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N-4 cytidine acetylation (ac4C) is an epitranscriptome modification catalyzed by

N-acetyltransferase 10 (NAT10) and is essential for cellular mRNA stability, rRNA

biosynthesis, cell proliferation, and epithelial-mesenchymal transition (EMT).

Numerous studies have confirmed the inextricable link between NAT10 and

the clinical characteristics of malignancies. It is unclear, however, how NAT10

might affect pancreatic ductal adenocarcinoma. We downloaded pancreatic

ductal adenocarcinoma patients from the TCGA database. We obtained the

corresponding clinical data for data analysis, model construction, differential

gene expression analysis, and the GEO database for external validation. We

screened the published papers for NAT10-mediated ac4C modifications in 2156

genes. We confirmed that the expression levels and genomic mutation rates of

NAT10 differed significantly between cancer and normal tissues. Additionally, we

constructed a NAT10 prognostic model and examined immune infiltration and

altered biological pathways across the models. The NAT10 isoforms identified in

this study can effectively predict clinical outcomes in pancreatic ductal

adenocarcinoma. Furthermore, our study showed that elevated levels of

NAT10 expression correlated with gemcitabine resistance, that aberrant NAT10

expression may promote the angiogenic capacity of pancreatic ductal

adenocarcinoma through activation of the TGF-b pathway, which in turn

promotes distal metastasis of pancreatic ductal adenocarcinoma, and that

NAT10 knockdown significantly inhibited the migration and clonogenic

capacity of pancreatic ductal adenocarcinoma cells. In conclusion, we

proposed a predictive model based on NAT10 expression levels, a non-invasive

predictive approach for genomic profiling, which showed satisfactory and

effective performance in predicting patients’ survival outcomes and treatment

response. Medicine and electronics will be combined in more interdisciplinary

areas in the future.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the 12th most

common malignancy and the 7th leading cause of cancer death

worldwide with a 5-year survival rate of only 10% (1–4). Pancreatic

ductal adenocarcinoma has more than doubled in the last 25 years

and now ranks among the top 10 cancer killers in more than 130

countries (5). According to recent data from the American Cancer

Society, there were approximately 60,430 new cases of pancreatic

ductal adenocarcinoma and approximately 48,220 deaths in 2021,

which are expected to be the second leading cause of cancer deaths

in the United States in the next 20 – 30 years. As the third leading

cause of cancer-related deaths in the European Union, pancreatic

ductal adenocarcinoma is expected to surpass breast cancer (6). We

also face multiple challenges in treatment, with surgical resection,

while potentially curative, often requiring combined therapeutic

interventions (7). In resectable or potentially resectable pancreatic

ductal adenocarcinoma, preoperative radiotherapy does not provide

a significant overall survival benefit (8). Although combination

chemotherapy may improve overall survival, its adverse effects can

severely affect patients’ quality of life, thus limiting its clinical use to

a certain extent (9). A recent study has shown that targeting the

components of the tumor mesenchyme that cause connective tissue

proliferation can have some therapeutic effects (10), for example,

polymeric nanoparticles, which can be intelligently designed with

carriers that significantly reduce the difficulty of crossing the

stromal barrier and thus improve drug delivery (11). As standard

treatments such as conventional chemotherapy, radiotherapy,

surgery, and targeted therapies do not provide long-term

remission of pancreatic ductal adenocarcinoma, there is an urgent

need to develop new therapeutic strategies to improve the prognosis

of pancreatic ductal adenocarcinoma patients.

NAT10 belongs to the GCN5-related N-acetyltransfer (GNAT)

family of acetyltransferases. Previous research has shown that

NAT10 catalyzes the acetylation of histones, mRNA, and other

substrates and is involved in a variety of cellular processes such as

ribosome production, DNA damage repair, cytoplasmic division,

and mRNA translation regulation (12). NAT10, as an epigenetic

regulator, may aid in the treatment of cancer and osteoporosis (13).

It is unclear, however, what role NAT10 plays in PDAC.

In this study, we aimed to reveal the correlation between

NAT10 expression levels and the clinical characteristics of

pancreatic ductal adenocarcinoma patients. We collected genomic

data from TCGA, GTEx and GEO databases of pancreatic ductal

adenocarcinoma and then constructed NAT10 subgroup

phenotypes by unsupervised clustering of NAT10-mediated gene

expression levels of ac4C modifications. The expression levels of

NAT10 were confirmed to be associated with tumor tissue immune

infiltration, clinical outcome, drug resistance, tumor cell migration

and clonogenic ability. In summary, our findings reveal a crucial

role for NAT10 in pancreatic ductal adenocarcinoma, and we

propose a convenient method to help diagnose and predict

survival outcomes of pancreatic ductal adenocarcinoma patients.
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2 Materials and methods

2.1 Multi-omics cohort of pancreatic ductal
adenocarcinoma from TCGA

The cohort contains molecular profiles from the Cancer

Genome Atlas (TCGA) PDAC dataset containing transcriptome

data from 185 patient samples (14). We then retrieved for TCGA

cohort with multi-omics profiles, including transcriptome

expression, somatic mutations, copy number alterations (CNAs),

clinicopathological features and clinical outcomes. From UCSC

Xena (http://xena.ucsc.edu/), we downloaded gene expression

data for 165 primary PDAC cases. Transcripts per kilobase

million (TPM) values were then converted from FPKM to

improve comparability between samples and show greater

similarity to microarray results (15). GENCODE22 mapping from

UCSC Xena was used to convert Ensembl IDs for transcriptomes

into gene symbols. Furthermore, a copy number segment file was

obtained from FireBrowse (http://firebrowse.org/). By using

cBioPortal , we col lected data on somatic mutations,

clinicopathological features, progression-free survival (PFS), and

overall survival (OS). (https://www.cbioportal.org/).
2.2 External validation cohorts of PDAC

To test the reproducibility of our identifiedmolecular subtypes, we

collected a total of five external independent cohorts, including

PACA_AU (n = 269) which was downloaded from International

Cancer Genome Consortium (ICGC) (16), E-MTAB-6134

containing 309 consecutive patients with PDAC from a multi-center

consortium (17), and three cohorts from the Gene Expression

Omnibus (GEO) database; the GEO datasets included GSE71729 (n

= 125) (18), GSE62452 (n = 66) (19), and GSE57495 (n = 63) (20).

From the corresponding archives, we retrieved clinical outcomes only

for PDAC patients and excluded those with neuroendocrine or acinar

cell carcinomas.Whenmultiple probe IDs were associated with a gene

symbol in three microarray datasets from the GEO database, the

median value was taken into account. The three independent GEO

datasets were combined considering the relatively small sample size.

Potential cross-dataset batch effects were eliminated by the R package

sva under an empirical Bayesian framework and batch effects were

further investigated using principal component analysis (21).
2.3 A list of genes modified by
N-Acetyltransferase 10

To many molecular components, NAT10 was known as an

acetyltransferase. A recent study discovered NAT10’s ability to

acetylate mRNA, providing new insight into the epitranscriptome.

The literature yielded a list of 2,156 genes that are altered by

NAT10-mediated ac4C (22).
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2.4 Tumor microenvironment
composition analysis

The R package MCPcounter was used to assess TME

composition in PDAC patients (23). An analysis of transcriptomic

markers determines the scores of a given cell population, which are

transcriptomic features that are strongly, specifically, and consistently

expressed. Based on these scores, large cohorts and inter-sample

comparisons can be made between tumor populations (24). We

calculated infiltrating immune/stromal cells and tumor purity in

tumor tissue using the R package “estimate” (25). In practice, it is

frequently difficult to obtain cancer samples with sufficient tumor

purity, particularly for PDAC. In this context, we kept those tumor

samples with tumor purity of greater than 70% to ensure sufficient

tumor cells and microenvironment cells for analytic purposes.
2.5 An analysis of gene signatures based
on functional orientation

The functional orientation of the TME was determined using

literature signatures (26). Immune suppression (CXCL12, TGFB1,

TGFB3, and LGALS1), T cell activation (CXCL9, CXCL10, CXCL16,

IFNG, and IL15), T cell survival (CD70 and CD27), regulatory T cells

(FOXP3 and TNFRSF18), major histocompatibility complex class I

(HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA (CXCL13). The

geometric mean signature expression was used to compute scores for

each signature. Additionally, DNA methylation scores were

calculated using protocols described in the literature for tumor-

infiltrating lymphocytes (MeTILs) (27).
2.6 Intracohort immune classifications

Unsupervised hierarchical clustering of samples in the

discovery TCGA cohort was performed using Euclidean distance

and Ward linkage criteria based on polygenic abundance scores

from MCPcounter included cohorts (28). Based on the

dendrograms and the relatively small sample size, three clusters

were empirically determined.
2.7 Calculation of replication
stress enrichment

Using single-sample gene set enrichment analysis (ssGSEA), we

identified 21 replication stress signatures from the literature (29).

Hierarchical clustering identified two replication stress subtypes.
2.8 Analysis of differential expression
and gene set enrichment

A differential expression analysis was performed using the R

package “limma” (30). We created a pre-ranked gene list based on

log2FoldChange values derived from differential expression analysis
Frontiers in Immunology 03
for gene set enrichment analysis (GSEA). The Hallmark pathway

was used to determine functional enrichment using the R package

clusterProfiler (31, 32).
2.9 Cancer subtype characterization
and visualization

We performed comprehensive characterization on subtypes

identified from multi-omics aspect using the R package MOVICS

(33), including prognosis, mutational landscape, chromosomal

stability and clinicopathological features. Specifically, for

mutational landscape, significantly, differentially, and frequently

mutated genes among subtypes were identified (mutational rate >

3% with P < 0.05). The individual fraction of copy number-altered

genome (FGA) was calculated to represent chromosomal instability

based on copy number segment data using the threshold of 0.2 (33).

In addition, we detected and localized recurrent focal somatic CNAs

by GISTIC2.0 through GenePattern with criteria by default as the

following: threshold for amplification or deletion: 0.1, q-value: 0.25

with 75% confidence level (https://www.genepattern.org/) (34).
2.10 Nearest template prediction

In order to classify genes based on gene expression, nearest

template prediction was used (NTP). This prediction algorithm

provides a convenient model-free approach that uses only feature

gene lists and test datasets for single-sample class prediction and is

flexible and beneficial in external cohort applications (35, 36).
2.11 Therapeutic response analyses

We used the R package to analyze chemical compounds. Drug

sensitivity for PDAC was predicted for the TCGA cohort using the

R ‘pRRophetic’ package based on GDSC drug sensitivity and

phenotypic data (https://www.cancerrxgene.org/). In the R

package, ridge regression was used to estimate the AUCs for each

sample treated with a particular chemotherapeutic agent (37).

For immunotherapy especially to immune checkpoint

inhibitors, we collected a transcriptome profile and clinical

response of 47 patients with melanoma who treated with either

anti-PD1 or anti-CTLA4 immunotherapies (38). A comparison of

transcriptome profiles enabled us to predict the clinical response to

immune checkpoint inhibitors using subclass mapping (39).
2.12 Differential expression of NAT10
correlates with prognosis

A total of 179 PDACand 332 standard pancreatic tissue specimens

from the TCGA and GTEx databases, as well as OS, PFS, DFS, and

Disease Special Survival (DSS), were selected to assess the correlation

between differential expression of NAT10 and prognosis. The human

protein atlas: This database, also known as the human protein
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expression atlas, is a study of the immunohistochemical staining status

of proteins in normal human tissue, cancer tissue and cancer cell lines,

allowing for differential protein expression analysis in tumor tissues,

and for Gene and tumor survival analysis. In this study,

immunohistochemical analysis of NAT10 protein in PDAC tissues

was performed using The human protein atlas database.
2.13 Cell culture

we analyzed the expression of NAT10 in tumor and normal

tissues, human Pancreatic ductal adenocarcinoma cell lines (Capan-

1, CFPAC, PANC-1, MIAPaCa-2 and BXPC-3) and pancreatic duct

epithelial tissue cell line (HPDE6-C7) were obtained from BeNa

Culture Collection (Beijing, China). Capan-1 was maintained in

Iscove’s Modified Dulbecco’s Medium (IMEM) supplemented with

20% Fetal Bovine Serum (FBS) and HPDE6-C7 was maintained in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% FBS, at 37°C in 5% CO2.
2.14 Immunohistochemistry staining

All samples used in this study were approved by the Ethics

Committee of Shanghai Outdo Biotechnology Co., Ltd (No.

HPanA120Su02). The operation time was from January 2009 to

August 2013, and the follow-up time was from November 2014,

with a follow-up period of 1.2 to 5.8 years. A total of 66 cases of

cancerous tissue and 54 cases of paracancerous tissue were obtained

for immunohistochemistry. Pancreatic ductal adenocarcinoma

tissues collected were fixed with 4% paraformaldehyde,

dehydrated, embedded into paraffin blocks and sliced into 4mm.

The sections were hydrated after dewaxing and incubated with 3%

H2O2. After antigen repair and being blocked, slides were blocked

and incubated overnight at 4°C with rabbit antibody specific for

NAT10 (1:100) (Abcam, USA). For 20 minutes, the sections were

incubated with a streptavidin-biotin-peroxidase complex, followed

by 30 minutes with the secondary antibody. We stained the slide

with 3, 3-diaminobenzidine (DAB) substrate kit for a peroxidase

reaction and counterstained with hematoxylin. The slides were

analyzed under an optical microscope with a digital camera.
2.15 Detection of mRNA expression levels
by RT-qPCR

The total RNA was extracted using the Trizol kit according to

the instructions, and its concentration and purity were checked

using the Nano-300 microspectrophotometer. Cells were used

for subsequent experiments after qRT-PCR was used to measure

the expression levels of target RELATIVE NAT10 mRNA.

The used specific primer sequences were as follows: NAT10-

forward primer (GAGACAGACCCCGAATGACC), reverse

primer (GGAGAGCAAGGCTAGGAACC) and GAPDH-forward

primer (GGAGCGAGATCCCTCCAAAAT), reverse primer

(GGCTGTTGTCATACTTCTCATGG).
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2.16 Western blot analysis

Cells were collected and lysed on ice with a mixture of RIPA

lysate(Thermo Fisher, USA) and PMSF(Beyotime, ST506, China),

total protein was extracted from each group of cells, and the BCA

kit(Thermo Fisher, USA) was used to determine the protein content

of each group. 40mg of the sampled proteins were subjected to SDS-

PAGE, 250 mA constant flow membrane transfer (0.22 mm PVDF),

and closed with TBST blocking solution (containing 50 g/L

skimmed milk powder) for 2 h. Then the following primary

antibodies were incubated overnight at 4°C: rabbit monoclonal

anti-NAT10 (1 : 1000, ab194297, Abcam), rabbit monoclonal anti-

b-actin (1 : 1000, 4970, Cell Signaling Technology), the next day the

cells were rinsed with TBST and the secondary antibody was added

for 2 h at room temperature. Using an ECL kit(Thermo Fisher,

USA), the expression of the target bands was detected. Use the

ImageJ software (version 1.50b; National Institutes of Health) for

grayscale analysis. Each experiment was repeated three times to

minimize experimental error.
2.17 Interference with NAT10 by
transient transfection

Small interfering RNA (siRNA) was transfected into Capan-1

cells by Lipofectamine 3000. Cells were collected, and NAT10

protein expression levels were determined using Western blot.

siRNAs were obtained from Shanghai Genepharma. Sequences of

siRNA were as following: siRNA1 NAT10:sense 5′-GGCAGACU
AUUCAGUAUAUTT-3′ , anti-sense 5′-AUAUACUGAAU

AGUCUGCCTT-3′; siRNA2 NAT10:sense 5′-GGCCAAAG

CUGUCUUGAAATT-3′, anti-sense 5′-UUUCAAGACAGC

UUUGGCCTT-3′; Negative control: sense 5′-UUCUCCGA

ACGUGUCACGUTT-3′, anti-sense 5′-ACGUGACACGUUC

GGAAATT-3′.
2.18 Transwell assay

Cells from the above groups were digested 48 h after

transfection, collected in serum-free DMEM medium and

counted, and diluted to 2.5×104 cells/100 mL. 700 mL of complete

medium (DMEM with 100 mL/LFBS) was added to the lower

chamber, 8 mm diameter TranswellTM cells were placed in a 24-

well plate, and 200 mL of the serum-free medium was added to the

upper chamber. After incubation for 24h, the chambers were

removed and fixed in 40g/L paraformaldehyde for 30min; 1g/L

crystal violet was used for staining for 30min.
2.19 Colony formation assay

Using a 6 cm plate with 1000 cells inoculated and incubated at

37°C, clone formation was assessed by number of colonies formed.

According to the characteristics of each cell line, the medium was

changed regularly after 10-15 days. We washed the adherent cells
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twice in PBS, fixed them with 4% paraformaldehyde, and stained

them with 0.1% crystal violet (Sigma-Aldrich, NY, USA). The total

number of colonies (50 cells per colony) was counted using Image

J software.
2.20 Statistical analyses

R was used to conduct statistical analyses (v4.0.2). P values or

adjusted P values less than 0.05 were considered significant for all

statistical comparisons. Mann-Whitney U tests were used to

compare two conditions, and Kruskal-Wallis tests were used to

compare three conditions. The independence of categorical

variables was determined using Fisher’s exact tests. To analyze

Kaplan-Meier survival curves and log-rank test calculations, two-

sided log-rank P values were calculated using the R package

survminer. Each experiment was repeated three times to

minimize experimental error. Data are shown as mean ± standard

error of the mean (SE). The 2-DD Ct method was used to analyze the

results of real-time PCR in all of the experiments.
3 Results

3.1 The identification of prognostic
subtypes in PDAC based on
NAT10-relevant genes

To narrow down the gene list and search for the prognostication-

relevant genes that were associated with NAT10, we conducted

univariate analysis using Cox proportional hazard regression model

in PDAC cases with sufficient tumor purity (n = 56), taking into

account both PFS and OS. We identified 695 genes (Table S1) and

574 genes (Table S2) related to PFS and OS (P < 0.05), relatively, and
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a total of 458 genes were shared (Figure 1A). We then performed

unsupervised clustering using these 458 NAT10-relegent prognostic

genes and revealed three subtypes among PDAC cases in TCGA

cohort (Figure 1B). The identified subtypes were tightly associated

with PFS (P < 0.001; Figure 1C) and OS (P < 0.001; Figure 1D);

notably, C3 showed the most inferior outcome as compared to other

cases. We then investigated the prognostic value of our proposed

NAT10-relavnt PDAC subtype, which we found remains an

independent prognostic factor after adjusting for other clinical

characteristics regarding PFS and OS (Figure 1E).
3.2 External validation of the prognostic
subtypes in PDAC

In order to determine whether our newly identified NAT10-

relevant prognostic subtypes can be reproducible in external

cohorts of patients with PDAC, we tested their reproducibility. In

this manner, we searched for the top 30 NAT10-relevant genes that

were significantly and uniquely upregulated (log2FoldChange > 0,

FDR< 0.05) in each of the three subtypes from TCGA cohort,

ending up with a 88-gene classifier in which 30 genes for C1, 28

genes for C2, and 30 genes for C3 (Table S3). We then deployed the

88-gene classifier to the discovery TCGA cohort using NTP

algorithm (Figure 2A); we demonstrated superior predictive

accuracy with only five misclassified (Kappa = 0.857, P < 0.001;

Figure 2B), which made us confident of using such classifier in

external cohorts.

In this manner, we first deployed the 88-gene classifier to the

combined GEO cohort with sufficient tumor purity (n = 55) where

potential batch effect was removed and investigated by PCA

(Figure 2C, D). NTP revealed three NAT10-relevant subtypes in

GEO cohort (Figure 2E), which showed significantly separated OS

rate and the predicted CS3 presented with the most unfavourable
B

C

D EA

FIGURE 1

Identification of prognostic subtypes in PDAC based on NAT10-relevant gene set. (A) Venn diagram showing the intersection of prognostic NAT10-
relevant genes regarding PFS in the left and OS in the right. (B) heatmap showing the unsupervised clustering using the prognostic NAT10-relevant
genes in 56 PDAC cases in TCGA cohort. Kaplan-Meier curves for the three identified NAT10-relevant PDAC subtypes regarding both (C) PFS and
(D) OS. (E) Forest plot showing the independent prognostic value of the NAT10-relevant subtypes after adjusting other clinical features.
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prognosis (Figure 2F). Using the same strategy, we reproduced three

subtypes in PACA_AU (n = 48) and E-MTAB-6134 cohorts (n =

156), respectively (Figures 2G, H). Likewise, the reproduced

subtypes demonstrated prognostication-relevance (P = 0.052 in

PACA_AU cohort and P < 0.001 in E-MTAB-6134 cohort) and

CS3 showed inferior outcome as compared to other subtypes

(Figures 2I, J). C1, C2, C3 were the molecular typing of the

training set, and CS1,CS2,CS3 are the molecular typing of the

validation set.
3.3 Activation of immune- and cell cycle-
related pathways in the aggressive subtype

To further understand the biology-relevance behind each of the

three subtypes, we performed differential expression analysis and

GSEA using Hallmark pathways. Significantly and uniquely

upregulated Hallmark pathways (NES > 0, FDR < 0.05) were

identified for each of the three subtypes,we found that the

pathway represented by Pancreas beta cells was up-regulated in
Frontiers in Immunology 06
the CS1 subtype, and the pathway represented by MYC Targets V2

was up-regulated in the CS2 subtype. And the pathway represented

by Epithelial mesenchymal translation is up-regulated in CS3

subtype. (Figure 3A; Table S4). Of note, we found immune-

related pathways were significantly activated in the aggressive CS3

subtype as compared to other cases; these pathways included

inflammatory response (NES: 1.86, FDR = 0.002), interferon-

gamma response (NES: 1.90, FDR = 0.002), and epithelial

mesenchymal transition (EMT; NES: 2.20, FDR = 0.002). In

addition, cell cycle-relevant pathways (i.e., E2F targets [NES: 1.64,

FDR = 0.002] and G2M checkpoint [NES: 1.68, FDR = 0.002]) were

significantly upregulated in CS3 comparing to other

subtypes (Figure 3B).
3.4 Differential tumor microenvironment
landscape across PDAC

As we have shown the immune dysfunction of among three

subtypes, we then decided to in-depth profile the TME of PDAC.
B C

D

E F G

H I J

A

FIGURE 2

External validation of the prognostic subtypes in PDAC. (A) Heatmap showing the NTP results using 88-gene classifier in TCGA cohort. (B) Consistency
map showing high agreement between true subtype and predicted subtype in TCGA cohort. PCA plot showing the potential batch effect (C) before and
(D) after removal. NTP heatmap using 88-gene classifier was shown in (E) for GEO cohort, and the corresponding survival curves regarding OS were
shown in (F). Likewise, NTP heatmap using 88-gene classifier was shown in (G) for PACA_AU cohort and (H) for E-MTAB-6134 cohort, respectively. The
corresponding survival curves regarding OS were shown in (I) for PACA_AU cohort and (J) for E-MTAB-6134 cohort, respectively.
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Therefore, we quantified global enrichment of immune/stromal

cells and tumor-infiltrating lymphocyte based on DNA

methylation data. We further investigated 10 TME cell infiltration

levels in TCGA cohort, seven gene signatures for the functional

orientation, and surveyed the PDAC samples for the expression of

immune checkpoints (Figure 4A). We found that the aggressive C3

showed highly infiltrated with immune (Figure 4B), stromal cells

(Figure 4C) and tumor-infiltrating lymphocytes (Figure 4D), and

enriched in both immune activation and suppression factors.

Moreover, C3 showed relatively higher expression of nearly all

immunotherapy targets, including CD274, PDCD1, PDCD1LG2,

CTLA4, and HAVCR2. As our findings demonstrated that C3

presented with highly infiltrated TME and activated interferon-

gamma signaling pathway, we therefore hypothesized that C3 may

have higher likelihood of responding to immune checkpoint

inhibitor as compared to other subtypes. In order to accomplish

this, we mapped subclasses in the TCGA cohort. According to the

results, the transcriptome profiles of C3 and melanoma patients

who responded to anti-CTLA4 immunotherapy were highly similar

(P = 0.006, Bonferroni adjusted P = 0.072, FDR adjusted P = 0.072;

Figure 4E). Our findings add to the literature that molecular

classification using NAT10-relevant genes may be capable of

identifying ideal candidates for immunotherapy in patients

with PDAC.
3.5 Genetic delineation of the NAT10-
relevant subtypes of PDAC

Furthermore, the genomic landscape plays an integral role in

anti-tumor immunity as well as molecular features. Several factors

can trigger T-cell responses, including tumor mutational burden

(TMB) and the presence of neoantigens (38, 40), while aneuploidy
Frontiers in Immunology 07
may result in immune evasion and reduced response to

immunotherapy (41). To the end, we first explored the genetic

differences among three subtypes. We dissected the mutational

landscape across all the samples and calculated the TMB for each

tumors; we found that CS1 harboured significantly less TMB as

compared to other cases (P = 0.019; Figure 5A). We then identified a

total of six mutations that showed significantly differential rate of

mutational frequency among three subtypes (P < 0.05); these

mutations occurred in at least 3% of the PDAC in TCGA cohort

(Table S5). We then investigated if these genes included any

mutations that were previously identified as driver mutations for

cutaneous melanoma (42), and three mutations were identified,

including KRAS (68%), TP53 (52%), and CDKN2A (27%).

Strikingly, none of these three mutations occurred in

C1 (Figure 5B).

We then investigated chromosomal instability by first profiling

the broad-level CNA across the whole human gene in the entire

cohort, and three subtypes we proposed, respectively (Figure 5C).

Consistently, we found that CS1 showed generally higher

chromosomal instability as compared to other subtypes by

calculating the individual FGA values as well as fraction genome

gained and lost (FGG and FGL) (Figure 5D). Next, we profiled the

focal-level CNA for PDAC (Figure 5E) and we found that C1

showed significantly higher focal-level CN amplifications (P =

0.065; Figure 5F); while C3 enriched in CN deletions (P = 0.009;

Figure 5G) comparing to other two subtypes.
3.6 Association between DNA replication
stress and NAT10-relevant subtypes

We investigated the potential of targeting RS (Replication

stress) as a PDAC subgroup treatment regimen because we found
BA

FIGURE 3

Pathway enrichment in the aggressive NAT10-relevant PDAC subtype. (A) Heatmap showing significantly and uniquely upregulated Hallmark
pathways in each of the three NAT10-relevant PDAC subtypes; the input was the GSVA enrichment score of the specific pathway in specific subtype.
(B) GSEA plot for immune-related and cell cycle-related pathways in the aggressive C3 subtype of PDAC in TCGA cohort.
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that cell cycle-related oncogenic pathways are activated in

aggressive C3 and activation of cell cycle pathways activates cell

cycle checkpoint regulatory proteins involved in RS such as ATR

and WEE1, which have been described as closely related proteins

associated with DNA damage responses leading to cisplatin

resistance (29). Unsupervised hierarchical clustering using 21

replication stress markers resulted in two RS isoforms (RS-High
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and RS-Low) in the TCGA, GEO, PACA AU and E-MTAB-6134

cohorts (Figures 6A–D). There was a significant enrichment of

aggressive C3 in RS-High (all, P 0.05), indicating chemoresistance

based on cisplatin. We estimated AUC for three ATR inhibitors

(VE-821, VE-822, and AZD6738) and twoWEE1 inhibitors (WEE1

inhibitor and MK-1775) provided by GDSC using a model-based

prediction strategy similar to the literature (43). Cell cycle
A

B D

E

F G

C

FIGURE 5

Three NAT10-relevant subtypes of PDAC in the TCGA cohort exhibit genomic heterogeneity and chromosomal instability. (A) An analysis of the
distribution of TMB and TiTv (transition to transversion) among three subtypes is presented. (B) Onco printing showing the distribution of genes that
were differentially mutated among three subtypes. (C) An overview of the CNA landscape across the entire cohort and among the NAT10-relevant
subtypes. (D) An example of a barplot showing the distribution of FGA, FGG, and FGL. Bar charts are presented as means with standard errors of the
means. (E) Heatmap showing arm-level CNA among three subtypes. Distribution of focal-level copy number amplifications and deletions across
three subtypes were shown in (F, G), respectively.
B

C
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FIGURE 4

An analysis of the microenvironment of PDAC tumor subtypes associated with NAT10. (A) Heatmap showing the tumor microenvironment landscape
in PDAC from the TCGA cohort, with the top panel showing the cell abundance estimated by MCPcounter algorithm, the middle panel showing the
enrichment score of gene signatures for the functional orientation and the bottom panel showing expression of representative genes involved in
immune checkpoint targets; the immune/stromal enrichment score and MeTIL score were annotated at the top of the heatmap. Distribution of
immune enrichment scores, stromal enrichment scores and MeTIL scores among three NAT10-relevant subtypes in TCGA cohort were shown in
(B), (C, D), respectively. (E) Subclass mapping demonstrating that the aggressive C3 subtype may be sensitive to immune checkpoint inhibitors.
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checkpoint inhibitors were generally more effective against the RS-

High subtype in all four cohorts than against the RS-low

(Figures 6E–H).
3.7 NAT10-relevant resistance to
gemcitabine in PDAC

Gemcitabine is the standard first-line treatment for unresectable

locally advanced or metastatic pancreatic ductal adenocarcinoma

since 1997 (44). In this context, we further investigated the

association between NAT10-relevant subtypes and sensitivity of

responding to gemcitabine. Firstly, we profiled the distribution of

NAT10 in three PDAC subtypes, and we found that the single-

sample level enrichment score of NAT10 tended to increase from

C1 to C3 in four cohorts (Figures 7A–D). Secondly, we performed

correlation analysis and we found that the predicted AUC of

gemcitabine was positively correlated with the NAT10

enrichment score (Figures 7E–H), which indicated that PDAC

patients with increasing NAT10 expression level may experience

increasing resistance to treatment of gemcitabine.
3.8 NAT10 expression levels and prognosis
in pancreatic ductal adenocarcinoma
tissues analyzed online

Using the GEPIA website, NAT10 expression levels were

analyzed between the TCGA and GTEx databases in pancreatic

ductal adenocarcinoma tissues. Pancreatic ductal adenocarcinoma

tissues expressed significantly higher levels of NAT10 than normal
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pancreatic tissues, and the difference was statistically significant

(Figure 8A). A search from the Human Protein Atlas database

showed that NAT10 expression was significantly higher in

pancreatic ductal adenocarcinoma tissues (Figure 8B). An analysis

of pancreatic ductal adenocarcinoma prognoses from the TCGA

and GTEx databases can be found on the GEPIA website.

According to the survival curve analysis, NAT10 expression levels

were negatively correlated with OS, PFS, and DSS. Patients with

abnormally high NAT10 expression had poor prognoses, with

statistically significant differences (Figure 8C). AKT activation

and cell proliferation characteristics were positively correlated

(Figures 8D, E), suggesting that the abnormal expression of

NAT10 may promote the malignant proliferation of pancreatic

ductal adenocarcinoma by activating the PI3K-AKT pathway. On

the other hand, NAT10 was positively correlated with TGF-b and

angiogenic ability (Figures 8F, G).
3.9 NAT10 knockdown significantly
inhibited the migration and clonogenic
ability of pancreatic ductal
adenocarcinoma cells and reduced the
resistance to gemcitabine

The expression of the NAT10 gene in in tumor and normal

tissues, and the results are shown in (Figure 9A). There was a

significant increase in NAT10 expression in the Capan-1 cell line in

comparison to normal pancreatic ductal epithelial cells (P<0.05)

(Figures 9B, C). The role of NAT10 in tumorigenicity was studied

more thoroughly by transfecting Capan-1cells with a specific siRNA

targeting it. We designed two siRNAs to knock down NAT10.
B C D

E F G H

A

FIGURE 6

Association between DNA replication stress and NAT10-relevant subtypes in PDAC. Replication stress and DNA damage response activate pathways and
molecular processes involved in DNA maintenance and cell cycle regulation. Two replication stress (RS) subtypes were identified for the (A) TCGA
cohort, (B) GEO cohort, (C) PACA_AU cohort, and (D) E-MTAB-6134 cohort, respectively. (D) Boxplot showing distribution of estimated AUC concerning
ATR and WEE1 inhibitors between two RS subtypes for the (E) TCGA cohort, (F) GEO cohort, (G) PACA_AU cohort, and (H) E-MTAB-6134 cohort,
respectively. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.
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FIGURE 7

NAT10-relevant resistance to gemcitabine in PDAC. Distribution of single-sample enrichment score of NAT10 in three PDAC subtypes for the
(A) TCGA cohort, (B) GEO cohort, (C) PACA_AU cohort, and (D) E-MTAB-6134 cohort, respectively. (D) Scatter correlation plot showing the
Pearson’s correlation between the NAT10 enrichment score (x-axis) and predicted AUC of gemcitabine (y-axis) for the (E) TCGA cohort, (F) GEO
cohort, (G) PACA_AU cohort, and (H) E-MTAB-6134 cohort, respectively.
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FIGURE 8

NAT10 expression levels in pancreatic ductal adenocarcinoma tissues and their relationship with prognosis. (A) Comparison of NAT10 expression levels in
pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from TCGA and GTEx database sources; (B) The immunohistochemical staining
of NAT10 in pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from the human protein atlas database. (C) Elevated NAT10
expression in the TCGA dataset predicts poor prognosis associated with patients. (D, E) Pathway correlation analysis of NAT10 positively correlates with
the degree of PI3K-AKT activation and cell proliferation characteristics. (F, G) NAT10 positively correlates with TGF-b and angiogenic capacity.
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Western blot analysis confirmed the effectiveness of NAT10

knockdown, and both siRNAs significantly knocked down

NAT10, and the protein level of NAT10 were barely detectable

after transfection with siRNA#2 (Figure 9D). The data demonstrate

that the siRNA targeting NAT10 has high specificity and

transfection efficiency. In both siRNA-transfected cells, cell

proliferation was inhibited with increasing time. According to the

Capan-1 cell line colony formation assay, knockdown of NAT10 led

to a reduction in colonies (Figure 9E). By knocking down NAT10,

pancreatic ductal adenocarcinoma cells are inhibited from

proliferating and forming colonies. Transwell analysis also

revealed that specific siRNA inhibited migration of cells

knockdown of NAT10 (Figure 9F). In addition, the siRNA

targeting NAT10 reduced the IC50 of gemcitabine in Capan-1

cells from 76.28mM to 23.34mM (Figure 9G), indicating that

NAT10 knockdown significantly reduced the resistance of

pancreatic ductal adenocarcinoma cells to gemcitabine.
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4 Discussion

PDAC is an essential and growing global health problem. The

overall treatment of pancreatic ductal adenocarcinoma is poor (45),

and the synergistic treatment of cancer cells and mesenchymal

targeting, reversal of inhibitory immune responses, and antitumor

activity is nowprobably themost promising approaches of PDAC (46).

In other words, combining chemotherapy, immunotherapy, targeted

therapy, and stromal-targeted drugs is the most promising direction

for pancreatic ductal adenocarcinoma treatment research (10). Today’s

medical era is one of precision, and the guidance of biomarkers can

lead to optimal therapeutic management patterns. Increasing numbers

of well-performing cancer prognostic models have been developed by

researchers for the detection and prognostic evaluation of cancer (47–

49). However, their clinical application still needs to be validated by

numerous trials to investigate the most appropriate procedures to

identify and follow the status of therapeutic management patterns.
B
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FIGURE 9

NAT10 knockdown significantly inhibited the migration and clonogenic ability of pancreatic ductal adenocarcinoma cells. (A) Expression of NAT10 in
tumor and normal tissues. (B) The qRT-qPCR analysis showed that the expression level of NAT10 was significantly higher in the PDAC cell lines
compared to normal pancreatic ductal epithelial cells. (C) The Western blot analysis showed that the expression level of NAT10 was significantly
higher in the Capan-1cell line compared to normal pancreatic ductal epithelial cells. (D) NAT10 expression in Capan-1cells after NAT10-specific
siRNA knockdown. (E) Significant reduction in migrating cells in the siRNA group relative to negative control following NAT10-specific siRNA
knockdown. (F) The reduced clonogenic capacity of Capan-1cell line after specific siRNA knockdown of NAT10. (G) The IC50 of gemcitabine in
Capan-1cells after specific siRNA knockdown of NAT10. The data are the mean ± SEM. *P<0.05, **P<0.01.
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NAT10 is a nucleoprotein involved in histone acetylation and has

the potential for subcellular redistribution. NAT10 activates rRNA

transcription by acetylating upstream binding factors and recruiting

RNA polymerase I-related factor 53 and RNA polymerase I to rDNA

(50). Based on the NAT10-related gene set, we identified prognostic

subtypes of the PDACdataset in the TCGAdatabase. Cox proportional

hazards regression models performed univariate analysis on PDAC

cases with sufficient tumor purity. A total of 458 co-expressed genes

were identified. Unsupervised cluster analysis revealed three subtypes

of PDAC cases in the TCGA cohort, and the subtypes were strongly

associated with PFS and OS, with the C3 subtype showing the worst

outcome. We then used the GEO database PDAC for reproducibility

testing of NAT10-related prognostic subtypes. The results showed

excellent predictive accuracy. We further performed differential

expression analysis and GSEA using the Hallmark pathway to

understand the biological relevance behind the three subtypes.

Immune-related pathways such as inflammatory response,

interferon-gamma response, and epithelial-mesenchymal transition

were significantly activated in the aggressive C3 subtype compared to

other cases; cell cycle-related pathways were also significantly

upregulated in C3, indicating that immune activation was associated

with prognosis of pancreatic ductal adenocarcinoma was negatively

correlated. We further investigated the level of infiltration of 10 TME

cells in the TCGA cohort, the functional localization of 7 gene

signatures, and the expression of immune checkpoints in PDAC

samples. The findings suggest that C3 presents highly infiltrated

TME and activated interferon-g signaling pathways. We, therefore,

hypothesize that C3 may have a higher response to immune

checkpoint inhibitors compared to other subtypes’ likelihood.

For this reason, molecular classification using NAT10-related

genes may be able to identify ideal candidates for immunotherapy in

PDAC patients. In addition to molecular features, genomic status is

also inextricably linked to antitumor immunity; we explored genetic

differences between the three subtypes. We found that C1 had

significantly fewer TMBs. We identified six mutations that showed

significant differences in mutation frequency across the three

subtypes; we investigated chromosomal instability by first profiling

CNA at the broad level across the entire human gene in the cohort, as

well as each of the three subtypes we proposed. We found that CS1

generally exhibited higher chromosomal instability compared to the

other subtypes. Analysis of focal-level CNA of PDAC showed that C1

had significantly higher amplification of focal-level CN, while C3 had

abundant deletions of CN compared to the other two subtypes.

As a result, we explored whether targeting RS could be a

therapeutic option for PDAC patients. RS-high was significantly

enriched in aggressive C3, suggesting potential cisplatin-based

chemoresistance. We further investigated the relationship between

NAT10-related subtypes and sensitivity to gemcitabine response.

We found a trend of increasing single-sample level enrichment

fraction of NAT10 from C1 to C3 across the four cohorts. Secondly,

the predicted AUC of gemcitabine was positively correlated with the

enrichment fraction of NAT10, suggesting that PDAC patients with

increasing levels of NAT10 expression may be increasingly resistant

to treatment with gemcitabine.

NAT10 expression levels in pancreatic ductal adenocarcinoma

tissues from the TCGA and GTEx databases showed that NAT10
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expression levels were significantly higher in pancreatic ductal

adenocarcinoma tissues than in normal pancreatic tissues. The

results of the survival curve analysis showed that NAT10

expression levels were negatively correlated with OS, PFS, and DSS

and that abnormally elevated expression was predictive of poor

prognosis in patients. That pathway correlation analysis revealed

that NAT10 was positively correlated with PI3K-AKT activation and

cell proliferation characteristics, suggesting that abnormal expression

of NAT10 may promote the malignant proliferation of pancreatic

ductal adenocarcinoma through activation of the PI3K-AKT

pathway. To further clarify whether the above correlation analysis

was valid, we first analyzed the expression of NAT10 in tumor and

normal tissues, selected Capan-1for further study, and found that the

expression level of NAT10 was significantly higher in pancreatic

ductal adenocarcinoma cell line Capan-1compared to normal

pancreatic ductal epithelial cells. Based on this, we used two

different siRNAs to knock down NAT10 and verified the

knockdown efficiency of the siRNAs by WB. We evaluated the

differential changes in cell migration and clonogenic ability after

the NAT10 knockdown based on the above correlation analysis. We

found that: NAT10 knockdown significantly inhibited the migration

and clonogenic ability of pancreatic ductal adenocarcinoma cells. In

addition, as to how NAT10 plays a role in promoting cancer, the

following arguments are selected to support the above experimental

results: NAT10 promotes tumor cell migration and EMT

transformation by regulating mRNA N4-acetylcytidine (ac4C)

modification pathway. And NAT10, by offering the ubiquitin

USP39, prevents its ubiquitination dependent degradation. As the

key regulatory factor of mRNA ac4c modification, the NAT10 is

shown to maintain the stability of the oncogene expression and

improve its translation efficiency through ac4c modification (51, 52).
5 Conclusion

To conclude, this study examined the correlation between NAT10

expression levels and pancreatic ductal adenocarcinoma patients’

clinical characteristics. We constructed a prognostic prediction model

for pancreatic ductal adenocarcinoma based on genes involved in

NAT10-mediated ac4C modification using data related to pancreatic

ductal adenocarcinoma patients from the TCGA, GEO databases for

the diagnosis and treatment of pancreatic ductal adenocarcinoma.
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