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Ankylosing spondylitis (AS) is a type of arthritis that primarily affects the spine and

involves disorders of the immune and skeletal systems. However, the exact

pathogenesis of AS is not fully understood. Non-coding RNAs (ncRNAs),

particularly, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and

micro RNAs (miRNAs) and their interactions have been shown to influence many

biological processes such as inflammatory responses, osteogenic differentiation

and apoptosis, pyroptosis, and proliferation. In addition, ncRNAs reflect the

disease activity of AS. In this review, we discuss the regulatory roles of ncRNAs

in AS cell functions (inflammatory responses, cellular osteogenic differentiation

and apoptosis, pyroptosis, and proliferation) and their potential applications in AS

diagnosis and treatment. Understanding the role of ncRNAs in the pathogenesis

of AS will lay the foundation for exploring potential new therapeutic approaches

for AS.
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1 Introduction

Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by

systemic inflammation and osteogenesis (1, 2), and is a highly disabling and destructive

type of arthritis (3). AS affects 0.09%-0.3% of the global population (4) and occurs mostly in

young people (5). It causes severe back pain and stiffness, which leads to decreased function

and eventually spinal and pelvic fusion, imposing a significant burden on patients and the

society (6, 7). In recent years, multiple factors contributing to the development of AS have

been identified, including infections, environmental triggers, and genetic susceptibility,

especially immune disorders (8–10).

Inflammation and stiffness are the primary manifestations of AS (11). Treatment with

non-steroidal anti-inflammatory drugs (NSAIDs) and biologics, including tumor necrosis

factor inhibitors (TNFi), interleukin-17 inhibitors (IL-17i), and more recently, Janus kinase

inhibitors, has led to significant improvements in clinical symptoms and quality of life (12–
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14). In addition, recent studies have shown that biological agents

have the potential to inhibit new bone formation in a sustained

manner (11). However, for patients with a high disease activity or in

whom the process of bone remodeling has already started,

inhibition of inflammation will not be sufficient. Surgical

intervention is inevitable to improve pain and joint motion (15).

Despite recent advances in AS drug development, the functional

outcome for many AS patients remains unsatisfactory. In particular,

the development of new therapies is challenged by the fact that the

pathogenesis of AS is still unclear (16). Therefore, new molecular

targets must be identified.

Non-coding RNAs (ncRNAs) have recently attracted considerable

attention caused by their critical role in biology (17). They are divided

into housekeeping ncRNAs (such as transfer RNA (tRNA) and

ribosomal RNA (rRNA)) and regulatory ncRNAs. Regulatory

ncRNAs include micro RNAs (miRNAs), long non-coding RNAs

(lncRNAs), and circular RNAs (circRNAs) (18). The competing

endogenous RNA (ceRNA) hypothesis, proposed in 2011 based on

experimental and theoretical studies, states that RNAs can
Frontiers in Immunology 02
communicate with each other and post-transcriptionally regulate

gene expression by binding to miRNA binding sites (19). Different

RNAs will formmultiple regulatory relationships, which will eventually

form a ceRNA network. Currently, studies are being conducted on the

pathogenesis of ceRNA-related diseases, and various ncRNAs (e.g.,

lncRNAs, miRNAs, circRNAs) and ceRNA networks constructed from

differentially expressed ncRNAs have been shown to be related to the

pathogenesis of various autoimmune diseases (20–23), further

illustrating the interconnection between different RNA molecules and

the regulation of gene expression. The construction of ceRNA

regulatory networks is of great importance to further understand the

functions of ncRNAs. The interconnection and altered regulatory

expression of different RNA molecules may also be involved in the

pathogenesis of AS.

In this review, we focus on the roles and possible mechanisms of

three ncRNAs (lncRNAs, miRNAs, and circRNAs) in AS (Table 1)

and discuss the role of ceRNA networks associated with lncRNAs/

circRNAs in the pathogenesis of AS (Figure 1). This will help in the

diagnosis and treatment of AS.
TABLE 1 Regulatory functions of ncRNAs in ankylosing spondylitis cells.

ncRNAs Name Expression Target
genes

Source Action References

miRNA miR-451 down MIF PBMCs Inhibits inflammation (24)

miR−150−5p down VDR Ligament fibroblasts Inhibits osteogenic differentiation (25)

miR−204−5p down Notch2 Ligament fibroblasts Inhibits osteogenic differentiation (26)

miR−148a−3p up DKK1 Ligament fibroblasts Promotes osteogenic differentiation (27)

miR-96 up SOST Osteoblasts
isolated from AS mice

Promotes osteogenic differentiation
and bone formation

(28)

miR-214 up Osteoblasts isolated from
miR-214fl/fl mice

Inhibits bone formation (29)

miR-130a-3p down HOXB1 T cells Inhibits proliferation and induces
apoptosis

(30)

miR-204 down GSDMD FLSs Induces pyroptosis (31)

lncRNAs LOC645166 down T cells Inhibits the activation of NF-kB (32)

MEG3 down miR-146a FLSs Inhibits inflammation (33)

circRNA circ_0003307 up FLSs Promotes the activation of the PI3K/
AKT pathway

(34)

circ_0070562 up TGF-b Bone marrow-derived
mesenchymal stem cells

Promotes osteogenic differentiation (35)

lncRNA-related
ceRNA

lncRNA H19-miR22-
5p/miR675-5p

up VDR PBMCs Promotes inflammation (36)

lncRNA MALAT1-
miR-558

up GSDMD Chondrocytes Inhibits proliferation and induces
apoptosis and pyroptosis

(37)

circRNA-
related ceRNA

circ_0000652- miR-
1179

up OX40L PBMCs Promotes inflammation (38)

circ_0018168-miR-
330-3p

down DKK1 Fibroblasts Inhibits osteogenic differentiation (39)

circ_0056558-miR-
1290

up CDK6 Fibroblasts Inhibits proliferation and induces
apoptosis

(40)
MIF, Macrophage migration inhibitory factor; PBMCs, Peripheral blood mononuclear cells; VDR, vitamin D receptor; DKK1, Dickkopf homologue 1; SOST, sclerostin; GSDMD, Gasdermin D;
FLSs, Fibroblast-like synoviocytes; MEG3, lncRNA maternally expressed gene 3; TGF-b, transforming growth factor b; CDK6, Cyclin-dependent kinase 6.
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2 Role of ncRNAs

ncRNAs are widely present in cells and are involved in many

physiological and pathological processes by regulating gene

expression, cell cycle, chromatin remodeling, and epigenetic

modifications (41, 42). Although ncRNAs lack the ability to

encode proteins, they not only play important physiological

regulatory roles in various cellular activities, but their aberrant

expression and regulation are also important links in the

pathogenesis of many diseases. ncRNAs are usually expressed in

response to external signals, during differentiation or at specific

stages of development. Their differential expression can regulate the

transcription or translation of other genes or can directly interfere

with signaling pathways (43).
2.1 miRNAs

miRNAs are endogenous ncRNAs (approximately 22

nucleotides long) that are widely found in eukaryotic organisms.

They can regulate gene expression by directly targeting the

promoters of bound genes or by binding to the non-protein

translation region (3’-UTR) of the target messenger RNA

(mRNA) to induce degradation of the target mRNA or

translational repression, thereby achieving transcriptional or post-

transcriptional level regulation of genes (44).
2.2 lncRNAs

lncRNAs are a class of ncRNAs longer than 200 nucleotides;

depending on their intracellular localization, lncRNAs can play

different roles (45). Cytoplasmic lncRNAs mainly play ceRNA roles

by regulating the degradation or translation of target mRNAs or
Frontiers in Immunology 03
competitively binding miRNAs to regulate gene expression at the

post-transcriptional level; cytosolic lncRNAs mainly play regulatory

roles by controlling the epigenetic state of specific genes, directly

participating in transcriptional regulation and variable splicing or

constituting nuclear structural domains (46, 47).
2.3 circRNAs

circRNAs are a class of covalently closed loops without a 5’ cap

and 3’ poly A tail, unlike traditional linear RNAs. circRNAs are

present in high abundance and have high diversity, spatio-temporal

specific expression, and highly conserved sequences; in particular,

the covalent closed-loop structure protects them from nucleic acid

exonuclease shearing. They have higher stability than linear RNAs

(48). The molecular biological functions of circRNAs in genetic or

epigenetic regulation are becoming clear, including competitive

binding of miRNA, regulation of transcription and variable

splicing, and interaction with RNA-binding proteins (49).
3 Regulatory functions of ncRNAs in
AS cells

3.1 AS cell inflammatory responses

Immune-mediated inflammatory response is a key aspect of AS,

with the IL-23 and TNF pathways being the main effector pathways

(50). The inflammatory response in AS is reflected by the

dysregulation of inflammatory cytokines in blood and tissues in

vivo. High expression of cytokines activates inflammatory signaling

pathways, causing an inflammatory response in the body leading to

AS-related joint pain, and ncRNAs may be involved in regulating

the inflammatory response in AS cells.
FIGURE 1

Mode of action of ceRNA network. lncRNAs/circRNAs competitively bind miRNAs to form ceRNAs to play the role of translating proteins.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1131355
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang and Liu 10.3389/fimmu.2023.1131355
Overexpression of miR-451 suppressed macrophage migration

inhibitory factor (MIF) and levels of inflammatory cytokines (24).

Yu et al. (32) found that LOC645166 expression was downregulated

in T cells from AS patients, which upregulated NF-kB activation by

reducing the recruitment of polyubiquitin chains that block the IKK

complex to K63 linkage, making AS patients more sensitive to

stimulation by pro-inflammatory cytokines or TLR ligands. Li et al.

(33) showed that lncRNA maternally expressed gene 3 (MEG3)

plays a partial anti-inflammatory role in AS by targeting miR-146a

to regulate the expression of IL-1b, IL-6, and TNF-a. Fang et al.

(34) showed that the expression level of hsa_circ_0003307

cor r e l a t ed wi th the inflammatory r e sponse in AS .

hsa_circ_0003307 knockdown could reduce the inflammatory

response in AS by regulating the PI3K/AKT pathway. Zhang et al.

(36) showed that lncRNA H19 in peripheral blood mononuclear

cells of AS could form ceRNA with miR22-5p/miR675-5p- vitamin

D receptor (VDR) to regulate the IL-17A/IL-23 signaling pathway

expression, which has an important role in the pathogenesis of AS.

The results of another study showed that hsa_circ_0000652 in

peripheral blood mononuclear cells (PBMCs) of AS patients

promoted macrophage proliferation and cytokine production and

inhibited apoptosis and may act as a pro-inflammatory factor for

macrophages and a positive regulator of OX40/OX40L through

sponge hsa-miR-1179 (38). Thus, ncRNAs may be involved in

regulating the cellular immune inflammatory response in AS, but

do not act in the same way.
3.2 Osteogenic differentiation of AS cells

The typical pathology of AS involves the progression of

inflammation into ossification and ankylosis (51). Pathological

osteogenesis can cause progressive ankylosis of the spine and

peripheral joints, leading to motor impairment and even permanent

loss of mobility, which severely affects patients’ life and work and is the

main cause of disability in AS patients (52). Fibroblasts have the

potential to differentiate into osteoblasts, as shown by the expression of

osteogenic marker genes alkaline phosphatase (ALP) and osteocalcin

(OC). However, their activation requires specific cytokine stimulation,

the most important one being bone morphogenetic proteins (BMPs)

(53). Several studies have shown that ncRNAs regulate the

differentiation of fibroblastogenic cells into osteoblasts in AS hip

capsule specimens (40, 54). Low expression of miR-150-5p and miR-

204-5p in fibroblasts from AS patient ligaments inhibited osteogenesis

via VDR and Notch2, respectively (25, 26), while high expression of

miR-148a-3p exacerbated the osteogenic differentiation of fibroblasts

by inhibiting the expression of the downstream target gene Dickkopf

homologue 1 (DKK1) and activating the Wnt pathway, leading to

increased calcified nodules and mineralization (27). A study of animal

experiments showed that miR‐96 was expressed at a high level in

proteoglycan-induced AS mice, and overexpression of miR‐96 led to

stimulation of osteoblast differentiation and bone formation through

activation of the Wnt pathway in AS, which may provide novel aspects

for AS treatments in the future (28). A study of osteoblast-specific miR-

214 knockout mice (CKO: Ocn-cre; miR-214fl/fl mice) showed that

miR-214, the production of which is stimulated by IL-17A in
Frontiers in Immunology 04
osteoblasts, was an important inhibitor of bone formation in AS.

Osteoblast-derived miR-214 stimulated by IL-17A can be transferred

into osteoclasts to promote their activity and thus inhibit bone

formation (29). Another study revealed that circ_0070562 was

significantly upregulated in bone marrow mesenchymal stem cells

(BMSCs) from AS patients, which may play an important role in AS-

BMSC osteogenesis in combination with miR-424-5p andmiR-133b of

the TGF-beta pathway (35). Furthermore, in AS hip capsule specimens,

circ_0018168 overexpression elevated DKK1 through adsorption of

miR-330-3p and inhibited AS fibroblast proliferation and osteogenic

differentiation; the results suggested that circ RNA-related ceRNA

could play a regulatory role in the osteogenic differentiation of AS

cells (39).
3.3 AS cell proliferation, apoptosis,
and pyroptosis

Excessive proliferation and insufficient apoptosis of many kinds

of cells, including T cells, fibroblast-like synoviocytes (FLS), and

fibroblasts, lead to the pathogenesis of AS (30, 31, 40, 55).

Pyroptosis is an inflammatory type of regulated cell death that

occurs following inflammasome activation (56, 57). In AS patients,

activated pyroptosis leads to inflammatory responses, which cause

various inflammatory diseases (58, 59).

Li et al. (30) found that miR-130a-3p was downregulated in T

cells from AS patients, and an miR-130a-3p inhibitor could inhibit

T cell proliferation and induce apoptosis by upregulating the

downstream target gene HOXB1. Similarly, miR-204 expression

was decreased and Gasdermin D (GSDMD) was elevated in the FLS

of AS patients. miR-204 mimics inhibited FLS pyroptosis in AS cells

by suppressing the expression of GSDMD (31). In addition, ceRNAs

are involved in cellular regulation in AS. Li et al. (40) showed that

competitive binding of hsa_circ_0056558 and cyclin-dependent

kinase 6 (CDK6) to miR-1290 inhibits cell proliferation and

differentiation while promoting apoptosis, a process that may be

mediated through the PI3K/AKT/NF-kB pathway. Another study

showed that lncRNA MALAT1 and GSDMD expression was

upregulated in AS chondrocytes, but that of miR-558 was

downregulated. Downregulation of lncRNA MALAT1 expression

increased miR-558 activity by suppressing GSDMD and inhibited

inflammation, apoptosis, and pyroptosis in AS chondrocytes, thus

acting as a potential suppressor of AS (37).
4 ncRNA applications in AS diagnosis
and treatment

The stable and tissue-specific expression of ncRNAs makes

them promising diagnostic markers for diseases such as AS; they

could help in reflecting the activity of AS, monitoring the effect of

treatment, and predicting the occurrence and recurrence rate of AS.

Recent studies have shown that a variety of ncRNAs may have

potential diagnostic value and are closely related to AS disease

activity. Tan et al. (60) found that miR-146a/miR-125a-5p/miR-

125b-5p/miR-499a/miR-155a combination (area under the curve
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(AUC)=0.824, 95% confidence interval (CI) = 0.727-0.921) had high

sensitivity and specificity for the diagnosis of AS. C-reactive protein

(CRP) levels were positively correlated withmiR-125a-5p (r= 0.438, p

= 0.005) and miR-155a (r= 0.414, p = 0.006) expression, suggesting

that miR-125a-5p and miR-155a may exacerbate AS-induced

inflammation. Another study showed that lnc-ITSN1-2 expression

was elevated in patients with AS, and lnc-ITSN1-2 was positively

correlated with levels of CRP and interleukin (IL)-1b, Bass

Ankylosing Spondylitis Disease Activity Index (BASDAI), and

ankylosing spondylitis disease activity with c-reactive protein

(ASDASCRP) score (61). Similarly, Tang et al. (62) found that

hsa_circRNA_012732 was downregulated during inflammation,

and negatively correlated with the BASDAI, high-sensitivity C-

reactive protein (hs-CRP), and globulin (GLOB), and positively

correlated with lymphocyte count (LY), mean red blood cell

volume, and albumin (ALB). ROC curve analysis showed that

hsa_circRNA_001544 (95% CI=0.610-0.831, P<0.05) was

statistically significant, and its AUC values was 0.720.

hsa_circRNA_001544 and hsa_circRNA_012732 have potential to

be molecular markers for AS diagnosis and disease activity,

respectively. High-throughput sequencing of PBMC samples from

five AS patients and healthy controls was performed.

NONHSAT118801.2, ENST00000444046, and NONHSAT183847.1

were found to be significantly upregulated in AS patient samples, and

the expression of NONHSAT118801.2 and NONHSAT183847.1 was

positively correlated with disease severity (63). All these findings

suggest that ncRNAs may serve as diagnostic markers for AS.

With respect to therapy, the therapeutic potential of ncRNAs is

gradually being revealed as translational medicine research

continues to advance. miR-21 can induce the proliferation and

differentiation of MSCs to promote bone formation. miR-21-

exosome injection may help alleviate spinal osteoporosis in

patients with AS, which is characterized by an increase in bone
Frontiers in Immunology 05
mineral content and bone density and a decrease in osteoclast

number (64). However, current studies have mainly focused on

animal experiments, and further clinical trials are needed to confirm

this in the future.

ncRNAs may predict the occurrence and recurrence rate of AS.

Han et al. (65) revealed that lncRNA-adjacent FOXA2 enhancer

(lncRNA-NEF) expression was upregulated in synovial fluid

samples from AS patients and was associated with ASDAS,

BASDAI, erythrocyte sedimentation rate (ESR), and CRP levels

(P<0.05). NSAID treatment significantly downregulated lncRNA-

NEF expression. Three-year follow-up showed a high relapse rate in

patients with high lncRNA-NEF levels (hazard ratio=2.266). These

results suggest that lncRNA-NEF upregulation predicts relapse and

poor treatment outcome in AS and has great potential as a

predictive biomarker for AS relapse. Similarly, Zhong et al. (66)

found that LINC00311 was upregulated in AS patients, which

positively correlated with disease activity. At 2-year follow-up,

patients with high LINC00311 levels had significantly higher

rehospitalization rates. Thus, LINC00311 is overexpressed in AS

and predicts treatment outcome and recurrence. These results

suggest that ncRNA may have an impact on the prognosis of AS.
5 Conclusions and future perspectives

With the continuous development of molecular biology

techniques, our understanding of disease mechanisms has gradually

advanced to include genetic and epigenetic processes. As one of the

key research areas in epigenetics, ncRNA plays an important

regulatory role in diseases including cancers, cardiovascular

diseases, and neurological pathologies. ncRNA is an important part

of rheumatic disease research to study the pathogenesis and identify

new targets for the diagnosis and treatment. Recently, ncRNAs have
FIGURE 2

Differentially expressed ncRNAs of functional importance in ankylosing spondylitis. Signals are focused on the induction of the pro-inflammatory
cytokines IL-1b, TNF-a, and IL-6 and the enhancement of the IL-23/IL-17 axis, both of which contribute to inflammation and abnormal bone
formation.
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been studied in association with inflammatory response in AS and

bone formation (Figure 2); key molecules regulating the

developmental process of AS will be identified in the future,

providing new entry points for the study of AS etiology and

molecular targeting therapy. However, exploring the specific

mechanisms of ncRNAs in inflammation and bone formation in

AS is challenging due to the wide variety of ncRNAs. Currently, it is

difficult to determine which ncRNAs can be targeted for the most

effective intervention. In addition, the specific mechanism to

intervene in inflammatory responses and bone formation targets

via ncRNAs is still unclear and needs further investigation.
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