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Identification of genes related to
immune enhancement caused by
heterologous ChAdOx1–
BNT162b2 vaccines in
lymphocytes at single-cell
resolution with machine
learning methods
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Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS),
Chinese Academy of Sciences (CAS), Shanghai, China, 4Department of Computer Science,
Guangdong AIB Polytechnic College, Guangzhou, China, 5CAS Key Laboratory of Computational
Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese
Academy of Sciences, Chinese Academy of Science, Shanghai, China, 6CAS Key Laboratory of Tissue
Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese
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The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA

vaccines have been shown to induce robust immune responses. Recent studies

demonstrated that the immune responses of people who received one dose of

ChAdOx1 and one dose of BNT were better than those of people who received

vaccines with two homologous ChAdOx1 or two BNT doses. However, how

heterologous vaccines function has not been extensively investigated. In this

study, single-cell RNA sequencing data from three classes of samples: volunteers

vaccinated with heterologous ChAdOx1–BNT and volunteers vaccinated with

homologous ChAd–ChAd and BNT–BNT vaccinations after 7 days were divided

into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells).

To identify differences in gene expression in various cell types induced by

vaccines administered through different vaccination strategies, multiple

advanced feature selection methods (max-relevance and min-redundancy,

Monte Carlo feature selection, least absolute shrinkage and selection operator,

light gradient boosting machine, and permutation feature importance) and

classification algorithms (decision tree and random forest) were integrated into

a computational framework. Feature selection methods were in charge of

analyzing the importance of gene features, yielding multiple gene lists. These

lists were fed into incremental feature selection, incorporating decision tree and

random forest, to extract essential genes, classification rules and build efficient
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classifiers. Highly ranked genes include PLCG2, whose differential expression is

important to the B cell immune pathway and is positively correlated with

immune cells, such as CD8+ T cells, and B2M, which is associated with thymic

T cell differentiation. This study gave an important contribution to the

mechanistic explanation of results showing the stronger immune response of

a heterologous ChAdOx1–BNT vaccination schedule than two doses of either

BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.
KEYWORDS

ChAdOx1-BNT162b2 vaccine, immune, lymphocyte, machine learning, scRNA-
seq profile
1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic was

brought on by the emergence of a new coronavirus strain known

as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

(1). On March 11, 2020, COVID-19 was eventually classified as a

pandemic by the World Health Organization (2). As of August 12,

2022, over 588 million cases and 6.4 million deaths due to COVID-

19 were reported worldwide (3). Fever, sore throat, dry cough, and

pneumonia symptoms are the common clinical manifestations of

the disease (4). To combat COVID-19, scientists have started

working on COVID-19 vaccines. The vaccines have been injected

in doses totaling over 12 billion (3). To date, several types of

vaccines against SARS-CoV-2, such as RNA-based, nonreplicating

viral vector, and protein-based vaccines, have been developed and

are in widespread use worldwide (5).

BNT162b2 (BNT) and ChAdOx1-S-nCoV-19 (ChAd) vaccines

have been the most widely used authorized COVID-19 vaccines

worldwide (6). BioNTech developed BNT with the assistance of the

pharmaceutical company Pfizer (7). The complete spike protein is

encoded by mRNA packaged in lipid nanoparticles and modified by

the addition of two prolines that stabilize prefusion conformation

and improve immunogenicity to one of mRNA subunits (5, 8). The

components of ChAd are chimpanzee adenoviruses (Ads) encoding

the SARS-CoV-2 spike-in glycoprotein (5). Ads are double-

stranded and envelope-free DNA viruses that can target a wide

range of host tissues for cellular infection (9, 10).

BNT and ChAd vaccines have strong protective effects on

vaccinated individuals (11, 12). The first dose of BNT vaccination

has resulted in a 91% reduction in COVID-19 admissions, and

ChAd vaccination has induced an 88% reduction. After two

vaccination doses, clinical trials for the licensed vaccines have

demonstrated 95% efficacy for BNT and 70% efficacy for ChAd

against symptomatic diseases (13, 14). BNT can induce high-peak

anti-spike IgG titers, and ChAd-induced antibody levels fall slowly

(12). However, heterologous vaccines offer higher protection than

homologous vaccines. A study showed that a heterologous ChAd–

BNT vaccination regimen provided stronger protective immunity

than homologous BNT–BNT (15). Another study found that

ChAd–BNT heterologous vaccines exhibited significantly stronger
02
immune responses, including the production of stronger cellular

and antibody responses, than ChAd–ChAd homologous vaccines

(16). Single-cell sequencing (scRNA-seq) technology can measure

gene expression on a transcriptome-wide scale (17). In the COVID-

19 pandemic, this method has been widely used in revealing the

characteristic immune responses of the different immune cells of

patients with COVID-19 (18) or recipients of COVID-19 vaccines

(19). In addition, a recent study used scRNA-seq to assess the

protective capacity of different COVID-19 vaccines (20). However,

the molecular mechanisms of differential immune responses

induced by heterologous vaccines remain unclear.

COVID-19 vaccination enables recipients to generate a suitable

immune response against severe COVID-19 or SARS-CoV-2

infection. Specifically, COVID-19 vaccination can elicit T cell

responses (cellular immunity) and B cell responses (antibody

immunity) (21). The components of cellular immune responses

are CD8+ cytotoxic T cells, which kill virus-infected cells with the

help of perforin and granzyme and retard and stop infections. CD4+

helper T cells activate B cells to produce antibodies specific to

antigens. Activated B cells then produce plasma cells and memory B

cells, which respond to antigens upon reinfection (22).

In our study, we worked on the immunological effects of

different COVID-19 vaccine combination strategies. Blood single

cell data on gene expression differences caused by different vaccine

strategies were obtained from Gene Expression Omnibus (GEO),

and we focused on the gene expression of lymphocytes 7 days after a

booster injection. Samples were divided into three groups:

homologous BNT–BNT, ChAd–ChAd and heterologous ChAd–

BNT according to different prime-boost vaccination strategies.

According to the great success of machine learning methods in

medicine (23–28), several of them were integrated into a

computational framework in this study to identify differences in

gene expression induced by vaccines administered with different

vaccination strategies. First, the data was investigated by five feature

raking algorithms: max-relevance and min-redundancy (mRMR)

(29), Monte Carlo feature selection (MCFS) (30), least absolute

shrinkage and selection operator (LASSO) (31), light gradient-

boosting machine (LightGBM) (32) and permutation feature

importance (PFI) (33). Five gene lists were obtained. Then, these

lists were subject to incremental feature selection (IFS) (34) method,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1131051
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1131051
containing two classification algorithms (decision tree (35) and

random forest (36)). After such process, important genes (e.g.,

PLCG2, B2M, JUN, etc.) and classification rules, indicating different

expression patterns for volunteers vaccinated with three different

strategies, were accessed. The genes and rules may be useful in

discovering vaccination strategies with enhanced protection and

long durat ions , thus providing guidance for pr ime-

boost vaccination.
2 Materials and methods

2.1 Data

The scRNA-seq profiles of volunteers vaccinated with

heterologous ChAd–BNT vaccinations or homologous two ChAd

or two BNT doses were derived 7 days after vaccine administration

from the GEO database under accession number GSE201534 (37).

We mapped the scRNA-seq data to Azimuth datasets, which are

well-curated and annotated referenced datasets, and extracted three

types of immune cells as the subjects of our analysis, including 3654

B cells, 8212 CD4+ T cells, and 5608 CD8+ T cells. Each cell was

represented by expression levels on 36 601 genes, which were

deemed as features in this analysis. Each type of immune cell was

classified into three classes according to the original sample as

homologous BNT–BNT, homologous ChAd–ChAd, and

heterologous ChAd–BNT. The detailed number of each class is

provided in Table 1.
2.2 Feature ranking algorithms

To date, lots of feature analysis algorithms have been proposed

in computer science. Several of them assess the importance of

features by ranking them in one list. However, each algorithm has

its own advantages and disadvantages. The application of one

algorithm to the profiles mentioned in Section 2.1 may produce

bias. One algorithm can only mine a part of essential information

from the profiles. To obtain essential information as complete as

possible, five feature ranking algorithms were employed in this

study, which were briefly described as below.

2.2.1 Max-relevance and min-redundancy
The mRMR is a widely used method for assessing the

importance of features and often used in gene expression profiling

for screening genes with specific biological significance (29, 38, 39).

It generates a list to reflect the importance of features. Initially, it is
Frontiers in Immunology 03
empty. mRMR repeatedly selects a feature from the rest features,

which has maximum relevance with respect to a target variable and

minimum redundancy with respect to features selected during

previous iterations. Relevance and redundancy are measured

according to mutual information, which is expressed by the

following equation:

MI(x, y) =
ðð

p(x, y) log
p(x, y)
p(x)p(y)

dxdy ; (1)

where p(x) and p(y) stand for the marginal probabilistic densities of

x and y, respectively, p(x,y) stands for the joint probabilistic density

of x and y. When all features are in the list, the procedures stop. In

the present study, we utilized the mRMR program from Peng’s lab

(http://home.penglab.com/proj/mRMR/) and ran the analysis by

using the default settings.

2.2.2 Monte Carlo feature selection
The MCFS is a DT-based feature importance evaluation

algorithm and commonly used to process biological data (30, 40,

41). In MCFS, m features are randomly selected to comprise a

feature subset. On such subset, t DTs are constructed using different

randomly selected training samples. Above procedure executes s

times, thereby generating s×t trees. A feature’s relative importance

(RI), as measured by how many times it has been selected by these

trees and how much it contributes to prediction of the trees, was

estimated as follows:

RIg =  o
s�t

t=1
(wAcc)u o

ng (t)
IG(ng(t))(

no : in   ng(t)
no : in   t

)v ; (2)

where wAcc is the weighted accuracy, IG(ng(t)) is the

information gain (IG) of node ng(t) , ( no.in ng(t)) is the

number of samples in node ng(t) , and (no.in t) is the sample

sizes in the tree root; u and v are two settled positive integers.

After each feature is assigned a RI score, features are sorted in a

list with decreasing order of their RI scores. In the present study,

the MCFS program was retrieved from http://www.ipipan.eu/

staff/m.draminski/mcfs.html. It was performed using its

default parameters.

2.2.3 Least absolute shrinkage and
selection operator

A penalty function that selectively eliminates features was

created by applying a high penalty to features with high

coefficients and using an L1 paradigm in LASSO. This practice

has the effect of actually forcing some coefficients to become zero,

which effectively performs feature selection by removing features

frommodels (31). As a result, the coefficients of features can be used

to rank features. This study used the LASSO program collected in

Scikit-learn (42). Default parameters were used to execute

such program.

2.2.4 Light gradient-boosting machine
The LightGBM is a gradient-boosting framework based on

DTs, which can increase the efficiency of models and reduce

memory usage (32). As a measure of feature importance for
TABLE 1 Number of cells in each class for three cell types.

Cell type BNT-BNT ChAd-BNT ChAd-ChAd

B cell 499 2266 889

CD4+ T cell 1148 3335 3729

CD8+ T cell 1995 2711 902

Class
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prediction, the LightGBM counts the total number of times (i.e.,

T Split ) that each feature is used in trees and the benefits (i.e.,

T Gain ) that a feature receives from being used for splitting in all

DTs.

T   Split =  o
K

t=1
Splitt ; (3)

T  Gain =  o
K

t=1
Gaint ; (4)

where K is the number of DTs generated by K iterations. Here, we

used the setting of split as a metric in measuring the importance of

features. Features are ranked in a list with decreasing order of their

splits. The LightGBM program used in this study was sourced from

https://lightgbm.readthedocs.io/en/latest/. For convenience, it was

executed with default parameters.

2.2.5 Permutation feature importance
Permutation feature importance (PFI) was first introduced in

2001 by Breiman for RFs and was later extended to fitted estimators

by Fisher, Rudin, and Dominici (33, 36). If a feature is more

important, after its values are shuffled, prediction error will

increase. A feature is considered unimportant if shuffling its

values does not increase prediction error. Its computations

include the following steps:

1. The training model is denoted as f ; the feature matrix, as X ;

target variable, as y ; and the error measure, as L(y,f) .

2. Given a dataset X , its baseline prediction error is calculated as

ebase=L(y,f(X)) .

3. Given a feature j∈{1,…,J} for each repetition k∈{1,…,K}

a) Randomly shuffle feature j , and generate a permuted version

of feature matrix Xperm ;

b) Estimate the prediction error ej,k=L(y,f(Xperm)) based on the

permuted data Xperm ;

c) Calculate differences between baseline score and the shuffled

dataset score as the feature importance Ij,k=ej,k/ebase .

4. Calculate the mean score of the feature importance Ij =
1
K o

K

k=1

Ij,k.

5. Sort the features based on Ij .

Here, we used the PFI program downloaded from scikit-learn

(42), which was performed with default parameters.

The profiles mentioned in Section 2.1 were fed into above five

feature ranking algorithms. Each algorithm yielded a gene list. For

an easy description, these lists were called mRMR, MCFS, LASSO,

LightGBM and PFI gene lists, respectively.
2.3 Incremental feature selection

As stated in Section 2.2, five gene lists can be obtained using five

feature ranking algorithms. The best feature subset for classification

can be extracted from each list. The IFS method was introduced to

complete this task. IFS is a popular approach for finding the optimal

feature subset for classification using a supervised classification

algorithm (34, 43, 44). The IFS method was applied to each gene list.
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Its procedures can be broken down into the following main steps:

(1) From the gene list, several gene subsets were constructed by

repeatedly adding ten features, i.e., the first subset contained the

first ten genes, the second subset included the top twenty features,

and so forth. (2) On each gene subset, one classifier was built using

genes in this subset and it was evaluated by 10-fold cross-validation

(45). (3) The feature set and classifier with the best classification

performance are referred to as the optimal feature subset and

classifier, respectively.
2.4 Synthetic minority oversampling
technique

As listed in Table 1, the profile for each cell type is imbalanced.

The classifier directly built on such profile may produce bias. The

profile must be processed first to reduce the influence of imbalanced

problem. This study adopted the synthetic minority oversampling

technique (SMOTE), which is a data augmentation technique for

minorities (46–48). Beginning with samples that are close to a

randomly selected sample in a feature space, SMOTE creates a new

sample along the line it draws between two samples. Specifically, a

random sample from a minority class is initially determined. The k

nearest neighbors in the same class are then observed for that

sample. A synthetic sample is built at a randomly selected place in a

feature space between the sample and its randomly selected

neighbor. For each class except the largest class, SMOTE

repeatedly generated several new samples until this class

contained samples as many as those in the largest class. The

SMOTE algorithm in this study was implemented via python.
2.5 Classification algorithm

Classification algorithm is necessary to execute IFS method.

Here, two algorithms (DT (35) and RF (36)) were employed. They

have wide applications in dealing with medical and biological

problems (49–55).

2.5.1 Decision tree
DTs are basic classification and regression methods with tree-

like structures (35). A DT model represents the classification and

discrimination of data as a tree-like structure with nodes and

directed edges. When a rule is built for each path of a DT from

the root node to the leaf node, each internal node corresponds to the

rule’s condition, and a leaf node displays the outcome of an

associated rule. Thus, a DT can be deemed as a collection of if-

then rules. To implement DT, we employed the CART method and

the scikit-learn package (42), with Gini coefficients serving as

the IG.
2.5.2 Random forest
RF is an ensemble method that adopts DT as the basic unit (36).

In the concentration of a forest, trees are created several times using

randomly selected features and samples. The sample is predicted by
frontiersin.org
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aggregating the predictions of all DTs. The RF package from

Python’s scikit-learn module was employed in this study for

building RF classifiers in the IFS method.
2.6 Performance evaluation

The weighted F1 was used in mainly evaluating the performance

of classifiers that were constructed in IFS method. To calculate such

measurement, the F1-measure for each class should be computed

first, as follows:

Precisioni =
TPi

TPi + FPi
; (5)

Recalli =
TPi

TPi + FNi
; (6)

F1 −measurei =
2� Precisioni � Recalli
Precisioni + Recalli

; (7)

where i denotes the index of one class, TPi, FPi and FNi denote true

positive, false positive and false negative for the i-th class,

respectively. Then, the weighted F1 can be computed by

Weighted   F1 =o
L

i=1
wi � F1 −measurei ; (8)

where wi denotes the proportion of samples in the i-th class to all

samples, L denotes the total number of classes.

In addition, the macro F1, prediction accuracy (ACC) and

Matthew correlation coefficients (MCC) (56) were also employed

in this study to fully display the performance of all classifiers. Macro

F1 is similar to weighted F1, which is the direct average of all F1-

measure values. ACC is one of the most widely used measurements,

which is defined as the proportion of correctly predicted samples to

all samples. MCC is a balanced measurement. When the dataset is

imbalanced, it is much more accurate than ACC. It can be

computed by

MCC =
cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(X,X)� cov(Y ,Y)
p ; (9)

where X and Y are two matrices, storing the true and predicted

classes of all samples, respectively, cov(X,Y) stands for the

covariance of X and Y.
3 Results

In the current work, we employed several efficient feature

selection methods and classification algorithms to design a

computational framework for mining significant genes and rules

in various cell types, which can determine the efficacy of

homologous and heterologous COVID-19 vaccines. The overall

computational framework is shown in Figure 1. The results

associated with each step of the computation process are

described below.
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3.1 Feature ranking results

The current study included three cell types with a total of 17 474

cells and 36 601 genes. As shown in Supplementary Table S1, genes

were sorted for each cell type using five feature ranking algorithms to

provide a set of feature lists (mRMR, MCFS, LASSO, LightGBM and

PFI gene lists). The feature lists for B, CD4+ T, and CD8+ T cells would

be entered into the IFS method to determine the optimal features.
3.2 Results of IFS method with RF and
DT algorithms

The IFS method was used in combination with RF and DT to

determine the optimal features and construct the best classifiers for

each cell type. The mRMR, MCFS, LASSO, LightGBM and PFI gene

lists were used in this procedure. Considering the huge number of gene

features, only top 5000 features in each list were considered and feature

subsets were constructed using ten as the step. Thus, 500 feature subsets

were generated from each list. DT and RF classifiers were built using

features in each subset and evaluated by 10-fold cross-validation. In the

10-fold cross-validation, the SMOTE was utilized in creating samples

for minor classes in the training dataset, which addressed the problem

of sample imbalance. Weighted F1 was used in assessing the

performance of all classifiers. The detailed results of the IFS method

are shown in Supplementary Table S2. With weighted F1 on the Y-axis

and the number of features on the X-axis, Figures 2–4 depict the IFS

curves of DT and RF in B, CD4+ T, and CD8+ T cells.

For B cell, the IFS curves of DT and RF on five gene lists are shown

in Figure 2. On the LASSO gene list, DT and RF yielded the highest

weighted F1 values of 0.853 and 0.927, respectively, when top 2960 and

3750 features were adopted. These features were deemed as the optimal

features for DT and RF identified by LASSO. With such features, the

optimal DT and RF classifiers were built. Under the similar operation,

the optimal DT and RF classifiers on other four gene lists can be set up.

In detail, the optimal DT and RF classifiers on LightGBM gene list used

the top 30 and 30 features, respectively, yielding the weighted F1 values

of 0.918 and 0.969. On the MCFS gene list, such two optimal classifiers

employed the top 190 and 150 features, and their weighted F1 values

were 0.910 and 0.961, respectively. For the mRMR gene list, top 20 and

120 features were used to build the optimal DT and RF classifiers,

generating the weighted F1 values of 0.915 and 0.964, respectively. For

the last PFI gene list, the two optimal classifiers were set up using top

110 and 110 features, producing the weighted F1 values of 0.905 and

0.962, respectively. The detailed performance of above optimal

classifiers, including F1-measure on three classes, ACC, MCC, macro

F1 and weighted F1, are listed in Table 2. All these classifiers were quite

good with weighted F1 around 0.900. Obviously, given the classification

algorithm (DT or RF), the optimal classifier on LightGBM gene list

always provided the best performance.

For CD4+ T cell, the optimal DT and RF classifiers on each gene

list can be extracted from Figure 4. On LASSO gene list, top 4800

and 200 features were used. Optimal feature numbers on other four

gene lists were 40 and 70 (LightGBM gene list), 260 and 200 (MCFS

gene list), 20 and 130 (mRMR gene list), 280 and 160 (PFI gene list).
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Table 3 lists the detailed performance of these optimal classifiers.

These classifiers also provided high performance, similar to those

for B cell. Similarly, on the LightGBM gene list, the DT/RF optimal

classifier always provided the best performance.

As for the CD8+ T cell, we also built the optimal DT and RF

classifiers by applying IFS method on five gene lists. According to

Figure 3, their optimal feature numbers were 3100 and 40 (LASSO gene

list), 30 and 80 (LightGBM gene list), 190 and 160 (MCFS gene list),

680 and 100 (mRMR gene list), 170 and 100 (PFI gene list). The

detailed performance of these classifiers is listed in Table 4. Similar to

the optimal classifiers for B and CD4+ T cells, these classifiers also

yielded high performance. Again, the optimal DT/RF classifier on

LightGBM gene list generated the best performance.
Frontiers in Immunology 06
Based on the performance of optimal DT and RF classifiers for

three cell types (Figures 2–4 and Tables 2–4), RF classifiers were

always better than DT classifiers. For B cell, the optimal RF classifier

on LightGBM gene list was best, which used the top 30 features in

the LightGBM gene list. For other two cell types, same results can be

obtained, i.e., the optimal RF classifier on LightGBM gene list was

better than other optimal classifiers. Top 70 (CD4+ T cell) and 80

(CD8+ T cell) features in corresponding LightGBM gene lists were

used. Five feature ranking algorithms were employed in this study,

it is necessary to investigate their utilities in analyzing the scRNA-

seq profiles. The weighted F1 values of the optimal DT/RF classifiers

for three cell types are illustrated in Figure 5. It was interesting that

the trendies of weighted F1 values yielded by the optimal DT/RF
FIGURE 1

Flowchart of the computational framework that integrates multiple feature selection algorithms and classification algorithms. The single-cell profiles
of COVID-19 includes B, CD4+ T, and CD8+ T cells, each of which has three vaccination states, namely, BNT–BNT, ChAd–BNT, and ChAd–ChAd.
On each cell type, a set of gene lists were obtained using five feature ranking algorithms: LASSO, LightGBM, mRMR, MCFS, and permutation feature
importance (PFI). Subsequently, the optimal classifiers and the corresponding optimal feature subsets on each gene list were obtained using the
incremental feature selection (IFS) method. Finally, the classification rules were mined by each optimal decision tree (DT) classifier.
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classifier on different gene lists were quite similar for three cell

types. On LightGBM gene lists, the optimal classifiers were always

best, as mentioned in above paragraphs, the optimal classifiers on

LASSO gene list were evidently inferior to the optimal classifiers on

other four gene lists, the performance of the optimal classifiers on

MCFS, mRMR and PFI gene lists was quite close. It was indicated

that LightGBM may be the best algorithm to analyze the profiles,

the abilities of MCFS, mRMR and PFI were almost equal and

LASSO was weaker than others.

According to Figures 2–4, some optimal DT or RF classifiers on

different gene lists used lots of features. The efficiencies of these

classifiers were not high enough to process the large-scale data. By

checking the IFS results in Supplementary Table S2, the feasible DT or

RF classifiers were built for some optimal DT or RF classifiers that

adopted lots of features. For example, the optimal DT classifier on

LASSO gene list for B cell used the top 2960 features. However, the DT

classifier with top 30 features yielded the weighted F1 of 0.845, a little

lower than that of the optimal DT classifier (0.853). Much less features

sharply increased the efficiency but the utility was limited dropped.

Thus, we named it as the feasible DT classifier. In Tables 2–4, the

performance of all feasible classifiers is listed (see rows marked by “*”).

Clearly, their performance was a little lower than the corresponding
Frontiers in Immunology 07
optimal classifiers. Notably, it was not necessary to identify the feasible

classifiers for the optimal classifiers that adopted a small quantity of

features. Multiple feature ranking algorithms were employed in this

study to analyze the profiles on three cell types. They may all give

contributions to mine essential information from the profiles. In view

of this, the features used to construct feasible RF classifiers (if available)

or optimal RF classifiers on five gene lists for each cell type were picked

up. Five feature sets were obtained accordingly for each cell type. The

Venn diagram, as illustrated in Figure 6, shows the relationships

between these feature sets. Some features (genes) belonged to

multiple sets, meaning that multiple feature ranking algorithms

identified them as essential genes. The detailed overlapped results are

provided in Supplementary Table S3. In Section 4, we would focus on

the biological significance of some overlapped genes.
3.3 Classification rules created by the
optimal DT classifier

For each cell type and each gene list, the optimal DT classifier

was inferior to the optimal RF classifier. However, DT has a great

merit. As it is a white-box algorithm, i.e., the classification
A B

D
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C

FIGURE 2

Incremental feature selection (IFS) curves of two classification algorithms in B cells. (A) IFS results obtained based on the LASSO gene list. (B) IFS
results obtained based on the LightGBM gene list. (C) IFS results obtained based on the mRMR gene list. (D) IFS results obtained based on the MCFS
gene list. (E) IFS results obtained based on the PFI gene list.
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procedures are completely open, it provides more possible to

uncover hidden information that human can understand. Here,

we used each optimal DT classifier to generate classification rules,

which are available in Supplementary Table S4. The number of rules

based on each gene list for each cell type is listed in Table 5. Each

rule incorporated many gene features and specified requirements

for their quantitative expression, revealing different gene expression

patterns for three different vaccination strategies in three cell types.

Some important rules would be discussed in detail in Section 4.
4 Discussion

4.1 Analysis of gene features in
lymphocytes associated with
COVID-19 vaccination

On the basis of our computational framework, a set of

important genes were identified, which were differentially

expressed in B and T cells and facilitated distinction among the

immunological effects of different prime-boost vaccinations. As
Frontiers in Immunology 08
shown in Figure 6, some genes were identified by multiple feature

ranking algorithms. These genes may be highly related to different

biological activities in lymphocytes that perform immune functions

after vaccination or natural infection. Here, we selected five genes in

B, CD4+ T, and CD8+ T cells for detailed analysis, which are listed

in Table 6.

4.1.1 Qualitative features in B cells
The first identified feature gene was PLCG2 (ENSG00000197943).

PLCG2 is involved in B cell receptor signaling pathway (57–59) and B

cell differentiation (58). Mutations in PLCG2 can impaire B cell

memory and antibody production (60). In addition, the protein

encoded by the PLCG2 gene, phospholipase Cg2, plays an important

role in the transmembrane transduction of immune signals (61, 62). In

summary, PLCG2 is closely related to B cells, and differential expression

of PLCG2 is important to the B cell immune pathway. Recent

publications have provided evidence of the differential expression of

PLCG2 after COVID-19 vaccination. Although no direct evidence of

COVID-19 vaccination has been reported, changes in PLCG2

expression after infection with SARS-CoV-2 partially demonstrate

the effectiveness of PLCG2 as a feature. In 2022, a study found that
A B
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FIGURE 3

Incremental feature selection (IFS) curves of two classification algorithms in CD8+ T cells. (A) IFS results obtained based on the LASSO gene list. (B)
IFS results obtained based on the LightGBM gene list. (C) IFS results obtained based on the mRMR gene list. (D) IFS results obtained based on the
MCFS gene list. (E) IFS results obtained based on the PFI gene list.
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PLCG2 was upregulated as an infection-associated gene in the kidneys

of patients with COVID-19 (63). Another 2022 study found no

elevated anti-S1 IgA levels in a subject carrying a mutation in the

PLCG2 gene after a booster dose of BNT vaccine, suggesting a role of

PLCG2 after COVID-19 vaccination (64). Therefore, PLCG2 gene

expression may be altered after vaccination, and PLCG2 in B cells

can be used as an effective feature.

The next identified feature wasHLA–DQA2 (ENSG00000237541).

HLA–DQA2 gene is involved in immunoglobulin production and

immunoglobulin-mediated immune responses (65) and is involved

in antigen processing and presentation of exogenous peptide antigens

via MHC class II (65, 66). Thus, HLA–DQA2 plays an important role

in immune response. COVID-19 vaccines may have an impact on how

HLA–DQA2 is expressed, though direct evidence following COVID-19

vaccination is limited. In recent year, researchers have shown that

HLA–DQA2 gene expression can be changed according to COVID-19

severity and HLA–DQA2 was upregulated in patients with mild

COVID-19 and those who recovered (67, 68) and downregulated in

patients with severe COVID-19 (66, 67, 69). HLA–DQA2 gene

expression may have a trend similar to that in patients with mild

COVID-19 and recovered individuals after vaccination. In addition,

HLA–DQA2 gene plays an immunological role in B cells as previously
Frontiers in Immunology 09
mentioned, suggesting altered expression after vaccination. Therefore,

HLA–DQA2may be altered in expression after COVID-19 vaccination.

In conclusion, the expression of HLA–DQA2 in B cells can be a

useful feature.

The next ident ified fea ture genes were MT-CO2

(ENSG00000198712) and MT-CO3 (ENSG00000198938). MT-

CO2 and MT-CO3 are mitochondrial genes involved in aerobic

respiration and ATP synthesis for energy supply (65, 70). Viral

infection is known to affect mitochondrial function (71, 72), and

mitochondrial genes play a key role in the host immune response

(73, 74). MT-CO2 and MT-CO3 gene expression may be altered

after COVID-19 vaccination, and SARS-CoV-2 infection can alter

MT-CO2 andMT-CO3 expression. For example,MT-CO2 andMT-

CO3 are downregulated in severe COVID-19 patients (75, 76). An

increased expression of mitochondrial genes was found in SARS-

CoV-2-infected lung cells (77) and upregulated expression in

alveolar epithelial cells of patients with mild or moderate

COVID-19 (78). Furthermore, in 2022, Adamo et al. viewed the

MT-CO2 gene as a gene tag for recovery in COVID-19 patients and

considered that increase in its expression indicates improvement in

COVID-19 (79), suggesting that immune response induced by

COVID-19 vaccination also leads to differential MT-CO2 and
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FIGURE 4

Incremental feature selection (IFS) curves of two classification algorithms in CD4+ T cells. (A) IFS results obtained based on the LASSO gene list. (B)
IFS results obtained based on the LightGBM gene list. (C) IFS results obtained based on the mRMR gene list. (D) IFS results obtained based on the
MCFS gene list. (E) IFS results obtained based on the PFI gene list.
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MT-CO3 gene expression. According to the functions of MT-CO2

and MT-CO3 genes discussed above, their expression may be

changed after COVID-19 vaccination and may respond to the

intensity of the immune response after vaccination. Therefore,

MT-CO2 and MT-CO3 are potentially useful features.

The last identified gene was RPL10 (ENSG00000147403).

RPL10 encodes ribosomal protein L10, which promotes ribosome

biogenesis and its ability to synthesize proteins (80–82). Thus,

immunoglobulins, such as antibodies, as proteins, and RPL10 in B

cells may play a role in immunoglobulin production. Some recent

papers have provided evidence of altered RPL10 gene expression

after COVID-19 vaccination. Chang et al. suggested that ribosomal

genes, such as RPL10, can serve as biomarkers for identifying SAR-

CoV-2 infection (83), suggesting the possibility of altered RPL10

gene expression after vaccination. Similarly, another study found

altered expression of ribosomal genes, including RPL10, after SARS-

CoV-2 infection (84). COVID-19 vaccination produces a large

number of antibodies (85–87), and based on the previously

postulated contribution of the RPL10 gene to antibody

production by B cells, RPL10 expression may be altered after

vaccination. As a result, RPL10 gene in B cells can be an

effective feature.

4.1.2 Qualitative features in CD4+ T cells
The first identified feature gene was B2M (ENSG00000166710),

which has a broad role in immune response and is a marker of

lymphocyte turnover (88, 89). In T cells, B2M is associated with
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thymic T cell differentiation (90), involved in the positive regulation

of T cell activation (65) and is a hub gene for cytokine storm (91).

COVID-19 vaccination may cause the differential expression of

B2M gene. B2M is widely recognized as a good biomarker of

responses to COVID-19 severity and treatment (92, 93) and is

upregulated in the olfactory bulb of patients of COVID-19 (92).

SARS-CoV-2 natural infection alters B2M expression, partially

demonstrating the differential expression of B2M after

vaccination. Given the previously mentioned important role of

B2M gene in immune response, immune response induced by a

COVID-19 vaccine may alter the expression of B2M Thus, B2M is a

potential feature.

The next identified gene was MT-CO3 (ENSG00000198938),

which is a mitochondrial gene that we have previously discussed as

a feature in B cells. Although little has been written about the

specific role ofMT-CO3 in CD4+ T cells, according to the important

role of MT-CO3 gene in the immune response (94) and its

involvement in aerobic respiratory energy supply (65, 70), MT-

CO3 gene may show differential expression after COVID-19

vaccination. Furthermore, SARS-CoV-2 natural infection leads to

differential MT-CO3 gene expression (75–77), further

demonstrating that immunological response induced by COVID-

19 vaccination may change MT-CO3 expression. As a result, MT-

CO3 gene in CD4+ T cells can be used as an effective feature.

The next identified features were RPL10 (ENSG00000147403),

RPS3 (ENSG00000149273), and RPS4X (ENSG00000198034).

RPL10, RPS3, and RPS4X are all ribosomal genes, and RPL10
TABLE 2 Performance of key classifiers in B cell.

Feature ranking
algorithm

Classification
algorithm

Number of
features

BNT-
BNT

ChAd-
BNT

ChAd-
ChAd ACC MCC Macro

F1
Weighted

F1

LASSO

DT 2960 0.974 0.880 0.717 0.851 0.730 0.857 0.853

DT* 30 0.972 0.870 0.713 0.841 0.722 0.851 0.845

RF 3750 0.989 0.943 0.850 0.927 0.864 0.927 0.927

RF* 30 0.992 0.928 0.833 0.912 0.843 0.918 0.914

LightGBM
DT 30 0.982 0.934 0.842 0.918 0.850 0.919 0.918

RF 30 0.999 0.974 0.937 0.969 0.942 0.970 0.969

MCFS

DT 190 0.980 0.929 0.822 0.909 0.833 0.910 0.910

DT* 70 0.977 0.910 0.797 0.889 0.802 0.894 0.891

RF 150 0.998 0.969 0.921 0.961 0.928 0.963 0.961

RF* 80 0.996 0.961 0.904 0.952 0.911 0.954 0.952

mRMR

DT 20 0.973 0.933 0.837 0.914 0.844 0.914 0.915

RF 120 0.994 0.971 0.928 0.964 0.932 0.964 0.964

RF* 40 0.998 0.969 0.923 0.962 0.929 0.963 0.962

PFI

DT 110 0.972 0.924 0.820 0.904 0.825 0.905 0.905

DT* 50 0.961 0.923 0.816 0.901 0.819 0.900 0.902

RF 110 1.000 0.969 0.921 0.961 0.928 0.963 0.962

RF* 60 0.997 0.968 0.920 0.960 0.927 0.962 0.961
*: Feasible classifiers with much less features and a little lower performance than optimal classifiers.
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gene is a feature gene in B cells. RPL10 has crucial function in the

immune systems of numerous plants and animals (95–97), and thus

has potential function in the human immune system. RPS3 is

involved in the positive regulation of activated T cell proliferation

(98, 99) and cytokine production and proliferation in T cells (100),

and its function correlates with the function of CD4+ helper T cells.

However, no publication has directly explored the role of RPS4X in

immune response, but it is presumed to be related to the execution

of immune functions by CD4+ T cells because of its involvement in

protein translation as a ribosomal gene (101). The alteration of gene

expression by SARS-CoV-2 infection may partially demonstrate the

trend of the alteration of these genes after COVID-19 vaccination.

In 2022, an article suggested that the RPS4X gene showed

downregulated expression after SARS-CoV-2 infection (102).

Although no subsequent literature has demonstrated COVID-19

vaccination-induced differential expression of RPL10, RPS3, and

RPS4X in CD4+ T cells, these genes are still considered

potent features.

4.1.3 Qualitative features in CD8+ T cells
The first identified feature was JUN (ENSG00000177606), which is

involved in the negative host regulation of viral transcription (103) and

thus has potential role in immune response. In addition, c-Jun

expression is a key component of the JNK/AP-1 pathway, which

plays an important role in the regulation of stress response genes

with anti-inflammatory and cytoprotection function (104). The
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immune functions of JUN may provide indirect evidence of the

differential expression of JUN after COVID-19 vaccination. Further,

a 2020 paper identified that SARS-CoV-2 infection can cause the

differential expression of JUN through pathway enrichment analysis

and identified the JUN as a novel biomarker (105). Therefore, JUNmay

exhibit differential expression after COVID-19 vaccination and may

serve as a plausible signature gene.

The next identified feature gene was MTRNR2L12

(ENSG00000269028), which is a paralog of protein-coding genes

and associated with apoptosis (65). Although no paper has

discussed the immune function of MTRNR2L12 in CD8+ T cells,

the differential expression ofMTRNR2L12 in patients with COVID-

19 may provide indirect evidence of COVID-19 vaccination. In

2021, researchers found that MTRNR2L12 was upregulated in

immune cells, such as CD8+ T cells, in bronchoalveolar lavage

fluid frommild and severe COVID-19 patients (106), suggesting the

possibility of altered expression following COVID-19 vaccination.

Two recent papers published in 2022 found the differential

expression of MTRNR2L12 in bronchoalveolar lavage fluid

samples from patients with severe COVID-19 (107) and

classification of the MTRNR2L12 gene as an important gene

determining COVID-19 positive status by association

classification model (108). Thus, COVID-19 vaccination may

cause the differential expression of MTRNR2L12 and serve as a

feature that facilitates the differentiation among the protective

capacities of different vaccination strategies.
TABLE 3 Performance of key classifiers in CD4+ T cell.

Feature ranking
algorithm

Classification
algorithm

Number of
features

BNT-
BNT

ChAd-
BNT

ChAd-
ChAd ACC MCC Macro

F1
Weighted

F1

LASSO

DT 4800 0.967 0.773 0.792 0.809 0.687 0.844 0.809

DT* 50 0.968 0.765 0.780 0.800 0.673 0.838 0.800

RF 200 0.996 0.874 0.890 0.898 0.833 0.920 0.898

RF* 40 0.993 0.868 0.883 0.892 0.823 0.915 0.892

LightGBM

DT 40 0.981 0.891 0.903 0.909 0.851 0.925 0.909

RF 70 0.999 0.954 0.960 0.963 0.939 0.971 0.963

RF* 30 1.000 0.952 0.958 0.961 0.936 0.970 0.961

MCFS

DT 260 0.973 0.887 0.898 0.904 0.842 0.919 0.904

DT* 40 0.972 0.864 0.876 0.885 0.811 0.904 0.885

RF 200 0.997 0.947 0.954 0.957 0.929 0.966 0.957

RF* 40 0.994 0.935 0.943 0.947 0.913 0.957 0.947

mRMR

DT 20 0.985 0.884 0.897 0.904 0.842 0.922 0.904

RF 130 0.997 0.949 0.955 0.958 0.932 0.967 0.958

RF* 30 0.997 0.942 0.948 0.952 0.922 0.962 0.952

PFI

DT 280 0.974 0.881 0.895 0.900 0.836 0.916 0.900

DT* 40 0.969 0.871 0.884 0.890 0.820 0.908 0.890

RF 160 0.998 0.949 0.955 0.958 0.932 0.967 0.958

RF* 60 0.985 0.942 0.949 0.951 0.920 0.959 0.951
*: Feasible classifiers with much less features and a little lower performance than optimal classifiers.
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The next identified gene was PLCG2 (ENSG00000197943), which

is a feature gene that may respond to vaccine protection in B cells. In

contrast to what was previously mentioned, PLCG2 is implicated in the

T cell receptor signaling pathway (109). Li et al. also found that PLCG2

expression is positively correlated with immune cells, such as CD8+ T
Frontiers in Immunology 12
cells (110). The alteration of PLCG2 expression by natural infection

with SARS-CoV-2 has been discussed in the previous section. PLCG2

expression in CD8+ T cells may represent T cell immunological

response following COVID-19 vaccination. In summary, PLCG2 in

CD8+ T cells can be used as an effective feature.
TABLE 4 Performance of key classifiers in CD8+ T cell.

Feature ranking
algorithm

Classification
algorithm

Number of
features

BNT-
BNT

ChAd-
BNT

ChAd-
ChAd ACC MCC Macro

F1
Weighted

F1

LASSO

DT 3100 0.987 0.856 0.617 0.860 0.777 0.820 0.864

DT* 10 0.987 0.833 0.608 0.843 0.760 0.809 0.852

RF 40 0.997 0.919 0.781 0.923 0.877 0.899 0.925

LightGBM

DT 30 0.990 0.932 0.813 0.933 0.892 0.912 0.934

RF 80 0.997 0.974 0.926 0.975 0.959 0.966 0.975

RF* 30 0.997 0.970 0.915 0.971 0.952 0.961 0.971

MCFS

DT 190 0.988 0.922 0.785 0.922 0.875 0.899 0.924

DT* 20 0.983 0.882 0.690 0.882 0.816 0.852 0.887

RF 160 0.997 0.959 0.886 0.961 0.936 0.947 0.961

RF* 90 0.995 0.952 0.865 0.953 0.924 0.937 0.953

mRMR

DT 680 0.992 0.922 0.786 0.924 0.877 0.900 0.925

DT* 60 0.987 0.918 0.788 0.920 0.872 0.897 0.921

RF 100 0.996 0.958 0.884 0.959 0.934 0.946 0.960

RF* 40 0.997 0.948 0.858 0.950 0.921 0.935 0.951

PFI

DT 170 0.985 0.924 0.791 0.924 0.877 0.900 0.925

DT* 60 0.982 0.909 0.759 0.909 0.855 0.884 0.911

RF 100 0.997 0.962 0.892 0.963 0.939 0.950 0.963

RF* 50 0.995 0.949 0.862 0.950 0.920 0.935 0.951
*: Feasible classifiers with much less features and a little lower performance than optimal classifiers.
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FIGURE 5

Bar chart to show weighted F1 yielded by the optimal classifiers on different gene lists for three cell types. (A) Bar chart for B cell. (B) Bar chart for
CD4+ T cell. (C) Bar chart for CD8+ T cell.
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The next identified feature was RPS29 (ENSG00000213741),

which encodes a ribosomal protein involved in the protein

translation (111, 112) and is associated with CD8+ T cells that kill

infected cells (113). Additionally, differential expression of RPS29

may partially react to the differential expression of RPS29 following

vaccination in patients with COVID-19. In 2020, Vastrad et al.

identified RPS29 as a biomarker for the diagnosis of SARS-CoV-2

infection through pathway enrichment analysis (114), so RPS29

expression may be altered after COVID-19 vaccination. In addition,

Yang et al. found that ribosome-encoding genes, such as RPS29,

were specifically downregulated in patients with long duration of
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toxic shedding. Based on the above discussion, RPS29 may be

differentially expressed in CD8+ T cells after COVID-19

vaccination as a feature of the protective power of response vaccine.

The last identified gene was XIST (ENSG00000229807), which

encodes noncoding RNAs that specifically silences X chromosome

(115). XIST expression is closely associated with T cells. A study

found that the high expression of the XIST gene was associated with

CD8+ T cell and total T cell levels (116). In addition, the high

expression of XIST stimulates the proliferation and differentiation

of naïve CD4+ T cells (117). Thus, XIST is closely associated with T

cell-induced immune response and may be differentially expressed
A B C

FIGURE 6

Venn results of five essential feature subsets identified by five feature ranking algorithms in three immune cell types. Genes found in multiple
overlapping circles indicate that they were highly ranked in multiple ranking algorithms and were more likely to differ in homologous and
heterologous vaccine immune responses. (A) Venn results for B cell. (B) Venn results for CD4+ T cell. (C) Venn results for CD8+ T cell.
TABLE 5 Breakdown of rules yielded by decision tree on different gene lists for each cell type.

Cell type Gene list
Number of rules

BNT-BNT ChAd-BNT ChAd-ChAd Total

B cell

LASSO gene list 13 93 138 244

LightGBM gene list 15 88 82 185

MCFS gene list 11 77 75 163

mRMR gene list 16 106 87 209

PFI gene list 14 83 70 167

CD4+ T Cell

LASSO gene list 37 297 327 661

LightGBM gene list 28 189 178 395

MCFS gene list 27 162 163 352

mRMR gene list 25 205 202 432

PFI gene list 27 162 166 355

CD8+ T Cell

LASSO gene list 18 141 178 337

LightGBM gene list 18 117 110 245

MCFS gene list 17 109 104 230

mRMR gene list 22 92 90 204

PFI gene list 21 101 95 217
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after COVID-19 vaccination. XIST can still be a feature in CD8+ T

cells according to its immunological role even if no study provides

clear evidence of differential expression of XIST after vaccination.
4.2 Analysis of decision rules in
lymphocytes for distinguishing among
vaccination strategies

As described above, we identified a set of validated features that

can help qualitatively distinguish among lymphocyte gene

expression samples from various prime-boost vaccination

strategies. Some top features have been validated by recent

studies. For a more thorough discussion, we selected a few

representative rules for each class based on blood single cell data

for B, CD4+ T, and CD8+ T cells, which are listed in Table 7. We

compared the protective effects of BNT–BNT, BNT–ChAd, and

ChAd–ChAd vaccine combinations based on the differential

expression of some important genes. Then, the effectiveness of

immunity induced by vaccination strategies based on the roles of

these genes in B, CD4+ T, and CD8+ T cells were predicted.

4.2.1 Quantitative rules in B cells
MTRNR2L12 (ENSG00000269028) is downregulated in B cells

after two doses of BNT or ChAd vaccination. MTRNR2L12 is an

anti-apoptotic lncRNA (106), and the expression ofMTRNR2L12 is

positively correlated with cellular stress (118). Based on the

relationship between MTRNR2L12 expression and cellular stress,

we hypothesized that the low expression of MTRNR2L12 may be

associated with decrease in adverse vaccine reactions. A study in

2021 reported a higher incidence of serious adverse events due to

ChAd–BNT than that after homologous vaccines (119). Thus, the
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low expression of MTRNR2L12 facilitates differentiation among

homologous vaccines with low adverse reaction rates.

PLCG2 (ENSG00000197943) is involved in the B cell receptor

signaling pathway (59) and associated with antibody production

and B cell memory (60). Therefore, the expression of PLCG2 is

altered after COVID-19 vaccine administration. In addition, the

expression level of PLCG2may suggest the effectiveness of humoral

immunity induced by different vaccine combinations. In 2022, a

study found that homologous BNT–BNT-induced lower anti-S IgM

and IgG concentrations to a higher degree than heterologous BNT–

ChA (120). Similarly, Pozzetto et al. (15) found that heterologous

ChAd–BNT vaccination strategy produced more effective

neutralizing antibodies than vaccination with homologous BNT-

BNT. Thus, PLCG2 is useful in identifying ChAd–BNT

vaccine recipients.

RPS3A (ENSG00000145425) is overexpressed after BNT–ChAd

vaccination. The small ribosomal subunit (40S) contains RPS3A,

which is primarily found in the cytoplasm and nucleus (121).

RPS3A plays a critical role in regulating translation initiation and

protein synthesis (122, 123), so the expression of RPS3A may be

related to antibody secretion. In 2022, a study found that BNT–

ChAd vaccination produced more anti-S IgG than BNT–BNT

vaccination in people without previous SARS-CoV-2 infection

(124). In 2021, another study found that BNT–ChAd induced

higher titers of anti-S protein IgG and IgA subclasses than a

homologous vaccination strategy (16), confirming that RPS3A is a

valid parameter for predicting people receiving heterologous BNT–

ChAd vaccines.

High expression of MT-CO3 (ENSG00000198938) is associated

with vaccination with heterologous BNT–ChAd vaccines.MT-CO3,

a mitochondrial gene (65), enables B cells to obtain sufficient energy

to perform their functions. When B cells are activated by an antigen
TABLE 6 Top five genes identified by the computational framework in lymphocytes.

Cell Type Ensembl ID Gene symbol Description

B Cell

ENSG00000197943 PLCG2 phospholipase C gamma 2

ENSG00000237541 HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2

ENSG00000147403 RPL10 ribosomal protein L10

ENSG00000198938 MT-CO3 mitochondrially encoded cytochrome c oxidase III

ENSG00000198712 MT-CO2 mitochondrially encoded cytochrome c oxidase II

CD4+ T Cell

ENSG00000198938 MT-CO3 mitochondrially encoded cytochrome c oxidase III

ENSG00000166710 B2M beta-2-microglobulin

ENSG00000147403 RPL10 ribosomal protein L10

ENSG00000198034 RPS4X ribosomal protein S4 X-linked

ENSG00000149273 RPS3 ribosomal protein S3

CD8+ T Cell

ENSG00000269028 MTRNR2L12 MT-RNR2 like 12

ENSG00000197943 PLCG2 phospholipase C gamma 2

ENSG00000177606 JUN Jun proto-oncogene

ENSG00000213741 RPS29 ribosomal protein S29

ENSG00000229807 XIST X inactive specific transcript
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and differentiate into plasma cells to secrete antibodies, a high level

of oxidative phosphorylation is required (125). Therefore, the

upregulation of MT-CO3 is reasonable given that COVID-19

vaccination induces B-cell-mediated humoral immunity (126,

127). In 2021, a study found that initial booster vaccination with

heterologous BNT–ChAd induced the production of high

concentrations of anti-S IgG (128). In addition, BNT–ChAd

vaccinees produce more anti-RBD IgG than ChAd–ChAd

vaccines (129). The effectiveness of MT-CO3 upregulation was

demonstrated by the fact that heterologous vaccines induce the

production of a large number of antibodies and therefore require a

large energy supply.

TXNIP (ENSG00000265972) is downregulated after BNT–

ChAd vaccination, helping to identify homologous vaccinated

individuals. The product encoded by TXNIP can inhibit the

activity of Trx1, thereby suppressing rapid cellular proliferation

(130). Thus, TXNIP can inhibit the proliferation of B cells during an

immune response. Immune response to vaccination causes B cell

proliferation, indicating the downregulation of TXNIP in B cells. In

view of the strong humoral immune response induced by BNT–

ChAd prime-boost vaccination reported in 2021 (15), low TXNIP

expression is associated with heterologous vaccination.

4.2.2 Quantitative rules in CD4+ T cells
B2M (ENSG00000166710) is a marker of immune activation

and involved in the positive regulation of T cell activation (88).

Therefore, B2M expression in CD4+ T cells may be related to CD4+

T cell activation and executive functions. Schmidt et al. found that

the homologous vaccination strategy resulted in lower IFN-g level
than the heterologous vaccination strategy (10, 129), demonstrating

a weaker CD4+ T cell immune response in BNT–BNT vaccinees.

Thus, the overexpression of B2M in CD4+ T cells can facilitate

distinction of BNT–ChAd prime-boost vaccination from other

types of vaccination.

RPS26 (ENSG00000197728) has low expression to predict BNT–

BNT vaccines. RPS26 is a ribosomal protein-encoding gene and plays a
Frontiers in Immunology 15
key role in regulating T cell survival (131). The expression of RPS26 is

related to T cell-mediated cellular immunity. In addition, in 2022, a

study found differential expression of RPS26 after COVID-19 mRNA

vaccination (132), demonstrating the validity of RPS26 as a parameter.

In 2021, another study demonstrated that the BNT–BNT vaccination

strategy induced less spike-specific IFN-g than the BNT–ChAd

vaccination strategy did (133). Therefore, the downregulation of

RPS26 is associated with the identification of BNT–BNT

vaccine recipients.

In B ce l l s , th e low expre s s i on o f MTRNR2L12

(ENSG00000269028) is associated with a low incidence of adverse

reactions to two doses of BNT vaccine and with the identification of a

BNT+BNT vaccination strategy. As previously explained, a low

incidence of adverse reactions to two doses of the BNT vaccine is

related to the low expression ofMTRNR2L12. Therefore,MTRNR2L12

can also be used as a valid parameter in CD4+ T cells.

The expression of MT-CO3 (ENSG00000198938) in CD4+ T

cells facilitates the identification of a group that has received

heterologous BNT–ChAd vaccination. We have already discussed

MT-CO3 as a mitochondrial gene in B cells engaged in ATP

synthesis. A study in 2021 suggested that the BNT–ChAd

immunization method produced great protection (134),

suggesting that MT-CO3 is a useful parameter in CD4+ T cells.

FOSB (ENSG00000125740) is downregulated after heterologous

BNT–ChAd vaccination. FOSB is an AP-1 family transcription factor

that participates in the regulation of T cell proliferation, differentiation,

and immune response (135). In 2022, a study found that the FOSB-

encoded AP-1 transcription factor was downregulated after BNT

vaccination (136), suggesting the extent at which FOSB

downregulation may facilitate distinction among different vaccine

strategies. Although no publications have proven the validity of

FOSB, FOSB can still be identified as a parameter in this rule.

4.2.3 Quantitative rules in CD8+ T cells
MTRNR2L12 (ENSG00000269028) contributes to the low

incidence of adverse reactions after BNT–BNT vaccination (119,
TABLE 7 Representative rules in lymphocytes.

Cell
Type Rules Parameters Predicted

class

B Cell

Rule 0
[ENSG00000269028 (MTRNR2L12) ≤ 2.68] and [ENSG00000197943 (PLCG2) ≤ 3.90] and [ENSG00000145425 (RPS3A) ≤
3.49]

BNT-BNT

Rule 1
[ENSG00000198938 (MT-CO3) >4.84] and [ENSG00000265972 (TXNIP) ≤ 4.73] and [ENSG00000197943 (PLCG2) >0.59] and
[ENSG00000145425 (RPS3A) >3.68]

BNT-ChAd

Rule 2
[ENSG00000198938 (MT-CO3) >4.52] and [ENSG00000269028 (MTRNR2L12) ≤ 4.81] and [ENSG00000145425 (RPS3A) ≤
3.49]

ChAd-ChAd

CD4+ T
Cell

Rule 3 [ENSG00000166710 (B2M) ≤ 3.56] and [ENSG00000197728 (RPS26) ≤ 1.49] and [ENSG00000269028 (MTRNR2L12) ≤ 2.51] BNT-BNT

Rule 4 [ENSG00000166710 (B2M) >3.56] and [ENSG00000198938 (MT-CO3) >1.83] and [ENSG00000125740 (FOSB) ≤ 3.16] BNT-ChAd

Rule 5 [ENSG00000166710 (B2M) ≤ 5.23] and [ENSG00000125740 (FOSB) ≤ 0.53] ChAd-ChAd

CD8+ T
Cell

Rule 6 [ENSG00000269028 (MTRNR2L12) ≤ 2.99] and [ENSG00000197943 (PLCG2) ≤ 2.94] and [ENSG00000229807(XIST) ≤ 0.72] BNT-BNT

Rule 7
[ENSG00000166710 (B2M) > 3.60] and [ENSG00000115523(GNLY) ≤ 2.06] and [ENSG00000197943 (PLCG2) >1.59] and
[ENSG00000125740 (FOSB) ≤ 3.89]

BNT-ChAd

Rule 8 [ENSG00000197943 (PLCG2) ≤ 5.00] and [ENSG00000198840(MT-ND3) ≤ 5.00] ChAd-ChAd
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137) and is thus a valid parameter in CD8+ T cells and facilitates the

differentiation of a BNT–BNT vaccination population from

another population.

PLCG2 (ENSG00000197943) expression is positively correlated

with CD8+ T cells (110), and the protective capacity of homologous

vaccination is lower than that of BNT–ChAd vaccination (128),

PLCG2 can be used as a valid parameter in CD8+ T cells for

identifying individuals with BNT–ChAd vaccines.

The low expression of XIST (ENSG00000229807) may be the

result of the reduced level of response of CD8+ T cells after BNT–

BNT vaccination because a high expression of XIST increases the

amounts of CD8+ T cells (117). In 2021, a study found that BNT–

BNT vaccination produced less IFN-g than heterologous

vaccination (133), also demonstrating that the expression of XIST

in CD8+ T cells can facilitate the identification of people who have

received two doses of the BNT vaccine.

The upregulated expression of B2M (ENSG00000166710) in

CD8+ T cells facilitates the identification of BNT–ChAd vaccination

strategies. The B2M gene is involved in T cell-mediated cytotoxicity

(90) and T cell activation (65), and so B2M plays an important role

in the immune function of CD8+ T cells. Given that the

heterologous BNT–ChAd vaccination strategy induces stronger

cellular immunity than the homologous vaccination strategy does

(15, 129), B2M can be regarded as a parameter.

GNLY (ENSG00000115523) expression in CD8+ T cells is useful in

predicting BNT–ChAd vaccine recipients. GNLY is a cytotoxicity-

associated gene involved in CD8+ T cell-mediated protective immunity

(138, 139). However, the low expression of GNLY in this rule may be

due to the fact that GNLY is released by CD8+ T cells to kill cells

infected by SARS-CoV-2. The BNT–ChAd vaccination strategy

induces stronger cellular immunity (128), and thus GNLY facilitates

the identification of individuals with the BNT–ChAd vaccine.

The expression of FOSB (ENSG00000125740) in CD8+ T cells

helps in identifying people who received heterologous BNT–ChAd

vaccination. In 2021, a study found high FOSB expression in

senescent T cells (140), presumably with few senescent CD8+ T

cells due to the induction of CD8+ T cell proliferation by

vaccination with BNT–ChAd vaccine. In addition, the BNT–

ChAd vaccination strategy induces stronger cellular immunity

than the homologous vaccination strategy does (16), and thus

FOSB can serve as an effective parameter in CD8+ T cells.

MT-ND3 (ENSG00000198840) is a mitochondrial gene

associated with the energy supply of CD8+ T cells performing

immune functions. The downregulation of MT-ND3 CD8+ T cells

allows the identification of homologous ChAd–ChAd vaccination

strategies, as BNT–ChAd heterologous vaccines induce strong

immune responses (134). Therefore, MT-ND3 can be regarded as

a valid parameter in CD8+ T cells.
5 Conclusion

In the present study, a set of potential genes that reveal

differential expression in B, CD4+ T, and CD8+ T cells induced

by COVID-19 vaccination were identified. The genes may facilitate
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distinction among the immunological effects of BNT–BNT, ChAd–

ChAd, and ChAd–BNT vaccinations. The differential expression of

the features we identified in subjects vaccinated with different

COVID-19 vaccine types may provide evidence of the protective

capacities of different vaccination strategies and help advance

effective vaccination methods, providing protection against SARS-

CoV-2 infection. According to newly released publication, some

features and quantitative rules were associated with COVID-19

vaccination and SARS-CoV-2 infection. Meanwhile, some efficient

classifiers with the screened features were set up, indicating that

selected features can effectively distinguish between heterologous

and homologous vaccines. The high efficacy of the heterologous

ChAdOx1–BNT162b2 vaccine can be partly explained by this study,

which offers a theoretical foundation for vaccine modification.
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