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Immune checkpoint inhibitors (ICIs) are approved as the first-line drug for

treating many cancers and has shown significant survival benefits; however, it

also causes immune-related adverse events (irAEs) while activating the immune

system, involving multiple organs. Among them, cardiovascular immune-related

adverse events (CV-irAE) are rare, but common causes of death in ICIs treated

cancer patients, which manifest as myocardial, pericardial, vascular and other

cardiovascular toxicities. Therefore, it is important that irAEs, especially CV-irAE

should be carefully recognized and monitored during the whole ICIs treatment

because early detection and treatment of CV-irAE can significantly reduce the

mortality of such patients. Consequently, it is urgent to fully understand the

mechanism and management strategies of CV-irAE. The effects of ICIs are

multifaceted and the exact mechanism of CV-irAE is still elusive. Generally, T

cells identify tumor cell antigens as well as antigen in cardiomyocytes that are the

same as or homologous to those on tumor cells, thus causing myocardial

damage. In addition, ICIs promote formation of cardiac troponin I (cTnI) that

induces cardiac dysfunction and myocardial dilatation; moreover, ICIs also

increase the production of cytokines, which promote infiltration of

inflammation-linked molecules into off-target tissues. Currently, the

management and treatment of cardiovascular toxicity are largely dependent

on glucocorticoids, more strategies for prevention and treatment of CV-irAE,

such as predictive markers are being explored. This review discusses risk factors,

potential pathophysiological mechanisms, clinical manifestations, and

management and treatment of CV-irAE, guiding the development of more

effective prevention, treatment and management strategies in the future.

KEYWORDS

cardiotoxicity, immune checkpoint inhibitors, immune-related adverse events,
Myocarditis, Pericarditis, Vasculitis
1 Introduction

During tumorigenesis, tumor cells inhibit the activation and effector process of T cells

by hijacking immune checkpoints molecules, then evade the surveillance and attack of the

immune system. Thus, immune checkpoint related to the regulation of T-cell activity is an

important target for anti-tumor therapy (1). Tumor microenvironmental factors also
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modify the anti-tumor immune response, such as T-cell infiltration

and expression of immune checkpoint proteins (2). Currently, the

main immune checkpoints include cytotoxic T-lymphocyte antigen

4 (CTLA-4), programmed cell death receptor 1 (PD-1),

programmed cell death ligand 1 (PD-L1) and lymphocyte

activation gene 3 protein (LAG3). Immune checkpoint inhibitors

(ICIs) are now approved for treating many malignancies and

significantly prolonged the survival of cancer patients (3–6). At

the beginning of ICIs application, reports of immune-related

adverse events (irAEs) were rare and did not attract broad

attention. However, with the rapidly increased use of ICIs and the

improvement of patients’ survival, the importance of cardiovascular

immune-related adverse events (CV-irAE) therapy has come to the

forefront. Despite its low incidence, immune-related adverse events

(CV-irAEs) require high attention from clinicians (7). Therefore,

through exploring the underlying mechanisms of CV-irAE, we

developed more effective prevention, treatment, and management

strategies, thus improving the quality of life and patients’ survival.

Herein, we review the pharmacological mechanisms of ICIs, current

research progression in CV-irAEs epidemiology, risk factors,

potential pathophysiological mechanisms as well as clinical

manifestation, the management and treatment of CV-irAEs

mentioned in guidelines and literatures. The above statements are

gross generalizations based on our synthesis of the current

litereature.Some statements are not accepted by all, but most of

them are based on guidelines published by prestigious

professional organizations.
2 Epidemiology

Current reports about epidemiology of CV-irAE are limited

because of its low incidence (8). CV-irAEs occur as early as a few

days after ICIs initiation, but may also present late until one year

after ICIs treatment, the median onset time of CV-irAE was 34 days

after starting ICIs (9, 10). In a Danish national study, patients with

lung cancer and malignant melanoma had a higher risk rate of CV-

irAE in patients treated with ICIs than those who did not receive

ICIs therapy (11). Wang et al. (12) performed a retrospective

analysis of published irAEs queried in the pharmacovigilance

database (Vigilyze) and found that myocarditis had the highest

fatality rate among all CV-irAEs (39.7%). Rubio et al. analyzed 1265

papers published before August 31, 2020 and found the total

incidence of CV-irAE was about 1.3%, among them myocarditis

was the most common irAE, accounting for 50.8%. Notably, a high

mortality rate of 24.6% of patients died due to CV-irAE (13). In this

study, ICIs included ipilimumab, tremelimumab, nivolumab,

pembrolizumab, atezolizumab, durvalumab and avelumab. In

addition to these ICIs, there are emerging ICIs, which may also

occur CV-irAEs such as relatlimab, a emerging monoclonal

antibody that targets LAG-3, relatlimab had a higher incidence in

myocarditis (14, 15). Since relatlimab has been approved soon,

relatlimab related cardiotoxicity needs to be further explored. The

incidence of CV-irAE appears to increase in recent years, probably

due to the increased scope and frequency of use of ICIs and the

heightened awareness of cardiotoxicity (16–18). However, the real-
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world prevalence of CV-irAE may be higher than expected, and we

currently lack the support of large-sample clinical studies that could

offer further in-depth investigation (9, 17).
3 Risk factors for CV-irAE

The risk factors of CV-irAE need further investigation, dual

ICIs combination therapy is the greatest risk factor for CV-irAE

over other risk factors such as autoimmune diseases (19). Several

investigations have also confirmed that dual ICI leads to a higher

incidence of CV-irAE than monotherapy or ICI plus chemotherapy

(19, 20). A meta-analysis of CV-irAE concluded that the incidence

was 3.1% for ICI monotherapy, 2.5% for ICI plus chemotherapy and

5.8% for dual ICIs treatment (anti-PD-1 plus anti-CTLA-4/anti-

PD-1 plus anti-PD-L1) (13). The emerging bispecific antibody also

causes CV-irAE. The incidence of CV-irAE is 0.9% in 458 patients

treated with Cadonilimab (anti-PD-1/CTLA-4) (21). Cardiotoxicity

of AK112 (NCT04047290)—anti-PD-1/VEGF and IBI318

(NCT03875157)—anti-PD-1/PD-L1 has not been reported.

It was demonstrated that the PD-1 modulates radiation-

induced cardiotoxicity in an animal model, acute toxicity was

increased with anti-PD-1 treatment in mice with radiotherapy,

but further research is needed to get a deep insight (22). Osaka

Medical School in Japan established a mouse model of experimental

autoimmune myocarditis (EAM) by administration of PD-1

antibodies in mice (23). The study indicated that ICIs-induced

autoimmune myocarditis may be related to autoimmunity prior to

ICIs administration (23). CV-irAE is more frequently reported in

patients diagnosed with autoimmune diseases (24). In a

retrospective case-match control study comparing 251 ICI-treated

patients who had autoimmune diseases with 251 ICI-treated

patients who did not have autoimmune diseases, the risk of CV-

irAEs was higher in patients with autoimmune diseases than those

without (hazard ratio:1.77) (25).

In addition, the observation of sporadic ICIs-associated

myocarditis cases revealed that patients with diabetes were more

common in these cases (9, 26). In addition, the patients’ pre-existing

cardiovascular risk factors (age ≥80 years, hypertension, diabetes

mellitus and chronic kidney disease) and the presence of

cardiovascular toxicity caused by previous anti-neoplastic drugs

should also be brought to our attention (27). Comparing 35 patients

who had ICIs-related myocarditis with 105 ICIs-treated patients

who did not have ICIs-related myocarditis, 34% of patients with

ICIs-related myocarditis had pre-existing diabetes but only 13% of

ICIs-treated patients without myocarditis had diabetes (28).
4 Mechanism of CV-irAE

4.1 Pharmacological mechanism of ICIs

The immune system plays an important role in the surveillance

and wiping malignant cells. T cells undergo positive and negative

selection in thymic to ensure self-tolerance and specific recognition

of abnormal cells (including cancer cells) (29). Tumor cells
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presenting or releasing tumor antigens are engulfed by antigen

presenting cells (APCs), which process tumor antigens and present

MHC-I and MHC-II molecular complexes to CD8+ T-cell and CD4

+ T-cell receptors then accurately identify cancer cells. A

combination of B7, on the surface of APCs, and CD28, on the

surface of T cells, constitute synergistic signals in T cells activation,

the combination of CD28-B7 lead to cytoskeleton remodelling,

cytokines secretion and T cells differentiation. Activated CD4+ T

cells secrete cytokines to stimulate CD8+ T cells proliferation in

lymph nodes. Activated CD8+ T cells can reach the tumor through

circulation, recognize the MHC-I molecular complex on the tumor

cells, and kill tumor cells (30–33). Activated CTLA-4, PD-1 and

LAG-3 to protect the host from self-attack by abnormally activated

T cells (6, 34, 35). CTLA-4, a CD28 homolog, has stronger affinity

than CD28, and can induce trans-endocytosis of B7 ligands to

reduce the co-stimulatory signal (36–38). PD-1, combined with PD-

L1, negatively mediates T cell proliferation and activation (39, 40).

CTLA-4 not only competes with CD28 for B7 but also induces

regulatory T cells (Treg, inhibitory immune cells) to death, leading

to unbalance between Treg and cytotoxic T cells (41, 42). CTLA-4

monoclonal antibody clears Treg in tumor effectively through FcR

mediated ADCC (antibody-dependent cell-mediated cytotoxicity),

thus relieving immunosuppressive of Treg to achieve anti-tumor

(42–44). However, Treg cells are important in peripheral tolerance

(45). Reducing peripheral Treg cells lead to the immune system

attacking organism, resulting in serious side effects (45, 46). PD-1

plays an important role in T-cell homeostasis and inflammatory

inhibition in peripheral tissues (34, 47). Lymphocyte activation gene

3 protein (LAG3) is a negative immunomodulator that regulates the

function of T cells and dendritic cells (DC) by binding with MHC-II

(6). LAG-3 has an intracellular short tail domain that inhibits the

function of LAG-3 in effector CD4+ T cells and an extracellular

domain similar to CD4 but possess higher affinity to combine with

MHC-II than CD4 (6, 48). FGL1, the ligand of LAG-3, expressed on

the surface of cancer cells. When FGL1 combines with LAG-3 on

the surface of T cells, immune system mistake cancer cells as

normal, contributing to immune-escape of tumor cells (49). After

immunoediting (50–52), tumor cells would also express immune

checkpoint, so ICIs are designed to reactivate anti-tumor immune

response by targeting specific immune checkpoint (Figure 1).

Therefore, CTLA-4, PD-1, PD-L1and LAG3 inhibitors have been

approved for clinical treatment in several cancer types by Food and

Drug Administration (FDA) (1, 53). In addition, new-type ICIs

through targeting inhibitory receptors [e.g,. T cell immunoglobulin

domain and mucin domain-3 (TIM-3), T cell Ig and ITIM domain

(TIGIT) and BTLA (CD272)] and ligand of the B7 family [e.g., V-

domain Ig suppressor of T cell activation (VISTA), B7-H3] are

being actively investigating and developed for clinical trials in

increasing numbers (54–57).
4.2 Potential pathophysiological
mechanisms of CV-irAEs

The mechanism of CV-irAE might be ICIs disrupt the

autoimmune tolerance of myocardial cell (58). irAEs are
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reversible in most cases treated appropriately; however, heart is a

vital organ so CV-irAE can be fatal (20, 59). Though the effects of

ICIs are multifaceted, the exact mechanisms of CV-irAE are still

elusive (52) (Figure 2).

4.2.1 The common antigens in tumor cells and
cardiomyocytes leading to cross-reaction

T cells identify tumor cell antigens as well as antigen in

cardiomyocytes same with or homologous to those on tumor

cells simultaneously. In two cases of fulminant myocarditis

caused by ICIs, postmortem found that T cell marker (CD3)

was positive in myocardial and skeletal muscle infiltrating cells.

T cells receptor sequence revealed that patients had high

frequency of shared T cell receptor sequences in cardiac and

skeletal muscle and tumor infiltrating cells (20). Taken together,

these suggest that activated T cells not only attacked tumor cells

but also caused cross-reaction with common antigens on skeletal

and cardiac muscles, but the specific antigen was not identified in

the study. T cells-mediated immune responses in the heart may

cause abnormal heart electrical rhythm and irreparable damage

to myocardium (58).
4.2.2 Increase of autoantibody
ICIs promote the formation of autoantibodies. Lack of PD-1

caused autoimmune dilated cardiomyopathy in mouse model with

Pdcd1 gene knockout, and high titers of circulating immunoglobulins

(IgGs) deposited on surface of mouse cardiomyocytes (60).

Subsequent experiments showed that the autoantibodies are against

cTnI. cTnI induced cardiac dysfunction and myocardial dilatation by

means of chronically stimulating influx of calcium ions in

cardiomyocytes (61).
4.2.3 Cardiac myosin
drive cell-mediated cytotoxicity

Won et al. (62) used anti-PD-1 monoclonal antibodies to induce

the development of myocarditis in mice and they found that

myosin-specific T cells were increased in such mice. Axelrod et al.

(63) has established Pdcd1-/-/Ctla4+/- mouse model to characterize

ICIs-related myocarditis. Single-cell RNA and T cell receptor (TCR)

sequencing were arranged and found increasing CD8+T cells in

ICIs-related myocarditis. They subsequently found that specific

TCRs recognize a-myosin, suggesting a-myosin may drive

cytotoxic T-cell-mediated killing.
4.2.4 High level of cytokines
Cytokines that recruit immune cells to tumor microenvironment

are significant modulators for immune response (58). ICIs lead to

increased pro-inflammatory cytokines, which activate T-cells

proliferation and result in anti-tumor immune response (64–66).

Tarhini et al. (64) found that restraining immune checkpoints result

in higher circulating pro-inflammatory cytokines [interferon (IFN)-g,
tumor necrosis factor (TNF)-a, interleukin (IL), and granulocyte

macrophage colony-stimulating factor (GM-CSF)]. Those cytokines

contribute to ICIs penetration into non-target organs (including

cardiovascular cells) (64, 65, 67, 68).
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4.2.5 Immune tolerance
Immune checkpoints inhibit T cells activation is called immune

tolerance. For example, the PD-1/PD-L1 pathway prevents T cells

overactivation to maintain immune balance. Blocking PD1/PD-

L1will not only promote anti-tumor immunity but also inhibit Treg

cells and Forkhead Box P3 (FOXP3) expression, leading to loss of

self-tolerance (69). Treg cells have an effective role in keeping

peripheral tolerance. Systemic application of ICIs may disrupt

immune homeostasis between cytotoxic T cells and Treg cells in

normal myocardial tissue, causing the development of

cardiotoxicity (70, 71).
4.2.6 Atherosclerosis
Atherosclerosis is the inflammation of large arteries (72). PD-1

and CTLA-4 restrain formation of atherosclerosis. PD-1 deficient
Frontiers in Immunology 04
bone marrow progenitor cells up-regulate genes involved in

cholesterol synthesis and ingestion, leading to elevated cholesterol

(73). Blockading CTLA-4 increases T cells abundance in plaques

and exacerbates atherosclerosis in mouse model (74). Banerjee et al.

(75) found that senescence-associated secretory phenotype (SASP)

are intersections of cancer and cardiovascular events, and SASP can

aggravate atherosclerosis. More importantly, ICIs can lead to

therapy-induced SASP and accelerate atherosclerosis, so

atherosclerosis should be monitored while using ICIs ( (75, 76). A

matched cohort study (77) showed that patients treated with ICIs

have a 3-fold increase risk for cardiovascular events (77). Autopsies

were performed on tumor decedents who received ICIs and those

who did not, and the result showed that the ratio of CD3/CD68 was

significantly elevated in atherosclerotic plaques among patients

undergoing ICIs (78). After treated with ICIs, inflammation in

atherosclerotic plaques was dominated by lymphocytes rather than
FIGURE 1

Pharmacological mechanism of ICIs. APCs present MHC molecular complexes to TCR on T cells and activate T cells. CD4+ T cells secrete cytokines
and stimulate CD8+ T cells proliferation. Activated CD8+ T cells kill tumor cells precisely. Normally, PD-L1 binds to PD-1, FGL-1 binds to LAG-3,
inactivating CD8+ T cells and leading to autoimmune tolerance. After immunoediting, tumor cells express PD-L1 and FGL-1 and T cells express
CTLA-4 and LAG-3, receptors on T cells bound with ligands on tumor cells or APCs, which will inactivate T cells. ICIs devitalized the PD-1/PD-L1,
LAG-3/FGL-1 and CTLA-4/B7 signals and reactivated T cells to kill tumor cells.
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macrophages, which is usually primary cell of atherosclerosis (78).

Lymphocytes have a significant effect on the development of

atherosclerosis, and in mouse model Th1 cells promote the

development of atherosclerosis by secreting IFN-g (79–81). In

summary, this evidence suggests that ICIs may contribute to

plaques and coronary events by altering the type of inflammation

in atherosclerotic plaques (78).

4.2.7 ADCC(antibody-dependent
cell-mediated cytotoxicity)

ICIs interact with proteins expressed on myocardial tissue, such

as CTLA-4, FGL1, LAG-3, PD-1 and PD-L1, resulting in

complement-mediated tissue injury. The Fc region of human

IgG1 monoclonal antibodies binds to receptors on natural killer

(NK) cells mediating ADCC. Therefore, most immune checkpoint

monoclonal antibodies are IgG4 that do not mediate ADCC;

however, avelumab is a human IgG1 anti-PD-L1 monoclonal

antibody. Theoretically, the antibodies, bind to PD-L1 on surface
Frontiers in Immunology 05
of cardiomyocytes, and may mediate killing of cardiomyocytes by

NK cells through ADCC (82–84).
5 Clinical manifestations of CV-irAE

CV-irAE may appear as symptoms from the myocardial,

pericardial and vascular system of the body (71, 85).
5.1 Myocardial disease

5.1.1 Myocarditis
Myocarditis appears as early as 2 weeks after ICIs, and the

median time is 65 days (86, 87). Myocarditis is the most frequent

CV-irAE, possibly shown as asymptomatic myocarditis with an

increase of cardiac biomarkers, or could be severe cardiac damage,

even break out fulminant or life-threatening manifestations such as
A

B

D E

F

G

C

FIGURE 2

Possible mechanisms of CV-irAE. (A) Activated T cells not only attack tumor cells but also cross-reactivate with cardiac muscle. (B) Cardiac
myocytes secrete cTnI antibodies after using ICIs. (C) Myosin-specific T cells TCRs can recognize myosin and drive cytotoxic T-cell-mediated killing.
(D) ICIs can lead to increased levels of pro-inflammatory cytokines. (E) Systemic application of ICI may disrupt immune homeostasis between
cytotoxic T cells and Tregs. (F) ICIs may contribute to plaques progression and coronary events. (G) Anti-PD-L1 monoclonal antibodies may mediate
NK cells killing cardiomyocytes through the ADCC pathway.
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cardiogenic shock, heart failure, arrhythmias, advanced

atrioventricular block or ventricular tachycardia (9, 20, 86, 88).

Progression of ICIs-associated myocarditis is fulminant but can also

be doubted by clinical symptoms, electrocardiography and

biomarkers [troponin, brain natriuretic peptide (BNP)] and

imaging (17). Myocardial biopsy is the definitive standard to

identify myocarditis. The typical myocarditis clinical symptoms

include palpitations, chest pain, heart failure and a range of other

manifestations (89).

5.1.2 Takotsubo syndrome
Takotsubo syndrome usually appears between 15 weeks to 8

months after ICIs; however, due to its low incidence,

epidemiological data are lacking and the literatures are still

limited to only case reports (87). Takotsubo syndrome is an acute

and transient syndrome of regional left ventricular insufficiency

(90). It was first identified in Japan and characterized by

myocardium dilating like a balloon and may lead to several

dangerous symptoms. It was usually caused by severe stress. For

clinical examination, echocardiograph shows apical or mid-left

ventricular dyskinesia and troponin and NT-proBNP will elevate

(91–93). A melanoma patient present takotsubo syndrome after

ICIs combination therapy, and echocardiograph showed apical

motion with ballooning, electrocardiogram showed V2-V6 ST

elevation 1-2 mm. Cardiac MRI showed that left ventricular

ejection fraction (LVEF) and systolic function returned to normal

after corticosteroid treatment (94).

5.1.3 Dilated cardiomyopathy
Activated T cells result in an immune response in vessels and

myocardium lead to development of dilated cardiomyopathy (95).

Similarly, epidemiological data on ICIs-induced dilated

cardiomyopathy is insufficient due to its low incidence.

Nishimura et al. (60) found that PD-1 knockout mice developed

severe dilated cardiomyopathy. Subsequently, they found that cTnI

can induce cardiac dysfunction and myocardial dilatation in

cardiomyocytes. Although the clinical manifestation of Takotsubo

syndrome and dilated cardiomyopathy is similar, the

echocardiogram of dilated cardiomyopathy does not have apical

ballooning syndrome (96). There is a dilated cardiomyopathy

patient after Nivolumab treatment. Echocardiography shows

diffuse hypokinesis and 20% Left Ventricular Ejection Fractions

(LVEF), and myocardial biopsy found inflammatory cells and

interstitial fibrosis, which did not consistent with myocarditis (96).
5.2 Pericardium

ICIs related pericardium include pericarditis and pericardial

effusion (97, 98). In a retrospective study, the median onset time

was 40 days for pericardial effusion in 6.7% of patients treated with

ICIs (99). However, it can also occur very late after the start of ICIs.

In a case of advanced non-small cell lung cancer, after Nivolumab

the patient developed pericardial thickening and effusion after 18

months (100). Pericarditis and pericardial effusion may be
Frontiers in Immunology 06
asymptomatic or mild and life-threatening symptoms may also

occur when hemodynamic is unstable (101). Breathlessness is the

predominant symptom and is followed by tachycardia and chest

pain (102). At the time of diagnosis, the effusion should be

distinguished between tumor progression related pericarditis and

CV-irAE by TTF-1 immunohistochemical staining (101).
5.3 Vascular diseases

5.3.1 Vasculitis
Vasculitis caused by self-immune disorder can occur in vessels

of all sizes (103). The incidence of ICIs-associated vasculitis is lower

than 1%, and there was no clear epidemiological data on the median

time (104). In a retrospective analysis of 1215 patients treated with

ICIs, cardiovascular events occurred in approximately 1% of

patients, and the median time to event was 97 days after ICIs

(105, 106). Currently, irAE about vasculitis are reported mainly

about large vessel and neurological vasculitis (107). ICIs lead to the

activation of T cells and NK cells and the secretion of pro-

inflammatory cytokines, resulting in inflammation of the vessel

wall, revascularization and even vascular occlusion (108, 109). CT

or MR can diagnose vasculitis that is characterized by diffuse

peripheral thickening of the vessel wall, enhanced wall thickness,

or thrombosis (104). Daxini et al. (107) reviewed 20 case reports

that met the criteria by searching multiple medical databases, and

the results showed that the most common types of ICIs-related

vasculitis were macrovasculitis, such as giant cell arteritis (GCA).

GCA is an inflammation of blood vessels that occurs in people older

than 50 years and primarily affects the great and middle arteries,

especially the extracranial branches of the aorta and external carotid

arteries (108). The manifestations of GCA are various based on the

vessels, leading to blindness, stroke and aneurysms (110). GCA can

develop into vascular occlusion, leading to tissue ischemia and

should be considered in patients with lately reported headache,

visual impairment, claudication of the jaw and polymyositis

rheumatica (PMR) symptoms (110). Atherosclerosis is an

inflammation of the large arteries, and the primary outcome of

accelerated atherosclerosis after ICIs was the occurrence of

cardiovascular events (defined as a combination of myocardial

infarction, coronary revascularization, and ischemic stroke) (77).

A previous study found that atherosclerotic plaque can be

ameliorated by the concomitant use of corticosteroids and

statins (77).
6 Management and treatment
of CV-irAE

6.1 Screening of baseline cardiovascular
disease and risk factor

Prior to ICIs, physicians need to assess the potential

cardiotoxicity of ICIs and educate patients to report suspicious

symptoms to medical personnel in time (27). According to the
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https://doi.org/10.3389/fimmu.2023.1130438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1130438
European Society of Cardiology recommendations, risk factors of

baseline include pre-existing cardiovascular disease, elevated

cardiac biomarkers, and previous cardiotoxic antineoplastic

drugs history (27). Baseline assessment includes physical

examinat ion and auxi l iary examinat ion, such as an

electrocardiogram (ECG), echocardiogram and cardiac troponin

and natriuretic peptide etc. Individualized baseline monitoring

improves the survival of patients. Patients with abnormal baseline

examination results (ECG, cardiac biomarkers) require therapy

under the guidance of an integrated oncology and cardiology team

(111, 112).
6.2 Monitoring of toxicity

Toxicity monitoring is performed through the process of ICIs,

especially in patients with prior cardiac injury. Physicians should

assess the possibility of CV-irAE at each follow-up visit. Monitoring

of toxicity includes electrocardiogram, echocardiograms,

myocard ia l markers , t roponin and NT-proBNP: (1)

electrocardiogram is routinely performed before each cycle of

treatment, (2) patients are advised to follow-up regularly for

echocardiograms and myocardial markers every 2-4 cycles and 6/

12 months after ending using ICIs (86, 111, 113), (3) As

recommended by 2021 American Society of Clinical Oncology

(ASCO) guideline, there is no clear recommendation on the

frequency of troponin and NT-proBNP (114). But a literature

recommended testing troponin and NT-proBNP at baseline and

2-4 cycles (28).Toxicity monitoring may detect abnormal

biomarkers prior to symptoms of CV-irAE. When troponin is

elevated, physicians should look out for potential triad myositis-

myositis, muscle weakness, and myocarditis. For patients suspicious

of myositis, not only creatine kinase (CK) but also lactate

dehydrogenase (LDH) should be tested because cardiotoxicity,

myositis and myalgia may happen in the same patient. Once the

patient appears suspicious clinical symptoms, a cardiology specialist

should immediately be consulted (16, 17, 108, 111).
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6.3 Diagnosis of CV-irAE

Diagnosis of CV-irAE is a challenge because there are many

manifestations of CV-irAEs (115). The clinical presentation is

similar to viral myocarditis which may confuse the diagnosis. The

evaluation should include telemetry monitoring, serum marker

(e.g., cardiac markers, CK, LDH), electrocardiogram and cardiac

magnetic resonance (CMR) (116). Myocardial and vascular biopsies

are the standard for diagnosing CV-irAE. Finally, diagnosis of CV-

irAE should be integrated by a multidisciplinary cardio-oncology

team (117).
6.4 Management and treatment of CV-irAE

6.4.1 Grade and management
Management and treatment of CV-irAE mainly depend on

toxicity grading, based on the dose and dosage of given

immunosuppressants. ASCO, National Comprehensive Cancer

Network (NCCN) and Chinese Society of Clinical Oncology

(CSCO) have classified CV-irAE in detail (Table 1).

6.4.2 Similarities and differences
between guidelines

Although the incidence of CV-irAE is low, ESMO/ASCO/

NCCN/CSCO guidelines all consider CV-irAE as a disease

characterized by diverse manifestations, rapid progression and

high mortality. However, different recommended doses for

glucocorticoid were given. ASCO guidelines recommended

methy lpredniso lone 1-2 mg/kg•d, NCCN guide l ines

recommended pulsed methylprednisolone 1 g/d, and ESMO/

CSCO guidelines recommend 500 to 1000mg/d (114, 116,

118) (Table 2).

6.4.3 Steroid refractory CV-irAE
Other immunosuppressive agents (e.g., gammaglobulin,

anti-thymocyte globulin, infliximab and morte-macrolimus)
TABLE 1 Grading, manifestation, and management of CV-irAE.

Grade Manifestation Management

G1 No cardiovascular symptoms, cardiac biomarkers (creatine kinase, troponin) or electrocardiogram
abnormalities

(1) If cardiac markers are mildly abnormal and remain
stable, continue ICIs
(2) Otherwise, ICIs should be discontinued until the
markers recover to normal.

G2 Mild or moderate symptoms of activity or fatigue, abnormalities in cardiac biomarkers and
electrocardiograms

(1) Discontinue ICIs
(2) Be hospitalized
(3) Cardiology consultation
(4) High-dose steroids such as methylprednisolone
pulse dosing 1 g/d IV for 3-5 days
(5) ICIs should be used cautiously even if relevant
indicators recover to normal.

G3 Cardiovascular symptoms at rest or after mild activity, ULN<cardiac biomarkers ≤ 3ULN,
significant changes of echocardiographic, but no hypotension.

(1) Terminate using ICIs
(2) High-dose steroids such as methylprednisolone
pulse dosing 1 g/d IV for 3-5 days
(3) MDT
(4) Advanced Life Support in ICU

G4 Moderate to severe decompensation, hemodynamic instability (hypotension), and cardiac
biomarkers >3ULN.
ULN, upper limit of normal; ICU, intensive Care unit; MDT, Multi-Disciplinary Treatment.
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can be added if glucocorticoid mono-treatment fails after 24

hours. However, it should be noted that high-dose infliximab is

forbidden if the patients have moderate to serious heart failure.

Pacemakers can be installed in patients with arrhythmias if

necessary, and mechanical hemodynamic support should be

given promptly in critical patients (111, 118–120). All

guidelines’ recommendations are based on high levels of

evidence and recommended high doses of glucocorticoids. The

different doses of glucocorticoid in guidelines maybe due to

differences in panel references and reference areas. NCCN/

ASCO have published many clinical practice guidelines with

high level of evidence which have been recognized and followed

by clinicians worldwide. The CSCO guidelines include a large

number of toxicity data from China, and is more suitable

for Chinese.
6.4.4 Re-challenge of ICIs
ASCO guidelines recommended to terminate the use of ICIs in

all patients with CV-irAE, while NCCN/CSCO guidelines

recommend patients with grade 1-2 cardiotoxicity restart ICIs

after symptom remission.
7 Emerging predictive markers

When patients show symptoms of CV-irAE, myocardial

damage already exists. In addition to conventional markers, more

sensitive predictive markers are needed to prevent myocardial

damage in advance. Few studies of toxicity prediction of

myocarditis have been reported, but a promising toxicity

prediction marker of CV-irAE need to be further explored.

Drobni et al. (121) conducted a case-control study in patients

with ICIs myocarditis or without CV-irAE after ICIs treatment,

showing that significantly higher neutrophil/lymphocyte ratio

(NLR) was found in patients with ICI related myocarditis (121).

Another study compared echocardiographic global longitudinal

strain (GLS) in patients with ICIs myocarditis or without CV-

irAE after ICIs treatment. They found that GLS is lower in patients

with ICI related myocarditis and suggested a poor prognosis (122).

In summary, NLR and GLS are potential makers of immune-

mediated myocarditis.
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CV-irAE is lethal, so we expect to detect abnormalities before

irreversible myocardial damage happens; therefore, more sensitive

and reliable makers are urgently needed (123–125). Although ICIs

have been widely used in treating cancer and achieved good results,

a series of adverse events may happen after the application of ICIs.

Cardiovascular toxicities are rare but usually fatal when it occurs.

Therefore, we should continually explore the mechanism of CV-

irAE, summarizing the cases that have occurred, strengthening

awareness of prevention and improving the management of CV-

irAE, and introducing of a new surveillance strategy.
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TABLE 2 Recommended doses of glucocorticoids in different guidelines.

Guideline Grade Dose of steroids

2022ESMO Methylprednisolone 500-1000 mg/d, 3 days or
until clinically stable

2021ASCO G2-G4 Methylprednisolone 1-2 mg/kg•d,
oral or IV depending on the symptoms

2022NCCN G1-G4 Methylprednisolone 1g/d IV, 3–5 days

2021CSCO G2 Methylprednisolone 1-2 mg/kg•d, 3–5 days

G3-G4 Methylprednisolone 500-1000mg/d, 3–5 days
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