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vaccine particles for prevention
of infectious diseases
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Vaccines remain the best approach for the prevention of infectious diseases.

Protein subunit vaccines are safe compared to live-attenuated whole cell

vaccines but often show reduced immunogenicity. Subunit vaccines in

particulate format show improved vaccine efficacy by inducing strong immune

responses leading to protective immunity against the respective pathogens.

Antigens with proper conformation and function are often required to induce

functional immune responses. Production of such antigens requiring post-

translational modifications and/or composed of multiple complex domains in

bacterial hosts remains challenging. Here, we discuss strategies to overcome

these limitations toward the development of particulate vaccines eliciting

desired humoral and cellular immune responses. We also describe innovative

concepts of assembling particulate vaccine candidates with complex antigens

bearing multiple post-translational modifications. The approaches include non-

covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g.

SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.

KEYWORDS

particulate vaccine, cross-presentation, post-translational modification, dendritic cells,
protective immunity, infectious diseases
Immunologic properties of soluble and
particulate vaccines

Subunit vaccines contain selected immunogenic components of the pathogen to elicit an

immune response (1, 2). Particulate vaccines involve the attachment of the antigens to

microcarriers through chemical adsorption, encapsulation, conjugation, or biological self-

assembly for enhanced delivery and induction of an efficient immune response (3, 4). Soluble

vaccines are weakly immunogenic when compared to their insoluble counterparts such as

when displayed on particulate carrier (5). Due to low immunogenicity, soluble vaccines often

require the administration of multiple boosts (6, 7). The use of immunostimulatory adjuvants
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along with soluble vaccines would improve the immune responses but

potentially increases the overall vaccine production cost (8). However,

antigens immobilized on particulate carrier exhibit enhanced

immunogenicity (9–11). Some particulate carriers themselves act as

adjuvants resulting in enhanced and targeted immune responses.

Particulate carrier also allow the codelivery of adjuvants and multiple

antigens to the same antigen presenting cells (APCs) (12, 13).

Therefore, particulate vaccines are promising and potent antigen

delivery systems to overcome the low immunogenicity of soluble

subunit vaccine formulations.

The proposed mechanism of antigen processing elicited by

soluble and particulate vaccine formulations is illustrated in

Figure 1. Soluble antigens can be internalized via endocytosis (14)

and exclusively presented by major histocompatibility complex

(MHC) II machinery in the endosomes, whereas particulate

antigens above 500 nm can be phagocytosed by APCs into the

phagosomes and presented by both MHC class I and II machineries

in the cytosol (7). The maturation of the phagosome occurs after the

formation of nascent phagosomes (pH 7.4) containing the engulfed

particulate antigens which are then sequentially trafficked into

progressive acidified compartments called early phagosome (pH 6),

late phagosome (pH 5.5), and phagolysosomes (pH 5) (15). The

efficient degradation of antigens into smaller peptides occurs in the
Frontiers in Immunology 02
phagolysosomes which contain a variety of digestive enzymes such as

proteases, lipases, and glycosidases without degrading the epitopes

(16). Further degradation of antigens into smaller polypeptides occurs

in the cytosol by a protein complex called proteosomes (17). The

degraded protein fragments will be transported into the endoplasmic

reticulum, where the folding and assembly of the heavy and light

chain of MHC molecules occurs and facilitates the MHC and peptide

binding (18). Finally, the peptide-loaded MHC complex gets

transported to the cell surface through the Golgi apparatus and

attracts both CD4+ T cells and CD8+ T cells with specific receptors

to mount a cell-mediated immune response eliminating the damaged/

infected cells displaying corresponding peptide fragments (19). MHC

class I and II pathways are usually involved presenting peptides from

intracellular or extracellular pathogens, respectively. However,

dendritic cells (DCs) possess the ability to divert peptides derived

from extracellular pathogens to cytotoxic CD8+ T cells via the MHC

class I presentation pathway (20). A phagosome is a key organelle in

antigen cross-presentation which primarily induces cytotoxic CD8+ T

cell responses. However, such responses mediated by the phagosome

route are not achievable by endocytosed soluble antigens (21). In

addition, B cell receptors (BCRs) are uniformly distributed on B cell

surface in the absence of pathogen invasion. However, BCRs are

brought together to bind multiple copies of antigens on the invading
FIGURE 1

Comparison of antigen processing pathways elicited by soluble and particulate antigen formulations.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1131057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1131057
pathogen’s surface. This process is also called BCR cross-linking,

required for B cell activation. Repetitive display of antigens on

particles facilitates efficient recognition and BCR cross-linking,

which allow strong B cell activation and antigen uptake for

presentation to CD4+ T cells. It results in inducing higher levels of

neutralizing antibodies and functional cellular immune responses

than achieved by soluble antigens present in most subunit

vaccines (22).

Soluble antigens are engulfed by APCs through endocytosis and

get presented to endosomes. Consequently, endosomes fuse with

lysosomes and degrade the antigens into peptide fragments

restricted to both MHC class I and II. MHC class II specific

peptides bind to MHC class II molecules by replacing the class II-

associated invariant chain peptide (23). This peptide-MHC class II

complex will get presented to the cell surface and activates naïve

CD4+ T cells. However, if the peptides are MHC class I specific, they

will get cross-presented to proteosomes and follows MHC class-I

pathway to expand cytotoxic CD8+ T cells (14). Even though the

cross-presentation of soluble antigen was detected in vivo, it is not

very efficient in generating strong immune responses (24). However,

unlike soluble antigens, particulate antigens are sustainably presented

by APCs in large quantities for a prolonged time resulting in

enhanced immunogenicity (25).
Antigen delivery platforms and their
immunological properties

Virus-like particles (VLPs)

Virus-like particles (VLPs) are nanostructures made up of self-

assembled virus proteins. VLPs do not contain viral genomes and

thus they do not have the capacity of infecting the host cell (26). VLPs

can be generated by using bacterial, yeast, insect, plant, and

mammalian cells (27). It has been reported that VLPs can serve as
Frontiers in Immunology 03
carriers for the delivery of various biomaterials and nanomaterials

including vaccines (Figure 2) (26, 28, 29). Currently, VLP-based

vaccines against human papillomavirus, hepatitis B virus and

malaria are commercially available (Table 1) (26, 30).

VLP-based vaccines are highly immunogenic and can induce both

cellular and humoral immune responses and the use of adjuvants

enhances their immunogenicity (32). VLPs were found to strongly

activate DCs (32). DCs are well-known as the most effective APCs and

have the ability to activate both naϊve and memory immune responses

(52). Activation of DCs takes place owing to the binding of VLPs with

the receptors that are present on the surface of DCs known as pattern

recognition receptors (PRRs) such as Toll-like receptors (TLRs) (32,

53). VLP-based vaccines are then recognized and internalized by DCs

and get presented to CD4+ helper T cells and cytotoxic CD8+ T cells

via MHC class II and MHC class I molecules, respectively (32, 54).

VLPs allow presentation of multiple copies of epitopes on their

surface, which mediate cross-linking of B cell receptors and

subsequent priming B cells toward generation of antibodies even

without the help of CD4+ T helper cells (32). VLP-based vaccines are

regarded safer as compared to attenuated or inactivated viruses.

Nonetheless, instabil ity of VLPs can compromise their

immunogenicity and the production cost of some VLP-based

vaccines can be high because of their low yields (28, 31).
Viral vector vaccines (VVVs)

Viral vectors are considered as an advanced approach for the

development of vaccines. Viral vectors have been used to produce

vaccines against multiple infectious diseases including SARS-CoV-2,

Ebola, Malaria, and HIV (34, 55). Viral vector vaccines (VVVs)

comprise a harmless, modified, and unrelated virus that delivers

foreign genetic material (DNA) to human cells, which then produce

the pathogen-specific antigens encoded by the DNA (33). Moreover,

VVVs offer multiple advantages as compared to other vaccine
FIGURE 2

Flow diagram of precision-engineering of subunit vaccine particles.
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platforms including long-lasting immune responses, high

immunogenicity without the need for adjuvant co-administration,

and strong cellular and antibody responses (34).

Viral vectors such as based on adenovirus, poxvirus, influenza

viruses, and measles virus are currently widely considered for the

development of VVVs (56). Among them, the adenoviral vector has

been used extensively to develop COVID-19 vaccines (56, 57). VVVs

can induce long-lasting and strong cellular responses to eliminate

virus-infected cells. Cytotoxic CD8+ T cells rapidly proliferate and

differentiate in response to antigens, while cell-mediated immunity

induces natural killer cells and macrophages to eliminate intracellular

pathogens (58). On the other hand, most of the VVVs can induce

powerful humoral immunity, however it has been observed that

immunogen des ign can affect VVV-mediated humoral

immunogenicity (58). For example, Huang et al. (59) revealed that

immunizing mice or hamsters with SARS-CoV-2 spike proteins

lacking glycan shields induced potent and broadly reactive immune

responses. Despite many advantages, the production process of VVVs

is comparatively expensive and highly complex. Moreover, VVVs

could pose a risk for the environment and human health (35).
Messenger RNA (mRNA) vaccines

Messenger RNA (mRNA) vaccines have already been found

highly effective against various infectious diseases (36, 60). There

are several advantages offered by mRNA vaccines including rapid

development, and a cell-free manufacturing process (36). mRNA
Frontiers in Immunology 04
vaccine technology involves delivering a transcript of interest that

encodes a target antigen (37). There are two categories of mRNA

vaccines including self-amplifying and non-replicating mRNA

vaccines (61). mRNA vaccines precisely encode the specific antigen

of interest, and then cells that take up the mRNA can translate it into

proteins (62, 63). Subsequently, the immune system mounts robust

adaptive immune responses against the target proteins (63). mRNA

vaccines are safer and more effective than DNA-based vaccines, since

mRNA vaccines do not require nuclear entry and they do not pose a

risk of integration into the host genome (38–40). In addition, since

the outbreak of the COVID-19 pandemic, there is a growing research

interest in mRNA vaccines because of their capacity to trigger strong

immune responses, rapid development, and simple manufacturing

process (64). Currently approved mRNA COVID-19 vaccines include

Moderna (mRNA-1273) and Pfizer-BioNTech (BNT162b2) (41–43).

mRNA vaccines contain intrinsic self-adjuvant properties and

exert potent cellular and humoral immune responses (65). Hence

mRNA vaccines have the potential to induce both innate and adaptive

immune responses. mRNA vaccines also generated strong immune

responses in experimental animal models of various infectious

diseases including rabies, Zika virus disease, and influenza (66, 67).

Following the delivery of mRNA vaccines in the body, they are taken

up by APCs such as DCs or macrophages. Subsequently, they escape

the endosome and enter into the cytosol, where mRNA is translated

into protein by the ribosome (68). In the lymph node, antigen derived

peptides are presented viaMHC class I or II to cytotoxic CD8+ T cells

or CD4+ T cells, which ultimately results in the activation of cell-

mediated and humoral immune responses (69). However, there are
TABLE 1 Antigen delivery platforms and their immunological properties.

Virus-like
particles

Viral vector
vaccines

Messenger RNA (mRNA)
vaccines

Polymeric vaccines

Components Nanostructures
made up of self-
assembled virus
proteins but do
not contain viral
genomes

Comprise a harmless,
modified, and
unrelated virus that
delivers foreign
genetic material
(DNA)

Deliver a transcript of interest that
encodes a target antigen

Natural and synthetic polymers are used to encapsulate a range
of vaccine components

Advantages Safe,
presentation of
multiple
epitopes, highly
immunogenic,
induce both
cellular and
humoral
immune
responses

Sustained immune
responses, enhanced
immunogenicity
without the need for
adjuvant co-
administration,
powerful cellular and
antibody responses

Rapid development, and a cell-free
manufacturing process, safer and more
effective than DNA-based vaccines, do not
require nuclear entry, do not pose a risk
of integration into the host genome,
intrinsic self-adjuvant properties, exert
potent cellular and humoral immune
responses

Induction of enhanced levels of antigen-specific antibodies,
extended antigen circulation, co-loading of antigens, elevated
level of cytokine release, strong cellular and humoral immune
responses owing to their unique properties including their
pathogen mimicking size, controllable lipophilicity/
hydrophobicity, modifiable surfaces, and high surface-to-
volume ratios, capable of delivering a wide range of antigenic
molecules

Disadvantages Instability, high
manufacturing
cost

Expensive, highly
complex,
pose a risk for the
environment and
human health

Limited transfection efficiency,
degradation of free mRNA via nucleases,
degradation of exogenous naked mRNA in
the endolysosomal compartments

Some chemically synthesized polymer materials (such as
polyurethane) can’t be naturally degraded and may also cause
environmental pollution, some inorganic material carriers show
low immunogenicity and poor biodegradability

Examples of
licensed
vaccines

Human
papillomavirus,
hepatitis B virus,
and malaria
vaccines

Johnson & Johnson’s
Janssen (J&J/Janssen)
COVID-19 vaccine,
Ebola virus vaccine
(Ervebo)

Moderna (mRNA-1273) and Pfizer-
BioNTech (BNT162b2) COVID-19
vaccines

Further clinical studies are needed for regulatory approval

References (26, 28, 30–32) (33–35) (36–46) (47–51)
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some drawbacks of mRNA vaccines that need to be addressed to

develop more effective, stable, and safe mRNA vaccines. These

drawbacks include limited transfection efficiency, degradation of

free mRNA via nucleases, and degradation of exogenous naked

mRNA in the endolysosomal compartments (44–46). In addition,

rare evidence was found that severe anaphylaxis and myocarditis

occurred after immunization with mRNA-containing lipid

nanoparticles (mRNA-LNP). It is believed that the lipid

component, polyethylene glycol (PEG) 2000, in the vaccine

formulation causes anaphylactic shock, especially in those who

already have pre-existing anti-PEG antibodies (70).
Polymeric vaccines

There is a growing interest in polymer-based vaccines because of

their several beneficial properties including induction of enhanced

levels of antigen-specific antibodies, extended antigen circulation, co-

loading of antigens, elevated level of cytokine release, and potent

cellular immune responses (47). Polymer-based particles can be used

as vaccine platforms to deliver numerous antigenic molecules

including nucleic acids, carbohydrates, cell lysates, lipopeptides,

peptides, and proteins (71). Polymer-based particles have great

potential in the prevention and treatment of infectious diseases

(51). Lipid- and polymer-based NPs have already been extensively

studied in vaccine development. NPs have the capacity to induce

strong cellular and humoral immune responses owing to their unique

properties including their pathogen mimicking size, controllable

lipophilicity/hydrophobicity, modifiable surfaces, and high surface-

to-volume ratios (48).
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There are two major groups of biodegradable polymers such as

natural and synthetic polymers. A range of both synthetic and natural

biodegradable polymers have already been studied for the

development of vaccines. Naturally occurring biomaterials

including various proteins including silk, fibrin, and collagen, and

several polysaccharides including hyaluronic acid derivatives,

chitosan, alginate, and starch have widely been studied to prepare

particulate vaccine formulations (72). On the other hand, many

synthetic biodegradable polymers including polyanhydrides,

polyphosphazene, and various polyesters including poly(lactic-co-

glycolic acid), polyglycolide, polycaprolactone, and polylactides have

been studied as potential vaccine delivery systems (73).

Polyhydroxyalkanoates (PHAs) have been identified as

biocompatible and biodegradable biopolymers and that are

produced by a range of bacteria serving as energy and carbon

storage materials (74). PHAs have drawn a lot of attention because

of their potential as particulate vaccines in delivering various antigens

from diverse pathogens (75). Furthermore, PHA particles displaying

one or more antigens already exhibited improved cell-mediated and

humoral immune responses when compared to the corresponding

soluble subunit vaccines (49). Extensive animal trials have already

confirmed that PHA particle vaccine candidates are safe and have the

potential to induce robust and protective immune responses against

bacterial and viral pathogens (Table 2) (11, 76, 78, 79, 85). Despite the

great potential of polymeric nanostructured vaccines, further clinical

studies are needed towards regulatory approval (51).

In a recent study, the immunogenic carrier protein, CRM197

(non-toxic variant diphtheria toxin) was engineered for the assembly

of antigen-containing submicron-sized particles (86). Chen et al.

(2022) developed a bioprocess for high-yield production via
TABLE 2 PHA particle vaccines with protective immunity against various infectious pathogens.

Pathogen Selected antigen/epitopes Animal
model

Humoral
responses

T cell
responses

Protective
Immunity

Reference

Streptococcus suis SSU1915, SSU1355, SSU0185, SSU1215,
SSU1773

Mouse IgG, IgM Yes (76)

Mycobacterium
tuberculosis

H4, H28 Mouse IgG, IgG1, IgG2c Th1, Th2, Th17 Yes (11)

Plasmodium
falciparum

B/T cell epitopes of CSP Sheep IgG Yes (77)

SARS-CoV-2 S1, N, SM epitopes Mouse IgG, IgG1, IgG2c Th1, Th2 Yes (78)

Hamster IgG neutralizing ab

Pseudomonas
aeruginosa

Oprl, OprF, AlgE,
OprL, PopB, PilA, PilO, FliC, Hcp1,
CdrA

Mouse IgG, IgG1, IgG2a,
IgG2c
Opsonophagocytic
antibodies

Th1, Th2 Yes (79, 80)

Hepatitis C virus HCc Mouse IgG1, IgG2c Th1, Th2, Th17 Yes (81)

Mycobacterium
tuberculosis

Ag85A and ESAT-6 Mouse Th1, Th2, Th17 Yes (82)

Streptococcus
pneumoniae

PsaA, Ply, Serotype 19F CPS Mouse IgG1, IgG2c
Opsonophagocytic
antibodies

Th1, Th2 Yes (83)

Neisseria meningitidis Serogroup C CPS, NadA, fHbp Mouse IgG1, IgG2a, IgG2b,
IgG3

Th1, Th2, Th17 Yes (84)
f
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efficient assembly inside engineered endotoxin-free Escherichia coli.

These particles were ambient-temperature stable and were precision

engineered to serve as vaccine candidates that induce protective

immunity against SARS-CoV-2, Mycobacterium tuberculosis and

group A Streptococcus, respectively. The study demonstrated the

utility and versatility of engineering immunogenic carrier proteins,

that have been approved in vaccine formulation, into a synthetic

particulate vaccine for induction of functional humoral and T cell-

mediated immune responses (86).
Strategies to enhance immunogenicity
of particulate vaccines

The ultimate aim of vaccination is to induce protective immunity

against pathogens (10). The addition of adjuvants can further

enhance and/or modulate the immunogenicity of particulate

vaccines resulting in enhanced vaccine performance (1, 84).

Induction of protective immunity requires effective priming of T

and B cells (10, 59, 87). The activation and effector phases of T cell-

mediated responses require two signals, “signal one” through T cell

receptor recognition of peptide-MHC complexes and “signal two” via

costimulatory receptors on T cells. Both signals are provided by APCs

that encounter pathogens (1). Adjuvants can stimulate the activation

and maturation of APCs, such as DCs, and thus enhance the

expression of MHC and co-stimulatory molecules, which are

essential for the induction of adaptive immunity (1, 10). Adjuvants

are usually categorized as the delivery system (such as lipid vesicles)

or immunostimulatory molecules (such as PRR ligands) based on

their proposed mechanism. Most adjuvants possess both properties

(88). For example, alum salts promote Th2-type immunity and B cell

differentiation, leading to tremendous antibody production (78).

Adjuvant System 04 (AS04) is a combination adjuvant, consisting

of alum salts and TLR4 ligand monophosphoryl lipid A, which

respectively upregulate potent humoral (Th2) and cellular (Th1)

immune responses (Figure 2) (88).

As PRR ligands enable innate recognition by PRR, such as TLRs,

present on DCs, the fabrication of particulate vaccines with PRR

ligands can lead to targeted delivery to DCs and enhance the

effectiveness of particulate vaccines (89). This enhancement is

achieved by inducing “signal two” through the expression of co-

stimulatory molecules on DCs, which augments T-cell responses (89).

Thus coupling PRR ligands with antigens confer innate activation and

antigenic stimulation to the same DC that uptakes the particulate

vaccine. This lead to the generation of both signals, MHC-peptide

complex and co-stimulatory signal, required for T-cell activation (1).

In addition, targeted delivery to DCs can alternatively be achieved

through the co-delivery of the CD40 ligand with antigen. The ligation

of the CD40 ligand with the CD40 receptor on DCs serves as a key co-

stimulator for DCs maturation and induction of CD4+ T cell

responses (90).

The ability of DCs to present extracellular antigens in the context

of MHC class I, a phenomenon called cross-presentation, can be an

ideal target for the targeted delivery of vaccine antigens (20).

Adjuvants such as MF59 and QS-21 in combination with TLR

ligands can facilitate cytosolic or vacuole pathways of cross-
Frontiers in Immunology 06
presentation (91). In addition, cell-penetrating peptides (CPPs) also

known as protein translocation domains or membrane translocating

sequences, are small peptides with strong membrane permeability.

CPPs are comprised of 6 to 30 amino acid residues and majority of

them are basic amino acid residues, leading to an overall positive net

charge (92–94). Recently the use of arginine- and lysine-rich CPPs in

conjunction with particulate vaccines promotes the MHC class I

pathway cross-presentation effectively against viral and tumor

antigens (20, 92, 93). Moreover, DC targeting peptides (DCpep) are

strongly targeted to DCs. They can improve vaccine capture

efficiency, and promote DCs maturation, cytokine secretion, and T

cell proliferation. Vaccines with DCpep can significantly induce

stronger immune responses than the vaccines without DCpep (95).

For example, Clec9A is produced on various DC subsets, such as

mouse CD8a+ DCs and CD103+ DCs, and responsible for antigen

cross-presentation. CBP-12 has high affinity with Clec9A on DCs.

Vaccines with CBP-12 has been shown to elicit both strong cytotoxic

CD8+ T cell and antibody responses (96, 97).
Particulate vaccine
fabrication strategies

Post-translational modifications (PTMs) regulate function of

proteins including antigens and contribute to their immunological

properties and stability (98). A study showed that PTMs are often

required for antigens to induce functional immune responses (98).

Over the last decade, an increasing number of PTMs have been

detected and characterized in E. coli, and most PTMs are rarely found

in bacterial antigens with the majority of modified antigens having a

low sub-stoichiometric degree of modification (99). As a result,

retaining the conformation and function of eukaryotic multi-

domain antigens produced in E. coli is more challenging (100).

Although the E. coli expression system is commonly used to

produce recombinant protein vaccines, mammalian or insect cells

should be considered for antigens that require high levels of PTMs

that are required for vaccine purposes (98, 101). These post-

translationally modified complex antigens can then be incorporated

into particulate platforms using a variety of methods (Figure 2). Non-

covalent methods include the use of peptide tags like polyhistidine,

protein tags such as maltose-binding protein and glutathione- S-

transferase, DNA-directed immobilization, and the biotin–

streptavidin pair (102). One of the most powerful non-covalent

biological interactions known is the binding of biotin to avidin

(103). Purified post-translationally modified complex antigens that

have been biotin labelled are therefore highly effective for protein

capture on particulate platforms for vaccine delivery, and the

biotinylated antigens are subsequently recognized by avidin/

streptavidin. Although chemical biotinylation frequently results in

heterogeneous products with impaired function (104), enzymatic

biotinylation with E. coli biotin ligase (BirA) attaches biotin to the

15 amino acid avidin tag (AviTag) peptide yielding a homogeneous

product with a high yield (105). Streptavidin is used as a potent

immunostimulant in less immunogenic antigen-based vaccines, most

notably cancer vaccines, in addition to binding to the biotinylated

antigen (106).
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Although the interaction between streptavidin and biotin is strong,

the binding can be destroyed by molecular motors (such as FtsK) in

seconds (107) or shear forces in milliseconds (108), making it

challenging to implement barriers or locks in cellular systems.

Vaccine stability is required not just during storage but also

following injection, where the lower concentration and other

circumstances, such as endosomal pH and shear stress in the

circulation, may mediate the dissociation of non-covalently attached

antigens from particles (109). Therefore, covalent interaction between

the target antigen and carriers is considered as a distinct, more robust,

and long-lasting method of attaching antigens to the surface of an

antigen carrier. Covalent linkage to peptide tags can be accomplished

using SortaseA, SNAP-tag, split inteins, HaloTag, click reactions and

Electrostatic Interaction Locks; however, SpyCatcher/SpyTag

technology is most commonly used in vaccine delivery because

SpyCatcher forms intermolecular isopeptide bonds selectively and

spontaneously with SpyTag without the need for additional enzymes

or chemical catalysis (102, 105). Furthermore, in comparison,

SpyCatcher/SpyTag chemistry is reactive at the terminal and internal

sites of a protein and can improve protein stability without changing

its function (110). Thus, the bacterial production host can be

bioengineered to produce vaccine particles displaying SpyCatcher to

enable specific immobilization of SpyTag-fused target antigens with

proper PTMs produced by such as mammalian or insect cell cultures

(111, 112). However, several limitations typically may restrict the use

of SpyCatcher/SpyTag in vaccine delivery. The final construct contains

around 17 kDa molecular scar left by SpyCatcher/SpyTag coupling

unlike the sortaseA with a smaller scar or split intein with no scar.

Moreover, SpyCatcher/SpyTag is derived from Streptococcus pyogenes.

The potential immunogenicity problem related to its bacterial origin

may be an issue for vaccine design (113).
Conclusion and future perspectives

Antigens delivered in particulate form show superior

immunological properties when compared to corresponding

antigens in soluble forms. APCs, such as DCs, can cross-present

antigens taken up in particulate form to potently activate both

cytotoxic CD8+ and CD4+ T cells. Particulate vaccines are versatile

as they can be formulated with adjuvants and/or bioengineered for the

co-delivery of antigens with PRR ligands, CPPs, and DCpep for

induction of protective immunity. Immobilizing antigens to

particulate carriers significantly enhances their stability such as

enabling the generation of ambient-temperature stable vaccine

formulations. Bacterial production hosts are unable to produce

complex antigens with high levels of PTMs. This review highlighted

the advances of using various technologies via covalent and non-

covalent attachments to incorporate antigens with PTMs on particles.
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Although particle vaccines possess a great promise to combat

infectious diseases, there are still a number of unknowns. These

include a profound understanding of how particle size, charge, and

structure influence the induction of immune responses. Safety

concerns, such as severe anaphylaxis and myocarditis, have also

been raised due to the extensive use of some new nanoparticle

vaccines, such as mRNA-LNP. Understanding the underlying

mechanisms of nanoparticle vaccine properties and potential

toxicity could significantly advance the rational design of

prophylactic and therapeutic nanoparticle vaccines.
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