
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wen Tan,
Lanzhou University, China

REVIEWED BY

Xianfeng Hui,
Xinxiang Medical University, China
Huayi Yang,
Macau University of Science and
Technology, China

*CORRESPONDENCE

Chung-Nga Ko

chungngako@gmail.com

Kai Wang

wangkai@swmu.edu.cn

Haiyong Wang

wanghaiyong6688@126.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Nutritional Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 28 December 2022

ACCEPTED 28 February 2023
PUBLISHED 10 March 2023

CITATION

Yang C, Li D, Ko C-N, Wang K and Wang H
(2023) Active ingredients of traditional
Chinese medicine for enhancing the effect
of tumor immunotherapy.
Front. Immunol. 14:1133050.
doi: 10.3389/fimmu.2023.1133050

COPYRIGHT

© 2023 Yang, Li, Ko, Wang and Wang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 10 March 2023

DOI 10.3389/fimmu.2023.1133050
Active ingredients of
traditional Chinese medicine
for enhancing the effect of
tumor immunotherapy

Chao Yang1†, Dan Li2†, Chung-Nga Ko3*, Kai Wang4*

and Haiyong Wang5*

1National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application,
Zhejiang Ocean University, Zhoushan, Zhejiang, China, 2State Key Laboratory of Southwestern
Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese
Medicine, Chengdu, China, 3C-MER Dennis Lam and Partners Eye Center, Hong Kong International
Eye Care Group, Hong Kong, China, 4Research Center for Preclinical Medicine, Southwest Medical
University, Luzhou, China, 5Department of Internal Medicine Oncology, Shandong Cancer Hospital
and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences,
Jinan, China
Immunotherapy is a type of treatment that uses our own immune system to fight

cancer. Studies have shown that traditional Chinese medicine (TCM) has

antitumor activity and can enhance host immunity. This article briefly describes

the immunomodulatory and escape mechanisms in tumors, as well as highlights

and summarizes the antitumor immunomodulatory activities of some

representative active ingredients of TCM. Finally, this article puts forward some

opinions on the future research and clinical application of TCM, aiming to

promote the clinical applications of TCM in tumor immunotherapy and to

provide new ideas for the research of tumor immunotherapy using TCM.
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1 Introduction

Malignant tumors are cancerous tumors that have cells growing uncontrollably. If the

condition remains untreated, malignant cells can spread to distant sites via the lymphatic

system and bloodstream and become life-threatening (1). The rate of new cases of

malignant tumors has been increasing over the past years, and the incidence of early-

onset cancers is on the rise worldwide (2, 3). Traditional tumor treatment methods, such as

radiotherapy, chemotherapy and surgery, have drawbacks of easy recurrence, large side

effects and low survival rate (4). Immune homeostasis is regulated and maintained by the

immune system, which is made up of immune organs, immune tissues, immune cells and

immune factors. On the other hand, immune disorders can lead to the occurrence and

progression of different immune diseases (5–7). Tumor immunotherapy, which specifically
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kills and removes tumor cells by activating the autoimmune system

and enhancing autoimmunity, is considered the only possible

method to completely remove tumor cells (8, 9). Therefore,

tumor treatment strategies that regulate immune activity have

attracted increasing attention from researchers.

Traditional Chinese medicines (TCM) are known as a renowned

source of medicinal compounds. They offer advantages of low cost,

structural and functional diversity, and few side effects, and has a critical

role in the long history of Chinese civilization (10, 11). However, the

complex components of TCM, the unclear pharmacological mechanism

of action, and the slow onset of action have significantly hindered its

development (12, 13). With advances in science and technology and the

improvement of the public’s understanding of TCM, there has been a

worldwide upsurge in the research and development of TCM. Several

studies have shown that some TCM are beneficial in improving the

clinical symptoms of COVID-19 (14–16).

Currently, a variety of TCMs have been reported to have

antitumor activity as well as to enhance immunity and survival

rate of patients. Some studies suggest that TCM offer advantages

over Western medicine at a certain stage of cancer treatment (17–

19). Therefore, identifying the active substances in TCM and

understanding their antitumor pharmacological mechanisms are

crucial for the development of TCM in the future. This article

describes the main regulatory mechanisms of tumor and body

immunity, summarizes the representative active ingredients of

TCM that play an immunoregulatory role in tumor treatment,

and discusses their pharmacological mechanisms.
2 Immune regulation in tumors

Cancer immunoediting is the process of interaction and mutual

influence between tumor cells and the body’s immune system (20,

21). Cancer immune regulation consists of three stages, namely, 1)

elimination phase, 2) equilibrium phase and 3) escape phase (22,

23). During the elimination phase, the mutated “non-self” cells in

the body are recognized and eliminated specifically by the

surveillance function of the immune system (24). However, tumor

cells with more mutations can alter their own characteristics and

evade immune surveillance (25). As a result, the immune system

cannot completely clear tumor cells. In this stage, tumor cells

cannot significantly proliferate and expand due to the immune-

mediated killing and immune stress (26, 27). The inhibitory activity

of the immune system and the proliferative activity of tumor cells

have reached a dynamic balance (28, 29). Subsequently, due to

immunosuppression, exhaustion, or tumor cells mutation, the

balance between the immune response and tumor activity is

disrupted, allowing the mutated tumor cells to escape the

immune pressure (30). During the escape phase, these tumor cells

continue to clonally proliferate, eventually forming a clinically

detectable, progressively growing tumor (31). In addition, tumor

growth also establishes an immunosuppressive microenvironment,

which further aids tumor cell escape and proliferation (32, 33).
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2.1 Mechanisms of tumor immune escape

Accumulated evidence has shown that the immune escape

mechanisms of tumors mainly include the following aspects:

2.1.1 Lower immunogenicity
Tumor cells with strong immunogenicity can induce antitumor

immune responses and are easily eliminated (34). On the other

hand, tumor cells with weak immunogenicity can escape the

immune recognition and surveillance and achieve selective

proliferation (35, 36). Therefore, reducing or losing the

expression of MHC class I molecules on the surface of tumor

cells is one of the main reasons for their immune escape (37, 38).

Losing or downregulation of MHC class I molecules could result in

a failure to present intracellular antigens on cell surface, and thus a

failure to activate T cells (39, 40). Consequently, immune tolerance

is achieved due to the non-response of T cell immunity, giving

tumor cells the ability to evade surveillance of the immune system.

2.1.2 Tumor cell antigen modulation or
antigen deletion

Some tumor cells express antigens similar to those of normal

cells, which cannot induce the body to generate an effective

antitumor immune response (41, 42). Furthermore, when the

immune system recognizes and attacks the antigens that are

originally expressed by tumor cells, some tumor cells can reduce

or even eliminate these antigens through antibody-induced antigen

internalization and mutation of the antigen itself, thereby escaping

the fate of immune killing (43).

2.1.3 Abnormal tumor cell costimulatory signaling
In addition to TCR recognition, costimulatory signals expressed

by tumor cells could also cause T cells activation (44). For example,

the B7 family members are important costimulatory molecules

responsible for regulating T cell proliferation and cytokine

production (45). Many tumor cells lack B7 or other costimulatory

signaling molecules and cannot activate T cells (46). Moreover,

while positive costimulatory molecules (e.g. CD80 and CD86) are

rarely expressed by tumor cells, negative costimulatory signals (e.g.

PD-L1) are expressed. As a result, antitumor immune responses

cannot be effectively induced (47).

2.1.4 Tumor-induced exemption regions
A variety of molecules, for example collagen, can be excreted by

tumor cells and serve as a physical barrier around the tumor in

order to prevent the entrance of antigen-presenting cells (APC) and

lymphocytes into the tumor area (48).

2.1.5 Suppression of immune response
Tumor cells actively induce the body to produce tumor-

associated macrophages, myeloid suppressor cells and regulatory

T cells (Tregs) to suppress the body’s immune response (49).
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2.1.6 Targeting T cells
Protein factors secreted by some tumor cells, such as PD-L1 and

FasL can inhibit T cell proliferation or even induce T cell apoptosis

(50, 51).

2.1.7 Tumor cell-induced immunosuppression
Immunosuppressive molecules produced by tumor cells, such

as IL-10, TGF-b, IDO or PD-L1, can directly suppress the immune

response (52, 53). Meanwhile, tumor cells can also recruit

regulatory T cells that secrete immunosuppressive cytokines

(54, 55).
2.2 Tumor microenvironment

Tumor microenvironment (TME) is the living environment of

tumor cells, mainly including tumor cells and various surrounding

cells, such as B lymphocytes, T lymphocytes, natural killer cells (NK

cells), tumor-associated macrophages (TAMs), myeloid-derived

suppressor cells (MDSCs), tumor-associated neutrophils (TANs),

and dendritic cells (DCs)); blood and lymphatic vessels; as well as

the intercellular substance, microvessels, and bioactive molecules

infiltrating into the surrounding area (56). Hypoxia, acidification,

interstitial hypertension, vascular hyperpermeability, inflammatory

reactivity, and immunosuppression are the main features of TME

(57). TME contains a variety of immunosuppressive molecules,

which can protect tumor cells from cytotoxic T lymphocytes as well

as enhance the immunosuppressive function of Tregs and MDSCs

(58). This in turn promotes tumor growth and development.
2.3 Immune cells in the TME

2.3.1 Regulatory T cells
Tregs are a class of mature T cell subsets with immunosuppressive

activity. They regulate the body’s immune system by actively regulating

the proliferation and activation of autoreactive T cells. Treg cells are

one of the important factors in maintaining the immune homeostasis

of the body. When the immunosuppressive function of Treg cells is

weakened or declined, the functions of killer T cells and helper T cells

(Th cells) are enhanced, which can cause autoimmune diseases, such as

systemic lupus erythematosus, multiple sclerosis, and rheumatoid

arthritis (59). However, when the immunosuppressive function of

Treg cells is too strong, the functions of killer T cells and Th cells

are inhibited so that the immune system cannot effectively phagocytose

pathogens, thereby causing diseases, such as viral infection and tumor

escape (60).

2.3.2 Helper T cells
Th cells are a major component of the immune system, and

their main surface marker is CD4 (61). Antigen receptors on Th

cells surface can recognize fragments of antigens presented by MHC

class II molecules of APC (62). They can also assist CD8+ T cells

and B cells in producing cytokines, thereby activating or regulating

stromal cells, epithelial cells and innate immune cells, among others
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(63). Activated Th cells regulate or assist immune responses by

secreting cytokines (64).

2.3.3 Cytotoxic T cells
Cytotoxic T cells (CTL or Tc cells), also known as killer T cells,

are surveillance cells that can directly attack tumor cells with

heteroantigens, virus-infected cells and foreign cells (65). Tc cells

can induce lysis or apoptosis of target cells by secreting perforin or

granzyme (66). Memory T cells are antigen-experienced cells

differentiated from Tc cells that have memory for antigen-bearing

target cells. Once they encounter target cells with specific invading

antigens, they stimulate Tc cells to produce effector T cells to

destroy infected cells or cancer cells (67).

2.3.4 B cells
B cells is a type of professional antigen-presenting cell derived

from pluripotent stem cells of the bone marrow (68). Activated B

cells bind to soluble antigens through their surface BCRs and

present them to CD4+ T cells in the form of antigenic peptide-

MHC molecule complexes (69). Activated B cells can generate a

large number of cytokines and play a role in inflammatory response,

immune regulation, and hematopoiesis (70). B cells infiltrating

tumors can exert antitumor immunity by driving complement

activation, phagocytosis and antibody-dependent cell-mediated

cytotoxicity (71).

2.3.5 Macrophages
Macrophages are a type of white blood cell derived from bone

marrow stem cells. They develop into monocytes and then

distribute to various organs and tissues via the blood.

Macrophages play an important role in engulfing and digesting

pathogens and maintaining tissue homeostasis (72). TAMs

infiltrating tumor tissues are highly plastic and heterogeneous.

Proinflammatory cytokines, such as Toll-like receptor (TLR)

agonists, can promote TAMs polarization to the M1 type, while

colony-stimulating factor 1 and interleukin-4 (IL-4) induce

polarization of TAMs toward the M2 type (73). The

proinflammatory factors tumor necrosis factor (TNF-a), IL-6, IL-
10, IL-23, nitric oxide (NO) and reactive oxygen species (ROS)

secreted by M1 macrophages can significantly increase the

inhibition of tumor cell proliferation. M2 macrophages secrete

epidermal growth factor (EGF), matrix metalloprotein 9 (MMP-

9) and the anti-inflammatory factor IL-10 to promote tumor

progression (74).

2.3.6 Neutrophils
Neutrophils, the most abundant type of granulocyte that make

up 40% to 70% of all white blood cells in humans, play a critical role

in the innate immune system (75). Neutrophils have a variety of

specific receptors (e.g. complement receptors), and can produce

cytokines (e.g. IFN-g and interleukins), chemokines, lectins, and

other proteins (76). In addition, neutrophils express receptors for

detection and adhesion of the endothelium and Fc receptors for

opsonins (77). TNF-a and interferon-b induce neutrophils to

polarize toward the antitumor N1 type with high immune activity
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and promote CD8+ T cell activation (78). IL-8 and TGF-b also

promote the polarization of TANs to the tumor-promoting N2 type,

thereby inhibiting tumor immunity and accelerating tumor

progression (79).

2.3.7 Dendritic cells
CD34+ hematopoietic stem cell DCs derived from bone marrow

are the most functional professional APC in the body, which can

efficiently take up, process and present antigens, including surface-

expressing antigen-presenting molecules (MHC class I, MHC class

II and CD1 molecules), costimulatory molecules (B7-1, B7-2) and

CD40 (80). In addition, DCs are the only APCs that can activate

naïve T cells and play a key role in T cell activation and

differentiation (81). Meanwhile, the growth factors and cytokines

produced by DCs can enhance the activity of immune cells, such as

NK cells and T cells, and establish a complete antitumor immune

response (82).

2.3.8 Myeloid-derived suppressor cells
MDSCs, an immunosuppressive innate cell population composed

of immature myeloid progenitors, is a class of cells that could not

differentiate into macrophages, granulocytes and DCs (83). MDSCs

can display potent immunosuppressive activity through multiple

regulatory mechanisms, such as producing reactive oxygen species

and nitrogen, inducing immunosuppressive cells, depleting

metabolites critical for T cell function, blocking lymphocyte

homing, expressing regulatory glands, expressing extracellular

enzymes of glycoside metabolism, and expressing negative immune

checkpoint molecules (84). Therefore, MDSCs are implicated in

malignant tumors and are potential targets for tumor therapy.

2.3.9 Natural killer cells
NK cells are primarily involved in the body’s first line of defense

against tumors. The molecular basis for NK cells to identify and

eliminate transformed cells are based on the expression of MHC-I-

specific inhibitory receptors on the NK cell surface. Tumor cells

having down-modulated expression of surface MHC-I become

susceptible to attack by NK cells (85). Furthermore, Fc receptors

on the surface of NK cells can recognize the Fc portion of IgG

antibodies and provide NK cells the ability to recognize and kill the

IgG-coated tumor cells. NK cells also have natural cytotoxicity

receptors (NCRs) that bind to antigens on the surface of tumor cells,

thereby lysing tumor cells (86). NK cells and B cells can non-

specifically kill tumor cells without antigen presentation (87). In

addition, NK cells can help the response and formation of tumor-

specific CD4+ and CD8+ T cells (88).

2.3.10 Mast cells
Mast cells, also known as mastocyte, are resident cell of

connective tissue derived from CD34+ myeloid precursor cells.

They circulate in blood and migrate to the vicinity of systemic

lymphatics, blood vessels, and mucosal surfaces (such as the

gastrointestinal tract and skin) and are involved in the

coordination of innate and adaptive immunity (89). Mast cells

have been found to have either protumor or antitumor effects,
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depending on the tumor type, cancer stage, mast cell activation

status, the balance of tumor-promoting and antitumor effects on

tumor cells, and the location of mast cells in the TME (90).

Chemokines (e.g., CCL3 and CXCL8), cytokines, and other

factors released by mast cells are able to recruit other immune

cells (e.g. macrophages, MDSCs, neutrophils, NK cells, and DCs)

into the TME and alter its activity or function (91).
3 Antitumor immunomodulatory
activity of active ingredients of TCM

TCM is the crystallization of thousands of years of medical

practice (92). The composition of TCM is complex. Although their

active ingredients and pharmacological mechanism of action are

unknown, clinical trials have shown that TCM can significantly

prolong the postoperative survival time of tumor patients in the

treatment and prevention of cancer recurrence and metastasis. At

present, many studies have analyzed and verified the antitumor

immunomodulatory activity of TCM monomers or single

components, including polysaccharides, alkaloids, flavonoids, and

terpenes (93–95). Due to the diversity of active ingredients in TCM

and their promising pharmacological effects, representative

compounds of TCM and their antitumor immunomodulatory

activities are discussed in this section.
3.1 Alkaloids

Alkaloids are a class of natural nitrogen-containing alkaline

compounds that possess a variety of physiological effects (96).

Especially, alkaloids that contain complex nitrogen heterocyclic

ring structure usually have significant biological activity and are

important active ingredients in TCM. Alkaloid components in

TCM are high-efficiency and low-toxicity antitumor compounds

and are widely used in the medical field.

Berberine (BBR) is an alkaloid isolated from the TCM Coptis

chinensis with significant antitumor activity (11, 97). Continuous

DOX treatment can cause HL-60 cells to differentiate toward N2,

resulting in chemoresistance. BBR can downregulate DOX-

mediated expression of CD133 and CD309 in neutrophils,

thereby inhibiting PD-1/PD-L1-mediated chemotherapy tolerance

and immune rejection (98). Furthermore, BBR triggers PD-L1

ubiquitination and degradation through a ubiquitin (Ub)/

proteasome-dependent pathway (97). Recent studies suggest that

BBR also inhibits the expression of CD47, whose mediates immune

escape, results in limited efficacy of rituximab and enhances

phagocytosis by macrophages (99). In a melanoma model, BBR

increased CD40 andMHC-II expression on macrophages, increased

the number of IFNg-producing CD4 T cells and the CTL activity.

Previous studies also suggest that BBR can promote NK cell

infiltration, increase the expression of inflammatory factors such

as IL-6, and activate the apoptosis pathway (100). Therefore, the

antitumor immunomodulatory activities of BBR mainly include

targeting immune checkpoints, increasing NK cell activity,
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regulating the neutrophil phenotype, inducing macrophage

polarization, and inhibiting the expression of inflammatory

factors (Figure 1).

Matrine is an alkaloid that possess various pharmacological

activities and can be extracted from Sophora flavescens by organic

solvents, such as ethanol. The antitumor activity of matrine includes

inducing tumor cell differentiation and apoptosis, inhibiting tumor

cell proliferation and metastasis, inhibiting telomerase activity,

inhibiting tumor angiogenesis and inhibiting tumor drug

resistance, as well as increasing the activity of white blood cells to

enhance the body’s immunity.

Metastasis is responsible for nearly 90% of lung cancer deaths.

Matrine inhibits lung cancer metastasis by enhancing T cell

proliferation and inhibiting M2-like tumor-associated

macrophage polarization (101). In leukemia treatment, matrine

enhances the killing activity of NK cells on K562 cells by

inhibiting IL-6-mediated JAK/STAT3 signaling in K562 cells. On

the other hand, matrine significantly enhances antitumor immune

activity by enhancing DC cell maturation, activation and

differentiation (102). In addition, matrine promotes the secretion

of inflammatory cytokines by regulating the TLR signaling pathway,

which further enhances the body’s immune function (103).
3.2 Flavonoids

Flavonoids, a class of yellow pigments derived from flavonoids

(2-phenylchromone), are present in a variety of fruits, vegetables,
Frontiers in Immunology 05
TCMs and other plants. Flavonoids possess a wide variety of

biological activities, including anti-inflammatory, antioxidant,

antitumor and hypoglycemic activities, as well as alleviation of

vascular hyperplasia.

Epigallocatechin gallate (EGCG) is the most effective active

ingredient in tea polyphenols and has been found to possess

antioxidant, antiviral, antibacterial, antiarteriosclerosis,

antithrombotic, antivascular proliferation, anti-inflammatory and

antitumor effects. EGCG is an immune checkpoint inhibitor that

can significantly downregulate the expression of PD-L1 induced by

epidermal growth factor (EGF) or IFN-g (104). Meanwhile, EGCG

inhibits the JAK/STAT signaling pathway in tumor cells, activates T

cells, and enhances the antitumor immune response (105). In an

oral cancer study, it was found that EGCG significantly inhibited

the expression of IDO by blockage of the IFN-g-induced JAK-

STAT1 signaling pathway (106). Therefore, EGCG can inhibit IDO-

mediated immune escape to a certain extent or can be used as a

potential targeted immunotherapy drug. In leukemia models,

different doses of EGCG have different immunomodulatory

activities, such as promoting natural killer cell activity, promoting

phagocytosis of macrophages, and T cell proliferation (107).

Furthermore, EGCG can inhibit M2 polarization and TAMs

infiltration by inhibiting the expression of monocyte chemokines

(CSF-1 and CCL-2) and HIF-1a, thereby inhibiting the

development of breast cancer in mice (108, 109).

Apigenin, also known as chamomile, apigenol, apigenine,

versulin, and others, can be found in a variety of vegetables,

fruits, and plants. It has been confirmed that apigenin has
FIGURE 1

Major signaling pathways and immune cells involved in TCM-mediated anti-tumor immune activity.
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biological activities, such as vasodilation; lowering blood pressure;

lowering blood lipids; and acting as an anti-inflammatory,

antitumor, and antioxidant factor.

After coculturing liver cancer patients-derived NK cells with

apigenin, the expression levels of its activating receptors NKp44,

NKp30 and NKG2D were significantly increased, while the level of

TGF-b1 was decreased (110). Mechanistic studies have shown that

apigenin increases the sensitivity of HCC cells to NK cells through

HIF-1a. Apigenin can strongly inhibit STAT1 activation and IFN-g-
induced PD-L1 expression in tumor cells and enhance T cell-

mediated killing (111, 112). In addition, apigenin inhibits

the infiltration of TAMs and other leukocyte subsets in tumors,

such as IL-1a, IL-6, granulocyte macrophage colony stimulating

factor (GMCSF) and CCL2 (113–115). The expansion of

immunosuppressive MDSCs and TAMs in the inflammatory TME

results in ineffective immunotherapy for many tumors. Apigenin can

enhance the proportion of tumor-killing macrophages by inducing

the expression of SHIP-1, thereby enhancing the antitumor immune

response (116, 117). Moreover, apigenin is also involved in

maintaining T cell homeostasis in mouse pancreatic cancer (118).

Other antitumor immune activities of apigenin have been reviewed

by Huang et al. and are not discussed here (119).
3.3 Saponins

Saponins are naturally-ocurring glycosides with complex

structures. They are widely distributed in all cells of legume

plants. As an active ingredient in many TCMs, actions of

saponins include anti-inflammation, inhibition of the growth of

various tumor cells and improvement of the activity of

immune cells.

Ginsenosides is a class of steroid glycoside present in ginseng.

Ginsenoside has pharmacological activities, such as improving

immunity, anti-aging, antibacterial, anti-fatigue, and antitumor

properties. Ginsenosides can directly activate CD4+ T cells,

promote T cells differentiation into Th cells, and enhance the

immune response [30]. When tumor cells are killed by external

stimuli, the process that the cells transform from a non-immunogenic

to immunogenic state to mediate the body’s antitumor immune

response is called immunogenic cell death (ICD). Ginsenosides can

kill both immunogenic and nonimmunogenic tumor cells by

enhancing DC function and inducing apoptosis (120). A recent

study revealed that ginsenosides could attenuate the expression of

cisplatin-inducing PD-L1 in non-small cell lung cancer cells (A549/

DDP cells) and enhance the killing activity of T cells against tumor

cells (121). When used in combination with other chemotherapeutic

drugs, ginsenosides can enhance antitumor activity and reduce side

effects. For example, cyclophosphamide (CTX) has unstable efficacy

and serious side effects, and its application has been greatly limited.

Wang et al. showed that ginsenosides could promote the antitumor

activity of CTX by enhanacing the proliferation of intestinal

probiotics and also alleviate CTX-induced intestinal mucositis by

activating the Nrf2 signaling pathway (122). Furthermore,
Frontiers in Immunology 06
ginsenosides enhance macrophage innate immune responses by

activating the LPS-induced mTOR/Akt signaling axis (123).
3.4 Terpenoids

Terpenoids are the most abundant class of compounds in

natural substances and are the main components of the essences,

resins, and pigments of certain plants. In addition, some animal

hormones and vitamins also belong to terpenoids. Therefore,

terpenoids are important compounds in TCM and are

indispensable raw materials for the chemical and food industries.

Triptolide (TP) is an epoxy diterpene lactone compound that

can be isolated from the roots, flowers, leaves and fruits of

Tripterygium wilfordii. Tp is also a natural product with various

pharmacological activities, such as anti-senile dementia,

antioxidant, antitumor and antibacterial activities.

Recently, Jiang et al. discovered the mechanism by which TP

remodels the TME. TP remodels the TME in the colorectum by

downregulating the expression of CD206 and IL-10 and inducing

macrophage polarization (124). Similar to other active ingredients

of TCM, TP can inhibit the expression of PD-L1 induced by IFN-g
or chemotherapy resistance, significantly enhance the secretion of

TNF-a and IL-2, and improve the NK cells activity (125–127).

Chen et al. found that TP exerts tumor immunosuppressive effects

by inhibiting DC maturation and trafficking (128). In addition, TP

can enhance antitumor immunity by inhibiting the expression of

Treg cells and IL-10 and TGFb (129). TP was also found to

significantly upregulate the cell populations of B cells (CD19), T

cells (CD3), macrophages (Mac-3) and monocytes (CD11b) in

leukemia cells, enhancing the phagocytosis of macrophages (130).
3.5 Phenols

Phenolic compounds are widely found in foods in the human

diet as well as in plants, and their applications in human health has

been widely studied.

Resveratrol, a phytoalexin produced by plants to resist external stress,

is widely found in berries, peanuts, mulberries, grapes, and other fruits.

Resveratrol has been found to enhance antitumor immune

activity by inhibiting PD-1 expression or blocking the PD-1

signaling pathway in various tumors (131, 132). Meanwhile,

downregulated PD-1 may amplify the Th1 immune response and

promote the activity of CD8+ T cells (133). Resveratrol treatment

can enhance/restore the killing activity of NK cells in human and

mouse whole blood and significantly inhibit growth and metastasis

of tumor (134). It was suggested that resveratrol upregulates the

expression of c-Myb by activation of the AKT/mTORC2 signaling

pathway, thereby activating NK cells (135). In addition, resveratrol

can enhance the susceptibility of breast cancer cells to NK cells

through inhibiting the expression of c-Myc (136). Furthermore,

resveratrol can reduce the number of CD8+CD122+ T cells and M2

TAMs by inhibiting the secretion of cytokines (IL-10 and TGF-b1)
frontiersin.or
g

https://doi.org/10.3389/fimmu.2023.1133050
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1133050
and the phosphorylation of STAT3 while inhibiting M2

macrophage polarization (137–139).
3.6 Polysaccharides

Polysaccharides are the most abundant naturally occurring

macromolecular compounds, which are widely present in higher

plants, algae, fungi and animals. Polysaccharides have various

pharmacological activities and are widely used as clinical drugs

and nutritional health care products.

Astragalus polysaccharide (APS), a type of water-soluble

polysaccharide, is one of the most important natural active

ingredients derived from Astragalus. In recent years, APS has

attracted much attention due to their promising activities in anti-

aging, regulating blood sugar levels, and immune activity.

Currently, APS is used as a synergistic immune enhancer in

breast cancer treatment. Further mechanistic studies have shown

that APS regulates immunity by activating multiple signaling

pathways, including the activation of macrophages and the TLR4-

mediated MyD88 signaling pathway (140, 141). APS can be used as

an immune adjuvant in tumor chemotherapy because it can

enhance lymphocyte proliferation and macrophage phagocytosis

and, when combined with 5-FU, it reduces the immunosuppressive

activity of 5-FU (142). Huang et al. shows that APS inhibits

cytokines (IL-4, IL-6, IL-13, IL-17, IL-1b, IFN-g and GM-CSF),

and immunosuppressive agent (IL-10 and IL-12) expression, which

helps in improving the quality of life of patients with advanced

cancer (143). In APS-treated melanoma mice, it was found that the
Frontiers in Immunology 07
number of MDSCs and the expression of related factors (TGF-b, IL-
10 and Arg-1) were significantly downregulated, and the activities

of CD8+ T cells were significantly upregulated (144). gdT cell,

which is the main subgroup of intraepithelial lymphocytes, has a

critical role in maintaining intestinal mucosal homeostasis and

immune regulation. APS also involves in the promotion of gdT
cells proliferation and activation of gdT cells in vivo (145).

Furthermore, APS can enhance the antitumor immune activity of

T cells by regulating M2 macrophage polarization and promoting

DC maturation (146).
4 Conclusion and Outlook

In recent years, the significance of the body’s immunomodulatory

activities in tumor treatment has been evidently supported, thus

promoting the advent of a variety of promising new tumor

immunotherapies. While TCM are rich sources of medicinal

compounds and have good biological activities, no modulators for

clinical use in tumor immunotherapy have been approved. This

article summarizes the immunomodulatory activity and mechanism

of action of various active components of TCM in tumor therapy.

The mechanisms of TCM active components in tumor immune

regulation, including the promotion of T cell proliferation,

enhancement of the activity of T cells and NK cells, inhibition of

immune checkpoints, enhancement of the activity of tumor-

associated macrophages, regulation of the polarization of tumor-

associated macrophages, promotion of DC maturation, and

inhibition of MDSC, are complex and diverse (Table 1).
TABLE 1 Mechanism of action of TCM active components in regulating tumor immunity.

Alkaloids Flavonoids Saponins Terpenoids Phenols Polysaccharides

Berberine Matrine Apigenin Epigallocatechin
gallate Ginsenosides Triptolide Resveratrol Astragalus

polysaccharide

promoting T
cell
proliferation

✓ ✓ ✓ ○ ✓ ○ ✓ ✓

enhancing the
activity of T
cells and NK
cells

✓ ✓ ✓ ✓ ✓ ✓ ✓ ○

inhibiting
immune
checkpoints

✓ ○ ✓ ✓ ✓ ✓ ✓ ✓

enhancing the
activity of
TAMs

✓ ○ ✓ ✓ ✓ ○ ✓ ✓

Promoting DC
maturation

○ ✓ ○ ○ ✓ ✓ ○ ✓

regulating the
polarization of
TAMs

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

inhibiting
MSDC

✓ ○ ✓ ✓ ✓ ✓ ○ ✓
✓ means reported.
○ means not reported.
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In addition to the active compounds listed in this

paper, more immunomodulatory activities of the active

components of TCM have also been reported (17, 147–152).

However, the targets of these active compounds and their

immunomodulatory activities remain unclear. On the other

hand, the active ingredients of TCM that have been discovered

nowadays only represent a small portion of TCM, and more

research is needed to explore other active ingredients and new

action targets/mechanisdms of TCM. The constantly updated

cutting-edge technologies, such as spatial transcriptome,

single-cell sequencing, and nano-delivery technology, have

also paved the way for the exploration of new targets for

immune regulation and the clinical application of TCM

(153–156).
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65. Martıńez-Lostao L, Anel A, Pardo J. How do cytotoxic lymphocytes kill cancer
cells? Clin Cancer Res (2015) 21:5047–56. doi: 10.1158/1078-0432.Ccr-15-0685

66. Govendir MA, Kempe D, Sianati S, Cremasco J, Mazalo JK, Colakoglu F, et al. T
Cell cytoskeletal forces shape synapse topography for targeted lysis via membrane
curvature bias of perforin. Dev Cell (2022) 57:2237–2247.e2238. doi: 10.1016/
j.devcel.2022.08.012

67. Oh DY, Fong L. Cytotoxic CD4(+) T cells in cancer: Expanding the immune
effector toolbox. Immunity (2021) 54:2701–11. doi: 10.1016/j.immuni.2021.11.015

68. Mashima H, Zhang R, Kobayashi T, Tsukamoto H, Liu T, Iwama T, et al.
Improved safety of induced pluripotent stem cell-derived antigen-presenting cell-based
cancer immunotherapy. Mol Ther Methods Clin Dev (2021) 21:171–9. doi: 10.1016/
j.omtm.2021.03.002

69. Ghosh D, Jiang W, Mukhopadhyay D, Mellins ED. New insights into b cells as
antigen presenting cells. Curr Opin Immunol (2021) 70:129–37. doi: 10.1016/
j.coi.2021.06.003

70. Chekol Abebe E, Asmamaw Dejenie T, Mengie Ayele T, Dagnew Baye N,
Agegnehu Teshome A, Tilahun Muche Z. The role of regulatory b cells in health and
diseases: A systemic review. J Inflammation Res (2021) 14:75–84. doi: 10.2147/
jir.S286426

71. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor
immunity. Front Immunol (2020) 11:583084. doi: 10.3389/fimmu.2020.583084

72. Xu R, Zhang F, Chai R, ZhouW, Hu M, Liu B, et al. Exosomes derived from pro-
inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and
myocardial injury via mediating macrophage polarization. J Cell Mol Med (2019)
23:7617–31. doi: 10.1111/jcmm.14635

73. Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in
tumor progression: implications on therapeutic strategies. Exp Hematol Oncol (2021)
10:60. doi: 10.1186/s40164-021-00252-z

74. Lin CY, Chen WL, Huang YC, Lim CL, Yang CH. Gum Arabic in combination
with IFN-g promotes the M1 polarization in macrophage. Int J Biol Macromol (2022)
209:506–12. doi: 10.1016/j.ijbiomac.2022.04.024

75. Ronchetti L, Boubaker NS, Barba M, Vici P, Gurtner A, Piaggio G. Neutrophil
extracellular traps in cancer: not only catching microbes. J Exp Clin Cancer Res (2021)
40:231. doi: 10.1186/s13046-021-02036-z

76. Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in
health and disease: double-edged swords. Cell Mol Immunol (2020) 17:433–50.
doi: 10.1038/s41423-020-0412-0
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