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The adenosine pathway is an exciting new target in the field of cancer

immunotherapy. CD73 is the main producer of extracellular adenosine. Non-

small cell lung cancer (NSCLC) has one of the highest CD73 expression

signatures among all cancer types and the presence of common oncogenic

drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and

KRAS, correlate with increased CD73 expression. Current immune checkpoint

blockade (ICB) therapies only benefit a subset of patients, and it has proved

challenging to understand which patients might respond even with the current

understanding of predictive biomarkers. The adenosine pathway is well known to

disrupt cytotoxic function of T cells, which is currently the main target of most

clinical agents. Data thus far suggests that combining ICB therapies already in the

clinic with adenosine pathway inhibitors provides promise for the treatment of

lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB;

simultaneous activation of other cytotoxic immune cells such as natural killer

(NK) cells can be explored in these tumors. Clinical trials harnessing both T and

NK cell activating treatments are still in their early stages with results expected in

the coming years. In this review we provide an overview of new literature on the

adenosine pathway and specifically CD73. CD73 is thought of mainly for its role

as an immune modulator, however recent studies have demonstrated the tumor

cell intrinsic properties of CD73 are potentially as important as its role in immune

suppression. We also highlight the current understanding of this pathway in lung

cancer, outline ongoing studies examining therapies in combination with

adenosine pathway targeting, and discuss future prospects.
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1 Introduction

The field of cancer immunotherapy has rapidly evolved over the

last decade and numerous agents have received FDA approval (1).

The search for new immune modulating agents is a major current

focus of the broader cancer research community. Recently

antibodies and small molecules targeting the adenosine pathway

have gained traction as therapeutic agents for a multitude of cancer

types. Numerous pre-clinical studies and clinical trials have

demonstrated that the adenosine pathway is a promising

therapeutic target (2–6). This is especially true in the field of lung

cancer (2, 5, 7, 8). There are two key pieces of the adenosine

pathway that are actively being explored as therapeutic targets

including the production of adenosine itself and the receptors to

which this metabolite binds (2, 3, 6). When ATP is released from

the cell, a series of enzymatic events occurs on the cell surface

through CD39 which converts ATP to AMP and CD73 which

converts AMP to adenosine (9). There is also a non-canonical

pathway leading to AMP production, but both pathways eventually

converge to CD73 activity (10). CD73 is encoded by the gene NT5E

and plays a role in numerous tumor cell intrinsic and extrinsic

functions (11). Until recently, CD73 was studied and viewed mainly

for its role as an ectonucleotidase involved in immune suppression,

but recent studies have elucidated far more functions related to this

molecule (12–14).

Adenosine is a nucleoside and is necessary for cellular

functions, providing the building blocks for RNA (15). Under

normal physiological conditions, extracellular adenosine levels

within tissues are in the low nM concentration, however under

conditions of cellular stress and cancer formation concentrations of

adenosine can reach up to the 100uM range (16, 17). This has been

observed within the tumor microenvironment; making targeting

adenosine production a promising therapeutic strategy (15).

Importantly, adenosine signaling plays a key homeostatic role

throughout the body including maintaining cardiac function (18),

neuronal signaling (19), and renal function (20). Regulation of

adenosine levels both intracellularly and extracellularly are

tightly controlled through both canonical and non canonical

pathways (21). However, when there is increased expression of

andenosine pathway producing enzymes, which is seen across

cancer types, this equilibrium is disturbed resulting in an immune

suppressive environment.

The field of lung cancer treatment has made immense strides

with the addition of immune checkpoint blockade therapies to the

standard of care (22–24). However, therapy resistance remains a

major problem and discovering additional treatments is vital.

NSCLC and a major subtype of NSCLC, lung adenocarcinoma

(LUAD), has been researched most extensively in terms of the

adenosine pathway (25–27). This has led to clinical trials testing

adenosine pathway targeting in a subset of LUAD, EGFR mutant

tumors (5, 8, 28). Additionally in NSCLC, Durvalumab, a PD-L1

antibody, is currently being tested in combination with Oleclumab,

a CD73 blocking antibody, or Monalizumab, an antibody blocking

inhibitory NK cell receptor NKG2A, with promising phase II results

leading to the initiation of a phase III trial (2). However, in other
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lung cancer subtypes such as lung squamous carcinomas (LUSC),

large cell neuroendocrine cancers (LCNEC), un-transdifferentiated

thoracic tumors (UT), carcinoid like tumors of the lung or small cell

lung cancer (SCLC) this pathway has not been thoroughly studied.

This review will outline the current status of targeting the

adenosine pathway and its specific outlook in the field of lung

cancer. We highlight both cell intrinsic and extrinsic properties of

CD73 and the link to immune cell regulation (Figure 1). We provide

the current understanding of this pathway in both pre-clinical

models and clinical trials across lung cancer subtypes. Finally, we

will outline prospects of targeting the adenosine pathway in

combination with other treatment options that are already being

tested in pre-clinical and clinical models.
2 Adenosine production pathway

There is both a canonical and non canonical pathway resulting

in adenosine production. Within the canonical pathway, ATP is

first released into the tumor microenvironment under various

biological conditions such as hypoxia or cellular stress (29, 30).

CD39, another ecto-enzyme located on the cell surface, first de-

phosphorylates ATP to AMP. CD73 then dephosphorylates AMP

resulting in adenosine production (31). Within the non-canoical

pathway CD38 and CD203a function to convert NAD+ into AMP

which then is converted into adenosine by CD73 (32). An

additional pathway through the function of alkaline phosphatase

(ALP) can convert ATP, ADP, or AMP into adenosine (33).

Furthermore, prostatic acid peptidase (PAP) can convert AMP to

adenosine (34). Within the cell, intracellular adenosine levels are

controlled by the adenosine kinase (AK) and cyto5’NT or by S

adenosyl-homocysteine-hydrolase (SAHH) (35). Intracellular

adenosine is then shuttled in and out of the cell by equilibrative

nucleoside transporters (36). It is important to note that the main

non canonical pathway through CD38 and CD203a cannot bypass

CD73 activity (32). Therefore CD73 is integral to the pathway and is

responsible for most adenosine accumulation.
FIGURE 1

Diverse roles of adenosine pathway in the tumor microenvironment.
Illustration was created using BioRender.com.
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2.1 CD39 and CD73 expression in immune
cell populations

It is important to note that adenosine pathway related

molecules, such as CD39 and CD73, are also expressed by tumor

infiltrating lymphocyte (TIL) populations (37, 38). In human colon

and lung tumor samples, analysis of TIL populations found that

only CD8 T cells that express CD39 represent the stimulated form

of T cells whereas those lacking CD39 play a bystander role (39). An

in vitro study found similar results that T cells rapidly upregulate

CD39 expression upon activation but that CD73 expression

remains unchanged (37). In contrast to these findings, another

group found that CD39 positive CD8 T cells represent the

exhausted phenotype with decreased expression of both TNF and

IL-2 through analysis of both human and mouse samples from

breast and melanoma tumors (40). It is important to note however

that heterogeneity within samples was high with some TIL samples

expressing high levels of CD39 and some quite low (39, 40). An

additional study utilizing a melanoma mouse model found that

both CD73 and CD39 are upregulated on T cells during immune

response, but that high CD73 limits effector function through a

decrease in mitochondrial capacity (41). This suggests a potential

mechanism that T cells control levels of extracellular ATP and AMP

to self regulate their activity.

In addition to T cells, CD39 and CD73 function has also been

explored on NK cells. A recent report studying both breast and

sarcoma tumors found that CD73 positive NK cells within the

tumor express higher levels of immune checkpoint molecules such

as LAG-3 compared to CD73 negative NK cells found in the

peripheral blood. These NK cells have suppressive functions on

CD4 T cells (42). An additional study utilizing a mouse model of

melanoma found that mice with tumors show modest increase in

expression of both CD39 and CD73 on NK cells as compared to

tumor naïve mice (38). Furthermore, another study found that

CD39 expression on NK cells was not essential for cytotoxic

function (43). It is important to note that immune cell

populations such as B cells (44), T regulatory cells (45), and

MDSC’s (46) have also been shown to express high levels of

CD39 and CD73 resulting in the production of adenosine.

Interplay between the diverse cells within the tumor

microenvironment resulting in adenosine production displays the

complexity of this pathway.
3 The adenosine pathway in lung
cancer

Lung cancer is the second most diagnosed form of cancer in the

United States and nearly 240,000 cases were reported in 2022 (47).

Around 85% of lung cancer cases in the United States represent

NSCLC histology and the remaining cases are classified as SCLC

(48). ICB has become standard of care in recent years due to clinical

activity (reviewed in (49) and used as single agent or in combination

with chemotherapy. ICB was also explored in the neo-adjuvant

setting in early stage NSCLC and due to clinical benefit received
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FDA approval in combination with chemotherapy in 2022 (50). In

contrast, combination of PD-L1 blockade and chemotherapy, while

receiving FDA approval, has shown limited clinical benefit in SCLC

(51). However, for a subtype of SCLC, known as non-

neuroendocrine characterized by a lack of expression of

neuroendocrine genes, there has been some benefit with the

addition of ICB therapy (52). Treatment for LCNEC and other

lung cancers are typically chemotherapy as well (53, 54). The role of

ICB in this lung cancer subtype is not yet well studied but there has

been some response seen in small clinical trials (55). There is a need

to look more extensively at immunosuppressive pathways, such as

the adenosine to overcome therapy resistance and tailor treatment

options to the individual patient (56–58).

Among all lung cancer subtypes, CD73 has been mostly studied

in LUAD. Compared to normal lung, LUAD has significantly

increased CD73 expression demonstrating that high CD73 is a

tumor specific characteristic (27, 59). CD73 has been also detected

in LUSC in some cases but is not universal (59, 60). One study of

CD73 in LUSC found that similar to LUAD that knockdown of

CD73 results in decreased cell proliferation, migration, and

increases response to TKIs (61). In SCLC, adenosine pathway

expression was reported in some patient samples and circulating

tumor cell explants (CDX) models (62, 63).

Multiple studies have demonstrated across cancer types that

expression of genes coding for molecules in adenosine pathway is

correlated with poor survival and low overall response rate to cancer

therapies (64–66). Recently, adenosine pathway expression in

LUAD and LUSC has been investigated and similar results were

seen with high CD73 expression on tumor cells correlating with

disease progression, treatment relapse, and poor survival (60).

Interestingly, in this same study they found that high adenosine

receptor expression was associated with increased survival and that

correspondingly high CD73 and low adenosine receptor expression

resulted in the worst survival outcomes (60).
3.1 Adenosine pathway expression in
EGFR mutant LUAD

Recently, multiple groups have focused on targeting the

adenosine pathway in EGFR mutant NSCLC leading to swift

discoveries in the recent years (26, 67). Standard of care for

EGFR mutant tumors are tyrosine kinase inhibitor (TKI)s (68).

EGFR mutant tumors are not very responsive to ICB therapy

possibly due to their low tumor mutational burden (TMB) as

compared to tumors carrying another common oncogenic driver

of NSCLC, KRAS, which are more responsive to ICB (69, 70).

Somatic mutations can serve as neoantigens and high TMB status is

associated with increased sensiviity to ICB therapies on NSCLC

(71). Response rates to ICB therapies are between 7-16% depending

on EGFR mutation type, compared to 22% in EGFR wild type

tumors (72). Acquired resistance to TKIs, such as Osimertinib is

common and occurs on average around 18 months after treatment

initiation (73). Multiple studies reported that CD73 upregulation

was one of the mechanisms of resistance to TKIs (74, 75). We
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recently analyzed genes related to immune cell function in EGFR

mutant versus wild type LUAD and found thatNT5E and ADORA1,

which encodes for one of the adenosine receptors, were two of the

top upregulated immune-suppresive genes in this subtype (26).

EGFR mutant NSCLC has a suppressed tumor microenvironment

with few NK cells and CD8 T cells, but increased dendritic cell

populations, and other immune cell populations remain similar to

those seen in EGFR wild type tumors (26). In an EGFR mutant

mouse model, we showed that treatment with a CD73 antibody

alone resulted in decreased lung tumor growth displaying proof of

concept as a treatment option (26). Another group observed similar

correlations with EGFR pathway activation and adenosine

signaling. Interestingly this group showed Oleclumab is effective

in treating EGFR mutant tumors in combination with PD-L1

antibody in a human peripheral blood mononuclear cell (PBMC)

transplanted mouse model (76).

Another recent report focused on the connection between

MET amplification, CD73 and suppression of STING pathway in

EGFR mutant tumors (67). Authors found that MET

amplification induces CD73 expression and restrains the

function of STING resulting in reduced T cell activation while

also causing resistance to 3rd generation EGFR TKIs. MET

amplification was found to be specifically associated with CD73

expression in EGFR mutant LUAD. Genetic knockout of MET in

lung cancer models resulted in decreased CD73 expression

therefore displaying a connection between these two pathways

(67). This study links CD73 intrinsic function to extrinsic

function through immune cell regulation.
3.2 Adenosine pathway expression in other
common oncogenic drivers of LUAD

Although adenosine pathway expression has been studied the

most in the EFGR mutant subset of LUAD, other common

mutations such as KRAS, BRAF, and MET are just beginning to

be explored. A recent study utilizing the TCGA data set found that

CD73 expression is significantly elevated in KRAS mutant LUAD

(25, 77). Similar induction of CD73 expression was also seen with

ALK gene alterations. As proof of concept, they found that

pharmacological inhibition of ALK led to a decrease in CD73

mRNA expression (25). This data suggests a link between the

adenosine pathway and oncogenic drivers of LUAD. A new study

in pancreatic ductal adenocarcinoma (PDAC), where almost 80% of

cases are KRAS mutant, demonstrated that activating mutation in

KRAS alone is sufficient to elevate levels of CD73 suggesting that

CD73 induction with oncogenes extends beyond lung cancer (78).

Results from these studies thus far demonstrate oncogenic drivers of

NSCLC possibly drive increased CD73 expression and that

underling mechanism behind this warrants further investigation.
3.3 Adenosine pathway expression in SCLC

CD73 expression is seen in a subset of SCLC patient CDX

models and cell lines and its expression correlated with the non-
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neuroendocrine or YAP1 positive subtype (62, 63). A recent study

focused on the metabolomics of primary SCLC tumors. This study

demonstrated that AMP and adenosine were the two significantly

upregulated metabolites in primary patient samples in the MYC

high subtype versus MYC low subtype (79). This study also

examined the link between chemoresistance and purine

biosynthesis and found that chemo-resistant SCLC cell lines have

increased levels of AMP and ATP compared to parental cell lines.

These pre-cursors could result in adenosine accumulation within

the tumor microenvironment (79). A similar finding was seen in

vivo with chemotherapy relapsed tumors displaying increased

purine biosynthesis, including AMP (79). Therefore these

interesting findings suggest that purine biosynthesis maybe

advantageous for SCLC relapse after treatment.
3.4 Adenosine pathway inhibition in the
context of lung cancer tumor
transdifferentiation and heterogeneity

Cellular plasticity and evolution of the tumor microenvironment

with disease progression has been reported in NSCLCs.

Transdifferentiation of EGFR mutant NSCLC to SCLC is one of

the reported resistance mechanisms to EGFR TKIs. This occurs in

approximately 3-10 percent of EGFR mutated NSCLCs (80). Studies

have found that SCLC transformed tumors in these patients no

longer respond to TKIs but they do respond to platinum etoposide

therapy at least initially, similar to SCLCs (80–82). A recent report

found that loss of extracellular-signal regulated kinase (ERK)

signaling dependency was the main regulator in this transformation

and this resulted in expression of neuroendocrine transcription

factors which was normally repressed by ERK signaling (83). SCLC

transdifferentiation was also reported in therapy resistant KRAS

mutant LUAd (84). It would be interesting to study whether these

transformed tumors retain expression of CD73 and can be targeted

by CD73 targeting molecules.

In the field of SCLC multiple groups have found that SCLC

primarily switches from neuroendocrine to a more non-

neuroendocrine like state. This was shown to be driven through

NOTCH driven Myc expression (85, 86), while other groups show

that this is driven by EMT gene signature including expression of

YAP1 (87). Neuroendocrine and non-neuroendocrine tumor types

have shown to have different immune microenvironments with

neuroendocrine tumors having far less immune cell infilrates (48,

88, 89). A new report examined 146 SCLC patient samples through

IHC and found that 2.3% of tumors expressing YAP1 dominantly.

Additionally, the authors found that 17.6 percent of tumors

expressed 2 of the SCLC lineage markers and 2.8% were positive

for 3 different lineage markers. These areas of different lineage

marker staining tended to cluster away from one another suggesting

that different cell populations were in various parts of the tumor

(90). A recent study highlights that the SCLC intertumoral

composition is constantly evolving and that there maybe

continuous subtype switching (91). Multiple studies have

suggested that one of the target genes of the YAP/TAZ axis is

CD73, suggesting the idea that induction of CD73 expression may
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1130358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kowash and Akbay 10.3389/fimmu.2023.1130358
provide a selective advantage to YAP1 expressing SCLC cells under

treatment (92–94). This connection must be explored further, but it

is possible that the YAP1 positive cells are contributing to adenosine

production, with high expression of CD73 seen in YAP1 positive

CDX and SCLC cell line models (63, 95).
4 Tumor cell intrinsic functions of
CD73

CD73 has been demonstrated to be involved in numerous

cancer processes including metastasis (12), increased cell

proliferation (96), and tumor invasion (97). In addition to its

membrane bound form, CD73 is expressed in soluble forms (98),

on extracellular vesicles (99), and localized within different cellular

compartments of tumor cells (100). Studies on the intrinsic

properties of CD73 have been investigated in numerous cancer

types including liver cancer (101), GI cancer (102), Glioblastoma

(103), and lung cancer (104) (Table 1). CD73 has been implicated as

a target of transcription factors including YAP1 (92), SNAIL (105),

HIF1A (106), and TGFB (14, 107, 108). Transcriptional regulation
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by key drivers of cancer suggests that an increase in CD73

expression is advantageous for cancer cell growth. Therefore,

understanding the mechanism of CD73 intracellular function is

key to understanding the overall biology of this molecule.
4.1 Role of the CD73 in the EMT program

Recent studies have shown that CD73 contributes to EMT

(epithelial mesenchymal transition) and is a novel target beyond

the current key genes that are implicated in EMT such as E-cadherin,

vimentin, and N-cadherin (109). A recent study utilizing a breast

cancer model with genetic loss or pharmacological inhibition of

CD73 resulted in far fewer and less invasive organoids in vitro and

decreased lung metastasis when injected into an immune competent

mouse model. It was reported that when CD73 is knocked down that

there is increased E-cadherin expression and that cells appeared to

revert from EMT (12). A similar finding was also shown in a

preclinical model of ovarian cancer (110). Another recent study in

breast cancer found that SNAIL, a key regulator of EMT, bound at

promotors of NT5E through chromatin immunoprecipitation (ChIP)
TABLE 1 Recent studies highlighting tumor cell intrinsic functions of CD73.

Tumor
type

Subtype Model Used Conclusions Reference

Lung EGFR mutant
LUAD

Human NSCLC lines HCC827 and PC9 Modulates response to TKI therapy through
EGFR-ERK signaling

(77)

Lung EGFR, KRAS, or
ALK mutant LUAD

Panel of human NSCLC cell lines with EGFR, KRAS, or
ALK mutations

Expression is modulated by hypoxia and glucose
deprivation and is higher in metastatic lessions
possibly as a resistance mechanism

(25)

Lung EGFR and MET
mutant LUAD

Multiple human NSCLC cell lines and patients samples
with EGFR mutations

Restrains STING immuogenecity in MET driven
LUAD

(67)

Breast TNBC Human MDA-MB-231 and mouse 4T1 TNBC cells Promotes the EMT program and cell invasion (12)

Breast Mesenchymal vs.
Epethelial Breast
Cancer models

PyMT breast cancer model of Snail high and Snail low
cells modeling mesenchymal vs. epethelial breast tumors

Plays a role in the EMT program (111)

Glioma Glioblastoma GL261 mouse glioma model and U251 human
glioblastoma cells

Regulates angiogenic factors that lead to tumor
growth and metastasis

(116)

GI Cancer Gastric Cancer Human Gastric Cancer cell lines MKN45, SGC7901, AGS,
MGC803, and BGC823 and GI mucosal cell line GES-1

Promotes cancer cell migration and modulates
the cytoskeletal regulation pathway

(102)

GI Cancer Colorectal Cancer Colorectal cancer cell lines RKO, SW480, HCT-15, LoVo
and KM12

Plays a role in cell cycle progression and cell
growth

(112)

Pancreatic
Cancer

Pancreatic Ductal
Adenocarcnoma

Human PDAC cell lines PANC-1, AsPC-1, BxPC-3, L3.7,
MIA PaCa-2, and SW1990 as well as paired normal and
tumor patient samples

Contributes to gemcitabine resistance throuhg
AKT signaling

(100)

Pancreatic
Cancer

Pancreatic Ductal
Adenocarcnoma

Human PDAC cell lines PANC-1, AsPC-1, BxPC-3, L3.7,
MIA PaCa-2, and SW1990 as well as paired normal and
tumor PDAC patient samples

Plays a role in cell cycle progression and
apoptosis

(114)

Liver cancer Heptatocellular
Carcinoma

Primary HCC samples and HCC cell lines HCCLM3,
Hep3B, MHCC97L, and HepG2

Regulates sphere-forming capacity and promotes
cell stemness

(13)

Thyroid
Cancer

Papilarry Thyroid
Carcinoma

PTC cell lines K-1 and SNU-790 as well as PTC primary
patient samples

Plays a role in cell migration, cell cycle arrest,
and EMT

(124)

Endometrial
Cancer

Endometrial
Adenocarcinoma

Endometrial cancer cell lines HEC-1-A and HEC-50,
endometrioid endometrial carcinomas

Interacts with TGF-b1 function (14)
f
rontiersin.org

https://doi.org/10.3389/fimmu.2023.1130358
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kowash and Akbay 10.3389/fimmu.2023.1130358
sequencing analysis suggesting that there could be interplay between

these two genes and the EMT program (111). An additional recent

report in NSCLC line A549 showed that CD73 overexpression leads

to increased invasion and metastasis both in vitro and in vivo (25).

Further studies employing the A549 model demonstrated that CD73

promotes cell proliferation through binding to EGFR which leads to

activation of AKT/mTOR pathway (104). Across numerous cancer

types genetic knockdown or knockout of CD73 in human cancer cell

lines grown in immune deficient mice demonstrated that loss of this

molecule reduces tumor growth and metastatic potential even when a

functional immune system is not present (12, 110, 112, 113).
4.2 The role of CD73 in cell cycle
regulation and treatment resistance

Outside of the scope of the EMT program, studies have

demonstrated that CD73 plays a role in other biological processes

as well. A few different studies have linked CD73 to control of cell

cycle progression (112, 114, 115). A specific study in pancreatic

ductal adenocarcinoma (PDAC) found that when CD73 is knocked

down, this results in arrest of cells at G1 phase through AKT/ERK/

Cyclin D signaling (114). Other studies have focused on how CD73

expression leads to treatment resistance. A recent in vitro study in

LUAD demonstrated that knock down of CD73 altered cell cycle

progression and sensitized cells to cisplatin chemotherapy

treatment (115). Similar results were seen in a model of

glioblastoma when they knock down CD73 in their model this

resulted in increased temozolomide sensitivity, and that resistance

is caused by CD73-A2BAR signaling (116). An additional in vitro

study in breast cancer model found that CD73 deficient MDA-MB-

231 cells to be significantly more sensitive to Olaparib likely due to

decreased PARP activity. They also found that loss of CD73

suppressed mitochondrial respiration and led to increased

genomic instability (117).

Studies thus far have demonstrated an interesting link between

expression of CD73 and sensitivity to commonly used therapeutic

agents. Of note, in the tumors resistant to numerous therapies

CD73 expression is increased. These include radiation (118),

chemotherapy (119), TKIs (75), as well as monoclonal antibodies

(120). This has been shown to occur through different mechanisms

across cancer types. A study in melanoma found that there was

increased CD73 expression in the tumors resistant to both adoptive

T cell transfer and ICB therapy. They found that both in mouse

models and human tissues that MAPK signaling resulted in class

switching from an epethial to mesenchymal state and that there was

clonal selection for a more “invasive” cell population (121). In

hepatocellular carcinoma (HCC) CD73 was shown to contribute to

resistance to Lenvatinib, a VEGF inhibitor, through AKT

overactivity which resulted in increased SOX9 expression and

stemness of HCC cells (13). Within the tumor micronevironment,

a pre-clinical study in triple negative breast cancer (TNBC) found

that after chemotherapy that there was an increase in CD73, CD47,

and PD-L1 positive tumor cells (122). Such examples of therapy

resistance show that CD73 is tied to multiple mechanisms of

therapy resistance.
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4.3 Non- enzymatic functions of CD73

CD73 expression correlated with adenosine production in most

studies, however it is technically difficult to separate the

ectonucleotidase activity from other functions of CD73 in genetic

inactivation or antibody blockade studies. One group recently

thoroughly studied the non-enyzmatic role of CD73 by blocking

the nucleotidase function. They reported a direct physical

interaction between CD73 and Src in the ER resulting in Src

activation (100). They found that CD73 ectonucleotidase activity

did not contribute to Gemcitabine resistance but that resistance was

rather caused by AKT pathway activation by CD73. Furthermore

they demonstrated that when they mutated the zinc finger binding

domain of CD73, which severely inhibits ectonucleotidase activity,

that there was still resistance to Gemcitabine suggesting again that it

was not the enzymatic activity leading to resistance (100). An

additional study in HCC showed that CD73 localizes within the

ER of cancer cells and is more abundant in tumors than normal

tissue. They propose that there is both a short and and full length of

CD73 proteins with the long form only having ectonuclotidase

activity and the shorter version found solely localized in the ER

(123). To our knowledge these are the only two studies to yet

examine proximity of CD73 in the cell and therefore further

understanding of the differences between mebrane bound and

intracellular CD73 are needed.
5 Tumor cell extrinsic functions of
adenosine in the tumor
microenvironment

Once adenosine is released into the tumor microenvironment it

plays both an immunosuppressive role for some immune subtypes

and activates others, although there is less evidence for the latter.

There are a total of four adenosine receptors found on the cell surface

including A1, A2A, A2B, and A3 (21). These receptors are expressed

on cell types throughout the body including both innate and adaptive

immune cells. The A2AR receptor is expressed on T, NK, and B cells

and when bound to adenosine this results in loss of activity in cell

types (125–127). The A2BR receptor is expressed on macrophages,

monocyte derived suppressor cells (MDScs) and cancer associated

fibroblasts (CAFs) and upon binding of adenosine results in their

activation leading to immune suppresion (128). Another important

immune cell type that expresses the A2BR are dendritic cells (DC),

which are key to antigen presentation (129). The literature

demonstrates mixed findings thus far into this cell type with

studies showing that adenosine impairs DC migration but does not

affect their function (130). In contrast, another study found adenosine

impairs DC function and that these impaired DCs release angiogenic

cytokines promoting tumor growth (131). Numerous studies have

demonstrated that increased adenosine production results in

decreased activity of cytotoxic T cell populations and increased

activity of regulatory T cell (Treg) populations (125, 132, 133). This

combined signaling across immune cell types leads to an

immunosuppressive tumor microenvironment.
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5.1 Role of adenosine pathway on
NK cell function

NK cells are a key component of the innate immune system and

display cytotoxic reponse. Recent advances in the field of lung

cancer have shown that NK cells play an essential role in controlling

tumor growth and response to ICB therapy (134–137). NK cells can

target cancer cells independent of antigen presentation on major

histocompatibility complex (MHC) making them a valuable

therapeutic target as MHC-I expression is lost or reduced in

tumors as one of the mechanism of immune evasion (138). Loss

of MHC-I is seen across lung cancer subtypes as well (139).

However, loss of MHC-I can sensitize tumors to NK cell killing

as MHC-I is an immune inhibitory molecule for NK cells (140).

Recent advances in the field of lung cancer have shown that NK cells

play an essential role in controlling tumor growth and response to

ICB therapy (134–137). Recent studies have demonstrated that

around 10-20 percent of circulating lymphocytes in the lungs are

NK cells, which is higher than NK cell levels found in peripheral

blood (141). However, there are numerous reasons why these cells

are not able to infiltrate tumors, and reasons include different

immune suppressive metabolites and inhibitory molecules.

Additionally, tumors have been shown to shed the NK cell

activating ligands to escape NK cell tumor killing and antibodies

are currently being tested that can prevent this (142).

It was reported that adenosine impedes NK cell function (143–

145). A2AR inhibition in a co-culture system resulted in increased

NK cell proliferation and signaling response as compared to

untreated cultures (146). As a mechanism of tumor resistance

researchers found that upon binding of the 4-1BBL domain that

tumor cells can hijack NK cells and induce CD73 expression in the

NK cells in a breast cancer model. These adenosine producing NK

cells additionally had higher levels of immune inhibitory checkpoints

such as LAG-3 (42). A similar finding was also found in in vitro co

culture methods when cancer cell lines with high CD73 were found to

induce CD73 expression in an established NK cell line, NK-92 cells.

Cancer cell lines with low CD73 expression did not induce CD73

expression in NK cells (147). A recent study used a chimeric antigen

receptor (CAR)-NK cells to target CD73 in a preclinical lung cancer

model. Authors observed that both in vitro and in vivo that their

CD73 directed CAR inhibited lung cancer growth while not attacking

normal tissue (126). These findings demonstrate that adenosine as a

cancer target must be explored further.
6 Clinical targeting of adenosine
pathway in lung cancer

The first clinical stage antibody developed to target the

adenosine pathway was created by Medimmune, compound

MEDI9447 (Oleclumab), and began clinical trial testing in 2015

(148). Since then, many studies were initiated to target various

components of this pathway including CD73 and CD39 followed by

A2AR and combined A2AR/A2BR antibodies (149).

Trials for CD73 targeting agents have progressed the most

reaching phase III testing (150). Trials are ongoing for NSCLC
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(2), PDAC (151), and other advanced solid tumors. A recent phase

Ib/2 trial testing Oleclumab in combination with Osimertinib in

EGFR mutant NSCLC demonstrated safety and efficacy and is now

proceeding to phase II trials (3). The most exciting trial thus far

testing Durvalumab alone or in combination with Oleclumab or

Monalizumab in stage III unresectable NSCLC recently progressed

to phase III testing. At median follow up of 11.5 months the ORR in

Durvalumab plus Oleclumab was 30%, and Durvalumab combined

with Monalizumab ORR was 35.5%. PFS was also higher in the

combination groups as compared to Durvalumab alone (2).

CD39 has also been explored as a therapeutic target. In pre-

clinical models, molecules targeting CD39 have shown promising

results in colon cancer (152), melanoma (153), and ovarian cancer

(154). CD39 antibodies are currently being tested in combination

with ICB therapy (NCT04336098) and chemotherapy

(NCT03884556) and are currently in phase I stage (155).

Targeting the adenosine receptor has shown modest effect and

the trial in combination with Oleclumab in EGFR mutant NSCLC

was stopped due to safety issues and lack of efficacy (150). However,

in advanced prostate cancer there was some response with single

agent AZD4635 (A2AR antagonist) with an overall response rate of

5.1% and when combined with Durvalumab combination, response

rate was 16.1% (5).
7 Discussion

The study of the adenosine pathway as a therapeutic target is

still in its early stages, however preclinical studies and clinical trial

data have demonstrated that targeting this pathway is a viable

therapeutic strategy moving forward. Increasing evidence has

demonstrated that CD73 has roles independent of its enzymatic

function. However only one group thus far has thoroughly studied

this mechanism. Even with their findings however it is still thought

provoking whether the intracellular function of CD73 is the same as

the canonical econucleotidase activity on the cell membrane. This

raises an important question as current antibodies targeting CD73

would therefore not prevent activity within the intracellular space.

We propose that based on the literature generated thus far that

CD73 intracellular activity, whether enzymatic or not, could

possibly play an important role in cancer progression as the

immune suppression aspect through adenosine production. We

note that although we have focused this review around CD73 and

adenosine, we highlight that both CD39 as well as the adenosine

receptors are also important pieces of this pathway. Importantly

studies are needed to understand whether CD39 or CD73 blockade

leads to increased compensatory activity of non-canonical pathways

adenosine pathways such as CD38 and CD203a.

Targeting the adenosine pathway with recently initiated clinical

trials has grown as new combinatory approaches are tested in lung

cancer. We believe that CD73 inhbition as a therapeutic target can

be applied to other lung cancer types outside of the current scope of

EGFR mutant LUAD and unresectable NSCLC. This is especially

important surrounding the topic of lineage plasticity and acquired

treatment resistance. Therefore we need to better understand as

a field what is driving this plasticy and how this is leads to a
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lack of response to therapeutic agents. We believe an important

aspect of further study is understanding how EGFR NSCLCs

transdifferentiate to SCLC and whether blockade of the adenosine

pathway could be a potential treatment for these tumors.

We also believe there is an unmet need to better understand the

role of NK cells and activating this cytotoxic cell type as they have

been shown to play critical roles in both NSCLC and SCLC. In

regards to the clinical trial data with the ICB and Oleclumab or ICB

and Monalizumab COAST study, we suggest a potential further

clinical trial could test Monalizumab plus Oleclumab.We believe that

based on the current pre-clinical and clinical data thus far that it does

not appear that targeting the adenosine pathway alone will result in

drastic therapeutic benefit and therefore the best combinatory

therapeutics and dosing schedules warrant further investigation. To

our knowledge adenosine pathway expression in LCNEC and other

thoracic tumors of the lung have not been explored extensively.

Several groups have reported that LCNEC and undifferentiated

tumors of the lung are becoming more common, and they have

not been studied well, but interestingly these tumor types likely arise

from therapy resistance (156). Concluding, we see many avenues of

further study that are needed both in the pre-clinical and clinical

space in order to further understand the role of CD73 and the

adenosine pathway overall across not just lung cancer but, also other

cancers with an activated adenosine pathway.
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