%, 86.8%) (12). Lethal irAEs

occur in 0.37% of anti-PD1, in 0.38% of anti-PD-L1, in 1.08% of

anti-CTLA-4, and in 1.23% of patients receiving anti-CTL-4/anti-

PD1/PD-L1 combination immunotherapy (15). Risk factors for the

development of irAEs are genetics, environmental factors, previous

toxicities with immunotherapies, the patient’s own microbiome,
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and recent severe or chronic viral infections (28). Besides, a

systematic review showed that antitumor immune responses and

possible toxicity can vary among patients treated with the same ICI

depending on the oncologic diseases. Melanoma patients have a

significantly higher prevalence of gastrointestinal and skin irAEs,

whereas they are less likely to have pneumonitis compared with

patients with non-small cell lung cancer. Arthritis and myalgias

occur more frequently in melanoma patients than in renal cell

cancer, where pneumonitis and dyspnea are more common (30).

Moreover, the combination of different immunotherapies

increases the risk, frequency, and severity of side effects

significantly (21). These severe irAEs often lead to ICI treatment

discontinuation and initiation of immunosuppressive therapy, e.g.

with corticosteroids.

In order to compare treatment-related complications in a

reproducible manner, the U.S. National Cancer Institute has

classified the severity of adverse events in the Common

Terminology Criteria for Adverse Events (CTCAE) version 6.0

(Table 1) (31). CTCAE facilitates a consistent and reproducible

comparison of toxicities across clinical trials and can also be applied

in the assessment of irAEs in patients treated with immunotherapy

(31). Nevertheless, several studies have reported that the presence

and severity of irAEs in patients treated with ICI is associated with

treatment response suggesting a good prognostic value (32, 33).

Table 2 summarizes recommended imaging to be prescribed in

the presence of suspected irAEs. In this context, it should be noted

that many irAEs can be diagnosed clinically (and/or based on blood

testing) without necessarily the need to perform imaging. Moreover,

the choice of an imaging modality may vary based on all clinical

parameters and patient’s condition, and based on available imaging

equipment. Table 3 summarizes the visibility of irAEs on imaging.
Imaging of immune-related
adverse events

Abdominal toxicities

Diarrhea is one of the most common irAEs, affecting

approximately 44% (vs. 10% for grade 3-4) of patients treated
Frontiers in Immunology 03
with a combination of CTLA-4 and PD-(L)1 inhibitors, 36% (vs.

8% for grade 3-4) of patients treated with anti-CTLA-4, and 11%

(vs. 1% for grade 3-4) of patients treated with anti-PD-(L)1 (34).

This symptom is often associated with colitis, another common

irAE, as it is reported in 16% (vs. 11% for grade 3-4) (combination

of CTLA-4 and PD-(L)1 inhibitors), 8% (vs. 5% for grade 3-4) (anti-

CTLA-4), and 1% (vs. 1% for grade 3-4) (anti-PD-(L)1) of ICI-

treated patients (34). With a median time to full onset of 5 to 10

weeks, colitis can lead to various complications, including intestinal

perforation, ischemia, necrosis, hemorrhage, and toxic megacolon

(35, 36). Therefore, the typical diagnostic workup in these cases

includes contrast-enhanced CT, in which ICI-induced colitis

appears as diffuse inflammation with bowel wall thickening

(>4mm), mucosal hyperenhancement, mesenteric hyperemia,

mesenteric vessel congestion, and air-fluid levels (8, 37). In

addition, cases of segmental colitis in association with

diverticulosis and isolated rectosigmoid colitis without

diverticulosis have been described (38, 39). A recent study

including patients with various types of cancer showed CT

findings suggestive of colitis in 20 of 34 patients with symptoms

of colitis and in 5 of 19 patients even without clinical presentation of

colitis (40). 18F-FDG PET/CT may reveal increased partial or diffuse

tracer uptake in colitis or throughout the entire bowel in patients

with extensive inflammation (41, 42) (Figure 1). Moreover, it has

been reported that it might be more sensitive than CT for the early

detection of colitis in patients undergoing ICI treatment (43).

However, its lack of specificity for instance due to physiological

muscular activity or in patients treated with metformin hinders its

value in routine practice (41, 43).

In the context of ICI therapy, hepatitis, characterized by

elevation of serum alanine transaminase and/or aspartate

transaminase, is often initially clinically asymptomatic but can

potentially lead to transient life-threatening liver dysfunction (35).

It occurs in 19% (vs. 9% for grade 3-4) of patients treated with ICI-

combination therapy, in 5% (vs. 2% for grade 3-4) of patients

receiving anti-CTLA-4 and in 19% (vs. 9% for grade 3-4) of patients

receiving anti-PD-(L)1 treatment (34). Although hepatic toxicity

can occur with a delay of months to years, it typically manifests

between 1 and 15 weeks after treatment (36). Recently, in a large

population of melanoma patients treated with ipilimumab and/or

nivolumab, especially in ICI-combination treatment caused higher

rates of grade 3-4 liver toxicity with aminotransferase levels of 6.1%

(for aspartate aminotransferase) and 8.3% (for alanine

aminotransferase), and have been shown to lead frequently to ICI

treatment discontinuation (44). Evidence for hepatitis can be found

on US as a diffusely hypoechogenic liver parenchyma with

periportal thickening and hyperechogenic dots, known as “starry

sky pattern” sign (Supplementary Figure 1), as well as gallbladder

wall thickening (45). CT and MRI findings are often nonspecific

and comparable to those of other causes of acute liver dysfunction,

ranging from the absence of detectable abnormalities to

hepatomegaly, heterogeneous parenchymal enhancement with

areas of low attenuation, periportal/gallbladder edema (diffuse

parenchymal hypoattenuation on CT or T2-weighted

hyperintensity on MRI), and perihepatic ascites (36, 37, 42, 45).

Interestingly, while other causes of diffuse liver disease might not be
TABLE 1 Common Terminology Criteria for Adverse Events (CTCAE)
version 6.0 to classify immune irAEs (31).

Grade Severity and clinical description

1 Mild: asymptomatic or mild symptoms; clinical or diagnostic
observations only; intervention not indicated.

2 Moderate: minimal, local or noninvasive intervention indicated;
limiting age-appropriate instrumental ADL.

3 Severe or medically significant but not immediately life-threatening:
hospitalization or prolongation of hospitalization indicated; disabling;
limiting self-care ADL.

4 Life-threatening consequences: urgent intervention indicated.

5 Death related to the adverse event.
ADL, activity of daily living.
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visualized on PET/CT, increased liver 18F-FDG avidity in the setting

of ICI-induced hepatitis is often reported (46). However, its

visualization using 18F-FDG PET/CT might be limited by

physiological uptake or a reversal in liver-to-spleen ratio due to

higher spleen uptake resulting from ICI-induced T-cell activation

especially at an early stage (47). Some authors have suggested the

use of a liver-to-blood pool standard uptake value (SUV) mean ratio

to detect pathologic hepatic uptake and thus possible hepatitis

compared to SUVmean alone because various parameters can

influence SUV measurements (48, 49).

Cholecystitis and cholangitis are forms of hepatobiliary toxicity

that are rarely associated with ICI therapy, and because of the small

reported number of cases, it is difficult to estimate the actual

incidence and causal relationship, if any, with immunotherapy (35,

50, 51). Despite its low incidence characteristic imaging features on

US and CT for cholecystitis such as gallbladder distension and wall

thickening, as well as inflammation of the pericholecystic tissue with

increased 18F-FDG uptake on PET/CT, have been suggested (52). On

MRI and MR cholangiopancreatography (MRCP), as the imaging

modalities of choice in clinical practice, cholangitis is characterized by

localized dilatation and diffuse non-obstructive hypertrophy and

hyperenhancement of the extrahepatic bile duct wall with portions

of biliary dilatation and narrowing (Figure 2) (51, 52).

The diagnosis of pancreatitis requires the presence of at least

two of the following three features: abdominal pain suggestive of
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pancreatitis, elevated amylase or lipase to more than three times of

the upper normal limit, and characteristic imaging features (53)

because ICI-related acute pancreatitis is relatively rare and patients

with elevated amylase and lipase are often initially asymptomatic,

only few cases have been reported (54). Radiologic findings on CT

and MRI are similar to pancreatitis from other origin and include in

the acute phase focal or diffuse pancreatic enlargement with

decreased enhancement and peripancreatic fat stranding

associated with edema and fluid collections without a focal lesion

suspicious for metastasis (37, 42, 55). On 18F-FDG-PET/CT diffuse

tracer uptake might be seen (56). After resolution of the clinical

presentation, imaging might be characterized by parenchymal

atrophy and loss of normal lobulations (55).

Acute kidney injury (AKI) is the most common renal toxicity in

patients receiving ICI therapy (57). However, it is generally not a

direct consequence of ICI’s toxicity, as it can be caused by various

etiologies. Therefore, it is important to distinguish between AKI as

an irAE and AKI induced by e.g. hypovolemia or acute tubular

necrosis (57). Notwithstanding, the incidence of AKI after ICI

treatment is reported to be 2.2% overall and 0.6% in severe cases

requiring renal transplantation (58). AKI occurs more frequently in

patients treated with ICI-combination therapy (4.9%) than with

anti-CTLA-4 (2%) or anti-PD-(L)1 (1.4%-1.9%) monotherapy (58).

The interval between ICI treatment initiation to AKI ranges from 21

to 245 days, and from 7 to 63 days between the last ICI treatment
TABLE 2 Recommended imaging to be prescribed in the presence of suspected immune-related adverse events (irAEs).

irAEs US CT MRI 18F-FDG PET/CT

Enteritis – √ (√) –

Colitis – √ (√) –

Hepatitis √ (√) (√) –

Cholecystitis and cholangitis √ (√) √ –

Pancreatitis √ √ (√) –

Acute kidney injury √ – (√) –

Pneumonitis – √ – –

Sarcoid-like reactions – √ – (√)

Myocarditis √ – √ (√ *)

Pericarditis √ – √ –

Myositis – – √ (√ *)

Encephalitis – – √ (√)

Aseptic meningitis – – √ –

Central nervous system vasculitis – (√) √ (√)

Hypophysitis – – √ √

Thyroid dysfunction √ – – –

Primary adrenal insufficiency
or adrenalitis

– (√) (√) –
US, ultrasound; CT, computed tomography; MRI, magnet resonance imaging; 18F-FDG PET/CT, 2-deo-y-2-[18F]fluoro-D-glucose positron emission tomography.
√, 1st choice modality; (√), optional imaging; -, usually not prescribed or not applicable; * 68Ga-DOTATOC PET/CT as additional option.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133207
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Berz et al. 10.3389/fimmu.2023.1133207
dose and onset of AKI (58) A ccase of ipilimumab-induced

immune-related kidney failure was reported with bilateral renal

enlargement visualized on CT and rapid resolution after steroid

therapy (59). In addition, PET/CT shows increased 18F-FDG uptake

in the renal cortex (60, 61). Moreover, diffuse or even segmental

uptake in the renal parenchyma can be seen on 18F-FDG PET/CT

especially in delayed imaging. However, the very high pelvicalyceal

activity and low spatial resolution in older generation PET/CT

scanners are clear limiting factors for accurate assessment of the

kidneys in patients undergoing ICI treatments (42). Therefore, for

patients with clinical suspicion of AKI and contraindication for

biopsies, 18F-FDG PET/CT might provide some diagnostic clues

(60). However, the specific imaging characteristics have not been

defined yet and distinguishing between immune-related and non-

immune-related AKI remains challenging.
Thoracic toxicities

Pneumonitis is a relatively common irAE that manifests with

clinical symptoms ranging from mild dyspnea to potential lethal

respiratory failure and is associated with lower patient survival (62).

Pneumonitis occurs in approximately 1% of patients receiving anti-

CTLA-4 therapy and in 4% of patients receiving anti-PD-(L)1

treatment, with around 1% of the cases being severe (34). In patients
Frontiers in Immunology 05
receiving ICI-combination treatment (nivolumab + ipilimumab or

peptide vaccines), the incidence is significantly higher at 6.6% and

1.5% for severe cases, respectively (63). The median time to onset of

clinical symptoms is 4.6 months in patients receiving ICI-monotherapy

versus 2.7 months in patients receiving ICI-combination therapy (64,

65). Radiologic findings of ICI-related pneumonitis range from mild

interstitial abnormalities to acute interstitial pneumonia and acute

respiratory distress syndrome (66). The best imaging modality in this

setting is CT. Based on the CT findings, irAE-related pneumonitides

can be divided into five distinct phenotypes (37, 65):
1. cryptogenic organizing pneumonia-like pneumonitis with

patchy or confluent consolidation with or without air

bronchograms and predominantly peripheral or

subpleural distribution (Figure 3),

2. ground glass opacities with variable expression and

location,

3. increased interstitial markings, interlobular septal

thickening with peribronchovascular infiltration,

4. hypersensitivity with centrilobular nodules, bronchiolitis-

like appearance, and tree-in-bud micronodularity, and

5. lesions which cannot be further classified.
Ground glass opacities (55%) and consolidations (32%) non-

segmentally distributed in the dominant lung or bilaterally opposite
TABLE 3 Visibility of immune-related adverse events (irAEs) on imaging.

Visibility of irAEs on imaging

irAEs Best imaging for visualization US CT MRI 18F-FDG PET/CT

Enteritis CT – √ (√) (√)

Colitis CT – √ (√) (√) *

Hepatitis US (√) (√) (√) (√) *

Cholecystitis and cholangitis US √ (√) √ (√)

Pancreatitis CT (√) √ √ √

Acute kidney injury US (√) (√) (√) (√) *

Pneumonitis CT – √ – √

Sarcoid-like reactions PET/CT – √ (√) √

Myocarditis MRI - PET/CT (√) (√) √ √ **

Pericarditis MRI (√) (√) √ √

Myositis MRI (√) (√) √ √ **

Encephalitis MRI – – √ √ *

Aseptic meningitis MRI – – √ –

Central nervous system vasculitis MRI – (√) √ (√)

Hypophysitis MRI – (√) √ √

Thyroid dysfunction US √ √ √ √

Primary adrenal insufficiency or adrenalitis MRI – √ √ √
US, ultrasound; CT, computed tomography; MRI, magnet resonance imaging; 18F-FDG PET/CT, 2-deo-y-2-[18F]fluoro-D-glucose positron emission tomography.
√, good visibility; (√), moderate visibility; -, poor visibility or not applicable; * Decreased visibility due to physiological 18F-FDG uptake; ** 68Ga-DOTATOC PET/CT as an additional option.
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FIGURE 2

Immune-related hepatitis and cholangitis in a 73-year-old female with metastatic melanoma of the tibia on nivolumab (anti-PD-1) and ipilimumab
(anti-CTLA-4) who developed grade 3 hepatitis. (A) Contrast-enhanced MRI in coronal view show hyperhemic and slightly thickened bile duct walls
(arrow) and (B) MR cholangiopancreatography demonstrate bile ducts irregularities (arrows) compatible with immune-mediated cholangitis.
FIGURE 1

Partial pathological uptake of the right colon suspecting early signs of colitis in a 48-year-old woman with stage IV melanoma treated with two
cycles of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1). Treatment was discontinued due to grade II colitis diagnosed 3 weeks after the first
18F-FDG PET/CT scan [arrows; coronal PET (A), CT (B) and merged PET/CT (C) images], which required high-dose steroid treatment for 3 months. A
decreased right colon uptake was observed on follow-up 18F-FDG PET/CT examination performed 4 weeks after the introduction of steroid
treatment [arrows; coronal PET (D), CT (E) and fused PET/CT images (F)].
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the tumor have been shown the most frequently in ICI-treated non-

small cell lung cancer patients according to a systematic review by

Zhang et al. (67).

A case of progressive pleural effusion as rare irAE has been

reported for instance in a non-small cell lung cancer patient treated

with cisplatin, pemetrexed, and pembrolizumab (68) and as late

toxicity in a primary lung adenocarcinoma patient following 94

cycles of nivolumab (69). Importantly, CT scans are also of interest

for ruling out differential diagnoses such as pulmonary embolism.

On PET/CT an interstitial pneumonia type pattern

characterized by non-specific moderate to intense 18F-FDG

uptake might be seen (70). However, one major diagnostic

challenge is to distinguish infectious diseases from tumor lesions,

e.g., nodular aspects that mimic tumor recurrence, whereas an

underlying disease, such as chronic obstructive pulmonary

disease, may further complicate the final diagnosis (71).

In terms of clinical management, corticosteroids are recommended

as primary therapy approach based on severeness of the case and

clinical expertise (67). In addition, for patients with grade 3-4 ICI-

induced pneumonitis, ICI-treatment should be discontinued

immediately and permanently. Clinical improvement, especially in

low-grade disease is usually observed within 48-72 hours of

corticosteroid use. Patients with grade 2 pneumonitis, who resolved

symptoms show the highest overall survival (86%) compared with

grade 3 or 4 pneumonitis (36% or 43%, respectively) (67).

Immunotherapy-related sarcoid-like reactions are often

asymptomatic and appear in 5–7% of patients (37, 72). They might be

related to the involvement of primary and secondary systemic lymphoid

organs in the systemic antitumor response required for effective ICI

treatment (37, 72, 73). In general, the formation of sarcoid-like

granulomas occurs most frequently in lymph nodes (71%), lungs

(60%), and skin (55%) and can be easily confused with disease

progression or tumor recurrence (7, 74). The median time between

initiation of ICI treatment and the development of sarcoid-like reactions

is 14 weeks (37, 75). During the course of ICI therapy, metabolic changes

in lymphoid organs could be monitored using 18F-FDG-PET/CT.

Indeed, an increase in immune cells populations and their higher

growth rate leads to higher energetic requirements often translating in

high avidity for 18F-FDG (76, 77). Imaging findings include a new

bilateral symmetric mediastinal and hilar lymphadenopathy resembling
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sarcoidosis in up to 10% of the patients (78), often high 18F-FDG avidity

on PET/CT, and an association with (subpleural) perilymphatic

distribution of micronodules without suspicion of intercurrent

infection or new metastasis (Figure 4) (37, 79). It is critical to

recognize these sarcoid-like irAEs as a classic response pattern to

immunotherapy (initial increase of the tumor burden unconfirmed at

the next imaging follow-up) in order to distinguish it from true

progression or pseudoprogression (80). In cases where the diagnosis

on imaging is unclear, an assessment of angiotensin converting enzyme

serum levels can be performed, as elevated levels have been associated

with ICI-induced sarcoidosis-like reactions (75). If true tumor

progression is still suspected after this, a targeted biopsy should be

strongly considered for definitive diagnosis (75).

Cardiac toxicities associated with ICI treatment are relatively rare.

Myocarditis, as the most common one, occurs in 0.1% to 1% of

patients with symptoms such as dyspnea (49%), weakness (25%),

chest pain (17%), syncope (9%), fever (6%), and cough (4%) (20, 21,

81). In most of these cases, the onset is shortly after initiation of the

ICI therapy, and because of the high mortality rate of 50%, it is of the

utmost importance to make the diagnosis and start the appropriate

treatment as early as possible (20, 21, 82). Besides clinical features,

laboratory markers and electrocardiogram changes, non-invasive

imaging modalities, especially cardiac MRI (CMRI) has become

more and more important in the diagnostic workup, to reduce the

necessity of invasive biopsies as the current diagnostic gold standard

(83, 84). In clinical practice, transthoracic echocardiography (TTE) is

the first imaging modality that should be performed if acute

myocarditis is suspected. Suggestive TTE findings include

abnormalities of the segmental wall motion, increased thickness of

the left ventricular wall, global hypokinesia (fulminant myocarditis),

and pericardial effusion (84). However, a recent review of 88 ICI-

induced myocarditis cases showed normal morphological TEE

findings in 23% and normal left ventricular ejection fraction in

32.5% (81). Regarding CMRI, at least one criterion on T2-based

(regional or global increase in myocardial relaxation time or

increased signal intensity) with at least one criterion on T1-

weighted imaging (increase in myocardial T1, extracellular volume,

late gadolinium enhancement) should be analyzed for sufficient

diagnostic accuracy according to the recently updated Lake Louise

criteria (85). In 48% of cases late gadolinium enhancement (LGE)
FIGURE 3

Immune-related pneumonitis in a 79-year-old male with stage IV non-small cell lung cancer in the left lower lobe. After second line treatment with
nivolumab (anti-PD-1) (5 cycles), the patient developed progressive dyspnea and dry cough. Axial (A) and coronal (B) CT images demonstrate multifocal
alveolar consolidations in a predominantly peribronchovascular and subpleural location compatible with a drug-induced pneumonitis.
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predominantly distributed in the anteroseptal, inferoseptal, inferior,

and inferolateral segments (atypical localizations possible), and in

28% of the cases myocardial oedema in T2-weighted short-tau

inversion recovery (STIR) is described (83, 86). However, these

characteristics are limited due to their low specificity. In a study of

an international registry of patients with ICI-associated myocarditis

(n=103), only 48% of patients with ICI-induced myocarditis had LGE

when compared to 90% of patients with other causes of myocarditis

(83). Herby it is important to note that CMRI assessment >4 days

after admission showed significantly more positive LGE findings than

if CMRI was performed earlier (72.0% vs 21.6%, p<0.001) (83).

Moreover, LGE was not associated with clinical symptoms, patient

outcomes, ECG or echocardiographic findings. Finally, nuclear

medicine findings might provide important clues for the diagnostic

of immune-related acute myocarditis (Figure 5). Interestingly, 18F-

FDG-PET/CT has a very limited role in this setting as demonstrated

in a recent study of 61 patients with suspicion of ICI-related

myocarditis where its sensitivity was below 30% (87). However,

other PET tracers have been proven useful in this context, such as
68Ga-DOTATOC which showed high sensitivity for the early

detection of pathological myocardial uptake in a small population

of patients (n=9) with clinical suspicion of ICI-related myocarditis

(88). A pathological diffuse tracer uptake in the myocardium was the

most frequent pattern detected. Interestingly, 68Ga-DOTATOC PET/

CT showed a good correlation with elevated serum cardiac troponin I

and immune correlates such as inflammatory cytokines (IL-6) and
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chemokines (CXCL9, CXCL10 and CXCL13) by contrast evocative

lesions for myocarditis were only seen in 3 out of the 8 patients that

had a CMRI (88).

Pericarditis is reported to be the second most common immune-

related cardiotoxicity, although data is lacking regarding its exact

incidence (82). The median onset of pericardial disease is estimated

to be 30 days (82). Symptoms include shortness of breath, pericardial

pain without pericardial effusion or jugular vein congestion, and

cardiogenic shock with cardiac tamponade due to pericardial

effusion, resulting in a high mortality rate of 21% (82, 89). Moreover,

pericardial toxicity can occur alone or in combination with ICI-

associated myocarditis (myopericarditis) (89). The diagnostic work-

up includes detailed physical examination, electrocardiogram,

echocardiogram, CMRI and cardiac PET/CT (89, 90). On CMRI,

ICI-related pericardial disease demonstrates focal myocardial LGE in

the mid-lateral wall and mild LGE of the pericardium along the lateral

wall in cases suggestive of myopericarditis (90).
Neuromuscular toxicity

Regarding peripheral neuromuscular toxicities, myositis is the

most common syndrome. While being the most prevalent in anti-

PD(L)-1 therapy, it occurs in approximately 0.4-3% of ICI-treated

patients (Figure 6) (91–93). The median time of ICI-administration

to myositis symptom development ranges from 5 to 87 days (94).
FIGURE 4

Sarcoidosis-like reaction in a 69-year-old female with stage IIIa lung adenocarcinoma in the right upper lobe treated by neoadjuvant cisplatin-
docetaxel followed by durvalumab (anti-PD-L1) with subsequent right upper lobe lobectomy and lymphadenectomy. The patient received adjuvant
durvalumab 1 month post-surgery. Baseline CT following surgery is shown in (A). Follow-up CT at 5 months showed the development of bilateral
hilar and mediastinal lymphadenopathies [arrows, (B)] and an increasing nodule in the left upper lobe (arrow) (C). 18F-FDG PET-CT confirmed high
uptake of mediastinal and hilar lymph nodes [PET (D) and fused PET/CT (E) images] and the upper left lobe nodule [fused PET/CT images (F)]. A
wedge resection confirmed the sarcoidosis-like nature of the nodule.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133207
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Berz et al. 10.3389/fimmu.2023.1133207
Interestingly, the clinical manifestation from immunotherapy-

related myositis differs markedly from that of idiopathic and

paraneoplastic inflammatory myopathies such as dermatomyositis

and polymyositis. Progressive symptom development, as well as

oculomotor and axial muscle involvement are uncommon, but have

been reported. Bulbar symptoms, such as dyspnea, dysarthria, and

dysphonia have been described (95, 96). However, sudden onset of

stable myalgia with or without elevated creatine kinase is the most

common symptom of immune-related myositis (96). The

differential diagnosis to myastenia gravis is sometimes

challenging, since on one side, myastenia gravis is often

associated with optical myositis and on the other side,

acetylcholine receptor binding antibodies can occasionally be

detected in optical myositis in the absence of myasthenia gravis

(97, 98). On brain MRI, immunotherapy-related myositis is

characterized by fat-suppressed T1/T2-weighted intramuscular

hyperintensity with or without gadolinium enhancement (96, 99).

The ocular phenotype presents contrast-enhanced orbital edema as

well as abnormal enhancement and enlargement of the extraocular

muscles (Figure 7). Moreover, PET/CT with increased muscular
18F-FDG uptake can support the diagnosis and help to estimate the

severity by assessing how many muscle groups are affected (96, 99).

Pathological muscle uptake suggestive of myositis could also be

detected using 68Ga-DOTATOC PET/CT as shown in 5 out of the 6

patients that presented with myositis concomitant to an ICI-related
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myocarditis (88). In addition, rheumatological disorders are also

frequent irAEs during the course of ICI treatment and 18F-FDG-

PET/CT could be useful for the detecting and assessing the severity

of the inflammation associated with those events in particular for

arthritis affecting several articulations but also tenosynovitis or

polymyalgia rheumatica (41).
Central neurologic toxicity

In contrast to peripheral nervous toxicities, irAE of the central

nervous system such as encephalitis, aseptic meningitis, vasculitis,

cranial neuropathies, and myelitis are uncommon (100).

Although in recent years an increasing number of immune-

related encephalitis have been described and may occur with each

treatment cycle, it remains a rare immune-related toxicity with an

incidence of 0.1–0.2% (94, 100). These cases present a wide range of

potential life-threatening symptoms, including confusion, agitation,

fever, headache, fatigue, short-term memory impairment, neck

stiffness, behavioral changes, and psychiatric symptoms (101,

102). The diagnostic workup usually includes brain MRI, lumbar

puncture, paraneoplastic autoantibodies, electroencephalography,

and laboratories, notably to rule out infectious agents related

diseases. MRI, particularly T2-weighted and/or fluid-attenuated

inversion recovery (FLAIR), reveals encephalitis features such as
FIGURE 5

Immune-related myocarditis in a 61-year-old male with mucinous lung adenocarcinoma in right lower lobe [cT4 (>7cm) cN0 cM0] initially treated
with carboplatin, vinorelbine and radiation therapy followed by consolidation treatment with durvalumab (anti-PD-L1). Baseline (before ICI) fused
axial 18FDG PET/CT image (A) and corresponding axial CT image (B). After 2 cycles of durvalumab, the patient experienced severe dyspnea, atrial
fibrillation leading to cardiogenic shock with clinical suspicion of ICI-related myocarditis. 68Ga-DOTATOC-PET/CT showed necrotic areas in the
lung cancer [asterisk, (C)] with presence of peripheral inflammatory/infectious uptake [arrowhead, (C)] and newly appeared subpleural alveolar
consolidations in the left lower lobe compatible with an organizing pneumonia [arrow, (C, D)]. 68Ga-DOTATOC-PET/CT showed diffuse myocardial
uptake in the left ventricle (LV) [(E, F)], with an increased uptake ratio of 2.6 (SUVpeak LVmyocardium/SUVmean LVcavity) suggestive of myocarditis
[arrow, fused axial PET/CT image (F)].
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ill-defined uni- or bilateral hyperintense signals in the limbic cortex,

the cerebellum, basal ganglia or scattered in the gray or white

matter, with or without enhancement corresponding to zones of

inflammatory infiltrates and epileptogenic activity (93, 103, 104),

some being associated with auto-antibodies (105). Multifocal

lesions involving the white matter, optical nerve, and spinal cord,

which mimic demyelinating diseases, have also been described (106,

107). The physiological high 18F-FDG uptake of the brain limits

somehow the irAEs assessment using 18F-FDG-PET/CT (41).

However, there is evidence of the utility of 18F-FDG-PET/CT,

showing increased or decreased metabolic activity, to detect ICI-

induced encephalitis earlier than standard diagnostic approaches

(108). A recent study in patients with autoimmune encephalitis,

which shares many similarities with ICI-related encephalitis,

described 6 cases with metabolic abnormalities on 18F-FDG-PET/

CT with normal MRI (n=2), lumbar puncture (n=3), and

electroencephalography (n=2) findings (109). Finally, cases of

posterior reversible encephalopathy syndrome have been

occasionally reported following ICI administration alone or in

combination with chemotherapy (110–112).

Aseptic meningitis is present in <0.1% of ICI-treated patients

overall (93). This condition is more commonly associated with anti-

CTLA-4 and ICI-combination treatments (93, 100). Moreover, the

time to clinical disease onset is short, with a delay of 9 days from the

first dose of immunotherapy (100). Aseptic meningitis is characterized

by the subacute onset of nonspecific symptoms such as headache, neck

stiffness, photophobia, low-grade fever, and nausea, and must be

distinguished from infectious or carcinomatous causes of meningitis

(93). In 42% of the patients, brain MRI shows diffuse leptomeningeal

enhancement with or without parenchymal abnormalities as a

nonspecific sign of inflammation and is consistent with the presence

of lymphocytic or neutrophil pleocytosis, while overlapping with

findings of immune-induced meningoencephalitis (113, 114)

(Figure 8). However, 46% of brain MRI findings are normal in ICI-

induced aseptic meningitis (113). However, this even underlines the

importance of imaging to rule out differential diagnosis such as

(ischemic) stroke, infection, and brain metastasis.
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In recent years, there is increasing evidence for ICI-associated

central nervous system vasculitis. However, the exact frequency

(currently estimated to be <0.01%), timing and association with a

specific type of immunotherapy is still unclear (93). Commonly

reported types of vasculitis are large vessel vasculitis (giant cell

arteritis and isolated aortitis) and vasculitis of the nervous system

(primary angiitis of the central nervous system, PANCS, and

isolated vasculitis of the peripheral nervous system) (93, 115).

With a median time of 3 months from the initiation of ICI

treatment to their development, symptoms are often unspecific

and include headaches (60%), altered cognitive status (50%), and

focal neurologic deficits. Most commonly, they are mild, and no

fatalities related to vasculitis have been observed (93, 115).

Although considered to be the gold standard for diagnosis, biopsy

of the brain and/or spinal cord showing segmental inflammatory

infiltration leading to blood vessel walls thickening and stenosis,

resulting in decreased blood flow or even secondary to hemorrhagic

vessel rupture, has only a sensitivity of 53% (116). However, this

sensitivity can be increased to more than 80% by identifying focal

lesions previously on neurologic imaging techniques (117). Brain

MRI is altered in more than 90% of patients with PANCS, showing

(nonspecific) signs of microangiopathy, hemorrhage, or ischemic

infarction, as well as multifocal bilateral T2- weighted, FLAIR and

diffusion-weighted sequence abnormalities in the cortical-

subcortical area (118). However, the occasional presence of solid

lesions and gadolinium enhancement of leptomeninges complicate

the distinction to tumors and abscesses and requires additional

imaging modalities such as CT angiography, high-resolution

contrast-enhanced MRI, or 18F-FDG-PET/CT to detect vascular

inflammatory activity (119).
Endocrine toxicities

Endocrinopathies are observed in up to 10% of patients treated

with anti-CTLA-4 and in 4-14% of patients treated with anti-PD-1

therapy (120, 121).
FIGURE 6

Immune-related myositis in a 61-year-old male patient with small cell neuroendocrine carcinoma of the right lung hilum (cT4 cN2 cM0, stage IIIB)
initially treated with chemo-radiation therapy who developed diffuse metastatic disease. A treatment with ipilimumab (anti-CTLA-4) and nivolumab
(anti-PD-1) was administered. At 1-month post-immunotherapy, a 68Ga-DOTATOC-PET/CT showed diffuse myositis of paraspinal muscles coronal
PET, CT and fused PET/CT images (A–C) respectively showing spinalis, longissimus thoracis and iliocostalis thoracis muscles.
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Hypophysitis occurs in 4.5% (0.8% severe cases) of the patients

treated with anti-CTLA-4, whereas it is reported in less than 1%

(0.1%) of patients with anti-PD-(L)1 treatment (122). The clinical

features of pituitary dysfunction can be nonspecific and include

fatigue, headache, or weakness with additional symptoms related to

hypopituitarism (122, 123). The median time to symptom onset

ranges between 11 weeks (ipilimumab), 17 weeks (combination of

impilimumab and nivolumab), 22 weeks (nivolumab), and 26 weeks

(pembrolizumab) (124). Since pituitary inflammation can be caused

by ICI therapy as well as by pituitary metastasis and adenomas, MRI

and 18F-FDG-PET/CT are playing a crucial role in distinguishing

these diseases as they often show imaging findings of immune-

related hypophysitis before the appearance of symptoms (18, 42,

45). Contrast-enhanced MRI of immune-related hypophysitis

shows enhancement of the posterior portion of the pituitary

gland in 89% of the patients, whereas the enhancement is

homogeneous in 63.3% (vs. heterogeneous enhancement, 36.7%)

(16, 125) (Figure 9). This pattern is important for distinguishing
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this toxicity from pituitary metastasis, as differential diagnosis,

which show heterogeneous enhancement in the vast majority of

cases (82.6%) (16). Moreover, thickening of the pituitary stalk has

been identified in 29/49 (59.2%) cases of hypophysitis and only in

16/58 (27.6%) cases with pituitary metastasis (16). On PET/CT,

immune-related hypophysitis shows 18F-FDG-avid pituitary gland

often enlarged but without mass effect on the optic chiasm and with

thickening of the infundibulum (125, 126). A recent study in 162

advanced melanoma patients who received ipilimumab/nivolumab

combination therapy showed that 18F-FDG-PET/CT was able to

predict the appearance of hypophysitis with high positive (86%) and

negative (87%) predictive values (127).

ICI-induced thyroid dysfunction is often clinically

asymptomatic and transient, and identified by blood tests as mild

hypo- or hyperthyroidism associated with elevated anti-thyroid

peroxidase and/or anti-thyroglobulin antibodies (128). In terms of

frequency, hypothyroidism is more common, affecting 15% of

patients receiving ICI-combination therapy, 3% of patients
FIGURE 7

Immune-related orbital myositis in a 43-year-old female with cutaneous melanoma treated with ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-
1). After 3 cycles of ipilimumab and nivolumab, the patient reported diplopia. (A) On T2-weighted and (B) contrast-enhanced images, orbital edema,
abnormal enhancement and thickening of the right medial occulomotor muscle can be seen, consistent with orbital myositis (arrows). (C, D) MRI at
1 month from treatment discontinuation with disappearance of signs of inflammation.
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receiving anti-CTLA-4, and 8% of patients receiving anti-PD-(L)1

therapy (34). Hyperthyroidism is observed in only 4% of patients

treated with anti-CTLA-4 and 5% of patients treated with anti-PD-

(L)1 molecules (34). In few cases, ICI therapy did lead to Graves’

disease (129). Immune-related thyroiditis, which usually occurs

within 5 to 10 weeks following treatment, is mostly mild and

CTCAE grade ≥3 is rarely observed (34, 130). US is the imaging

modality of choice and new enlargement of the thyroid gland with

heterogeneous hypoechoic parenchyma, (pseudo)nodular pattern,

and increased vascularity on color Doppler is commonly observed

(37, 42). CT findings are unspecific as they present a new

enlargement of the thyroid gland associated with a heterogeneous

parenchymal enhancement (37, 42). Still, thyroiditis remains

frequently an incidental finding on 18F-FDG-PET/CT with a

diffuse increased uptake of the thyroid gland (Figure 10) (37, 42).

Compared with the more common secondary adrenal

insufficiency caused by pituitary dysfunction, primary adrenal

insufficiency, in which the adrenal glands are directly damaged

due to ICI therapy, has been rarely described (131). Adrenal

insufficiency is estimated to occur in 5% of patients treated with
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ICI-combination therapy and in 1% of patients treated with anti-

CTLA-4 or anti-PD-(L)1 mAbs, whereas CTCAE grade ≥3 is rarely

reported (34, 132). Disease onset after initiation of ICI treatment is

in between 9 weeks (ipilimumab), 3.3 month (pembrolizumab) and

5 months (nivolumab) (121, 133). Symptoms are characterized by

electrolyte abnormalities, dehydration and altered mental status.

Life-threatening adrenal crisis with vasodilatator shock and

hypotension, requiring permanent steroid replacement therapy,

was reported following nivolumab therapy (134). Therefore, rapid

diagnosis and close monitoring are required. On CT and MRI,

adrenal glands show bilateral, symmetrical, and smooth

enlargement, while uniform mild hypermetabolism is seen on
18F-FDG PET/CT (42, 135).
Current challenges and future
directions

The increasing use of immunotherapies in clinical practice has

led to the challenge of individually managing their treatment-
FIGURE 8

Immune-related aseptic meningitis in a 78-year-old female with NSCLC treated with ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1). (A) Normal brain
MRI (axial, coronal and sagittal plans) performed 6 months prior to immunotherapy. After 3 cycles of ipilimumab and nivolumab, the patient developed
headaches. (B) MRI performed 2 months after the beginning of immunotherapy showed smooth diffuse dura mater thickening (arrows) compatible with
aseptical meningitis. Patient’s symptoms and signs of inflammation on MRI disappeared upon immunotherapy discontinuation.
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related toxicities. It is particularly important to distinguish patients

who benefit from therapy from those who are at risk of experiencing

drug-related toxicities. Imaging plays a central role in the detection

and characterization of these irAEs as well as in the differentiation

of immunotherapy-associated response patterns such as

pseudoprogression . In severe cases, appropriate treatment of

these ICI-induced toxicities must be initiated as early as possible,

and it may even be necessary to discontinue ICI treatment.

However, it is important to note that many ICI-induced toxicities

are mild and manageable. Since the increased use of imaging may

lead to important financial costs and resources associated with e.g.

monitoring of these irAEs with imaging, it is crucial to define

parameters, to distinguish patients who benefit from imaging

follow-up from patients for whom blood-based monitoring or

simply clinical monitoring is sufficient. Moreover, the role of

imaging still needs to be defined in other ICI-related phenomena,

such as the presumably rare and previously poorly described but

possibly fatal cytokine release syndrome which occurs usually

within 4 weeks of ICI-treatment initiation (136, 137).

Interestingly, the occurrence of (low-grade) irAEs has been

correlated with treatment efficacy and improved clinical outcomes

as measured by overall response rate, progression-free survival and

overall survival (6, 17). Furthermore early-onset immune-related

hepatitis as irAEs was used to detect pseudoprogression and to

distinguish this response pattern from true progression in a case of

metastatic ovarian cancer treated with nivolumab (138).

A current research topic is the use of radiomics and deep

learning techniques to evaluate and even predict cancer therapy

success. Radiomics has already been proven to predict toxicity in

the assessment of chemotherapy (139). Liver toxicity could be

identified using liver texture analysis on the first follow-up CT

before any increase in liver function tests could be detected in a

proof-of-concept study of colorectal cancer patients treated with 5-
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fluorouracil (139). It is conceivable that similar approaches can be

used to identify patients who benefit most from immunotherapies,

as opposed to patients at higher risk for developing irAEs (140,

141). Preliminary studies in non-small cell lung cancer patients

showed promising results. Radiomics could potentially predict the

development of ICI-induced pneumonitis based on baseline CT

characteristics with 100% accuracy (p = 0.0033) and a strong

predictive power (area under the curve 1.0, p = 0.0033) (142).

Despite the limited size of the training sample (2 patients who

developed pneumonitis and 30 patients who did not), these results

may help to stratify patients at risk for developing pulmonary

toxicities and therefore allowing for pre-treatment modifications

and changes of the therapy. Moreover, radiomic signatures on

baseline CT have been shown to be more sensitive than clinical

findings in identifying patients at risk for developing ICI-induced

pneumonitis (143). Furthermore, radiomic features extracted from
18F-FDG PET/CT might provide important clues for the prediction

of irAEs. A retrospective study of 146 patients with advanced non-

small cell lung cancer was used to develop a multi-factorial radiomic

model based on a radiomic score, generated using features extracted

from PET, CT and PET/CT fusion images of baseline 18F-FDG-

PET/CT (117). The combination of high radiomics score values

with the type and dose of immunotherapy have been shown to be

associated with the development of severe irAE (144). These

findings underscore the value of a comprehensive baseline

imaging analysis in patients treated with ICIs, as it could help

predicting and preventing even life-threatening irAEs that may not

be detected during baseline clinical or biological assessments.

Recently, several studies have demonstrated an association

between irAEs detected on 18F-FDG PET/CT and favorable

clinical outcomes, suggesting the value of 18F-FDG PET/CT in

predicting responses to immunotherapy (32, 78, 145, 146). In 10%

of patients with unresectable metastatic melanoma treated with
FIGURE 9

Immune-related hypophysitis in a 43-year-old female with cutaneous melanoma treated with ipilimumab and nivolumab. (A) Normal hypophyseal
MRI performed 4 months prior to immunotherapy. After 3 cycles of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1), the patient developed
headaches. (B) MRI revealed increased hypophyseal height with mild pituitary stalk thickening and reduced opto-chiasmatic cistern size compatible
with hypophysitis (arrow). Ipilimumab was discontinued and 2 more cycles of nivolumab alone were administered. Eventually, nivolumab was
discontinued due to a grade 3 toxidermia. (C) Hypophyseal MRI performed 3 months after the last immunotherapy cycle was normal with
disappearance of signs of inflammation.
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ipilimumab who underwent interim or late 18F-FDG-PET/CT

sarcoid-like mediastinal-hilar lymphadenopathy was reported and

all these patients showed disease control (78). This pattern was not

seen in patients with progressive disease, suggesting an association

of sarcoid-like reactions with clinical benefits of anti-CTLA-4

therapy. Similarly, a small study of 16 patients with BRAF-

mutated metastatic melanoma treated with vemurafenib/

ipilimumab combination therapy who underwent 18F-FDG-PET/

CT detected 7 patients developing at least one irAE (most

frequently colitis and arthritis) (146). All these patients had a

significantly longer progression-free survival than those without

irAEs (p = 0.036) (146). Similary, in ICI-treated patients with either

renal cell carcinoma, malignant melanoma, or lymphoma who

underwent early time-point 18F-FDG-PET/CT, an association was

found between thyroiditis and improvement of clinical symptoms at

the 12-month follow-up (32). This finding was confirmed in

another study which examined 91 patients treated with anti-PD-

L1 therapy, suggesting that immune-related thyroiditis could be a

potential predictor of response to ICI treatment (147). Overall,

although imaging such as 18F-FDG PET/CT can contribute to the

(early) detection of irAEs and irAE detected on this imaging

modality might contribute to predict patient’s prognosis, these

findings must always be considered in the context of patient’s

symptoms (if any), comorbidities, and other findings (e.g.,

laboratory values) in order to decide whether or not ICI

treatment should be continued.

The recent development of immune-PET tracers may improve

ICI response monitoring and diagnosis of irAEs by increasing the

specificity of pathological uptake seen on molecular imaging
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compared with 18F-FDG-PET/CT which, although widely used, has

poor cell specificity (76, 148). This could be particularly useful when

findings on 18F-FDG-PET/CT are inconclusive and cannot

distinguish between irAEs and true or pseudo-progression. In this

setting, 89Zr and 64Cu-Keytruda could be useful as anti-PD-1 human

antibody immuo-PET tracers as they represent a specific imaging

modality for PD-1-expressing tumor-infiltrating lymphocytes (149).

Similarly, 89Zr-Nivolumab uptake on PET/CT correlates with PD-1-

expressing lymphocytes and offers the possibility of a real-time

imaging of tumor infiltrating T-cells (150). Granzyme B-targeted

PET tracer (GZP) as another novel PET tracer for detection of irAEs,

has also shown promising results in a murine model (151). This

recent study showed an increased uptake of GZP in organs affected by

irAEs and a decreased uptake after anti-inflammatory treatment, with

a good correlation with immune infiltration on histology (151). This

is all the more interesting since granzyme B was also found in colon

and kidney samples of patients with irAEs, suggesting its potential

utility in routine practice for patients treated with ICI (151, 152).

However, even though novel immune-PET tracers seem to be useful

and to provide important clues mainly in nonspecific cases, most

findings are based on small (preclinical) studies.

In addition to ICI therapy, there are many other types of

immunotherapies that may be associated with different spectra of

irAEs (Figure 11). Chimeric antigen receptor (CAR) T-cell therapy

has been shown to induce rapid and durable responses in many types

of cancers (153). However, treatment associated toxicities can be

severe and even fatal, such as most commonly the cytokine-release

syndrome which has a comparable clinical presentation to

hemophagocytic lymphohistiocytosis or macrophage-activation
FIGURE 10

Immune-related thyroiditis in a 50-year-old female with lower leg Meckel-cell carcinoma who developed mediastinal metastatic spread as shown
on baseline 18F-FDG-PET/CT [coronal PET, CT and merged PET/CT images, # (A)]. A thyroid nodule was also present [arrow, fused PET/CT image
(A)]. Pembrolizumab (anti-PD-1) was administered. Follow-up 18F-FDG-PET/CT at 6 months showed disappearance of mediastinal disease and
decrease in metabolic activity of the thyroid nodule [arrow, fused PET/CT image (B)]. However, a marked increase in thyroid activity was also
evident, consistent with a thyroiditis [arrowheads, fused PET/CT image (B)].
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syndrome and is characterized by hepatosplenomegaly, hepatic

dysfunction, hyperferritinemia, hypofibrinogenemia, and

coagulopathy (153, 154). In addition, irAEs associated with CAR

T-cell therapy include the immune effector cell-associated

neurotoxicity syndrome, characterized by initial global aphasia

(153, 154). During the course of disease, patients usually experience

subclinical or clinical seizures and rarely diffuse cerebral edema

within 28 days (153). The diagnostic workup includes clinical and

neurological examination, an electroencephalogram, and a brain MRI

(153). A single-center study investigated 133 patients with relapsed

and/or refractory CD19+ B-cell acute lymphatic leucemia, non-

Hodgkin lymphoma, and chronic lymphoid lymphoma who

received CD19-CAR-T cell therapy (155). Acute abnormalities in

brain MRI examinations were noted in 30% which were associated

with poor outcome, especially in severe cases (155). Changes in T2-

weighted/FLAIR brain MRI indicative of vasogenic edema,

leptomeningeal enhancement, and/or multifocal microhemorrhages

could be found in most of the patients with clinically severe

neurotoxicity and abnormal MRI scans (155). In addition, contrast

enhancement suggestive of blood-brain barrier breakdown has been

noted in some patients (155). One patient showed extensive cortical

diffusion restriction indicative of cytotoxic edema and several others

showed vasogenic edema that developed into cortical laminar

necrosis (155). However, larger, high-quality multicenter studies are
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needed to more thoroughly investigate the toxicities associated with

CAR-T cells and, in particular, regarding their potentially specific

imaging properties.

Interestingly, peptide-based vaccines show a better tolerance

and safety compared with conventional chemotherapy and ICI,

and serious irAEs, such as pulmonary embolism, are rarely

described (156). A meta-analysis that included 500 patients

demonstrated that only 1.2% of vaccinated patients suffered

from serious adverse events related to the vaccine (157). The

vaccine-related irAEs include most commonly erythema and

induration related to the injection side (156). Moreover,

nonspecific symptoms such as nausea, diarrhea, myalgia, fatigue,

increased aspartate aminotransaminase and alkaline phosphatase,

and rarely hematological toxicities as well as autoimmunity have

been described (156).

Finally, adverse events associated with oncolytic virus therapy

are also mostly mild and usually include flulike symptoms and local

reactions at the injection sites (158). However, more severe

toxicities such as anemia, leukopenia, lymphopenia, neutropenia,

thrombocytopenia, liver dysfunction, and hematological

abnormalities, pleural effusion, herpes virus infection, and central

nervous system symptoms have been described (158).

Overall, no specific imaging features of irAEs have been described

yet. As the clinical use of these novel treatments increases, problems
FIGURE 11

Diverse methods of immunotherapy. HER2, human epidermal growth factor receptor 2; EGFR, Epidermal Growth Factor Receptor; CAR, chimeric
antigen receptor; CTL, cytotoxic T-lymphocyte; TIL, tumor-infiltrating lymphocyte; NK cell, natural killer cell; LAK cell, lymphokine-activated killer
cell; BiTE, Bi-specific T-cell engagers; EpCAM, epithelial cell adhesion molecule; DNA, deoxyribonucleic acid; VLP, virus-like particle; HIT-IT, human
intratumoral immunotherapy; PRR: pattern-recognition receptor; ICI, immune checkpoint inhibitor; CTLA-4, cytotoxic T-lymphocyte-associated
protein-4; PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1133207
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Berz et al. 10.3389/fimmu.2023.1133207
in the toxicity screening will, therefore, arise. However, over time,

more information on non-ICI immunotherapies will be collected that

will shed light on their specific toxicity profile and help to define their

imaging characteristics.

To conclude, imaging can contribute to the detection and

characterization of ICI-related toxicities, while radiomics can even help

to predict these toxicities. However, reliable toxicity screening of irAEs

remains challenging for rarer irAEs and non-ICI immunotherapeutics.

Therefore, there is a need for large-scale clinical trials across various

oncologic diseases and immunotherapeutic agents to better assess the

characteristics of both ICIs and non-ICI-immunotherapies in order to

establish evidence-based guidelines as support for imaging assessment

and clinical decision-making.
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Glossary

AKI acute kidney injury

CAR chimeric antigen receptor

CMRI cardiac magnetic resonance imaging

CT computer tomography

CTCAE Common Terminology Criteria for Adverse Events

CTLA-4 cytotoxic T-lymphocyte-associated protein-4

FLAIR fluid-attenuated inversion recovery

GZP granzyme B-targeted PET tracer

ICI immune checkpoint inhibitor

irAE immunotherapy-related adverse events

irRC immune-related response criteria

irRECIST immune-related RECIST

LGE late gadolinium enhancement

mAb monoclonal antibody

MRCP magnetic resonance cholangiopancreatography

MRI magnet resonance imaging

PANCS primary angiitis of the central nervous system

PD-1 programmed cell death protein-1

PD-L1 PD-1 ligands

PET positron emission tomography

RECIST 1.1 Response Evaluation Criteria in Solid Tumors version 1.1

STIR short-tau inversion recovery

SUV standard uptake value

TTE transthoracic echocardiography

US ultrasound

18F-FDG 2-deoxy-2-[18F]fluoro-D-glucose
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