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Exosomes are nanoscale vesicles secreted by most cells and have a phospholipid

bilayer structure. Exosomes contain DNA, small RNA, proteins, and other substances

that can carry proteins and nucleic acids and participate in communication between

cells. T cells are an indispensable part of adaptive immunity, and the functions of

T cell-derived exosomes have been widely studied. In the more than three decades

since the discovery of exosomes, several studies have revealed that T cell-derived

exosomes play a novel role in cell-to-cell signaling, especially in the tumor immune

response. In this review, we discuss the function of exosomes derived from different

T cell subsets, explore applications in tumor immunotherapy, and consider the

associated challenges.
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1 Introduction

Exosomes are nanoscale vesicles (30–160 nm) secreted by most cells and have a

phospholipid bilayer structure (1). Exosomes contain DNA, small RNA, proteins, and

other substances that can carry proteins and nucleic acids and participate in

communication between cells (2). Previous studies have suggested that exosomes

function as cellular garbage bags, eliminating redundant and non-functional cellular

components (3). Recent studies have shown that exosomes are intercellular junctions

that transport proteins, lipids, and nucleic acids to target cells, play a role in various

biological processes (such as angiogenesis, antigen presentation, apoptosis, and

inflammation), and can be used as diagnostic and therapeutic tools for diseases (4). It

can also participate in various pathophysiological processes such as tissue repair, immune

response, inflammation, and tumor growth and metastasis (5, 6).
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T-lymphocytes are derived from pluripotent stem cells in the

bone marrow (7). During the embryonic and primary stages of

human life, pluripotent stem cells or proT cells in the bone

marrow migrate to the thymus and mature into immunoactive T

cells under the induction of thymus hormones (8). Intercellular

communication is an essential hallmark of multicellular organisms

and can be mediated through direct cell-cell contact or the transfer of

secreted molecules (9). Increasing studies have shown that immune

cells participate in cellular communication by secreting exosomes (10,

11). Among the immune cell-derived exosomes, T cell-derived

exosomes have recently been reported to be involved in antitumor

effects in cancer immunotherapy by mimicking the role of parental

cells (12–15). The upregulation and downregulation of exosome

production by T cells is a new method for regulating the immune

response to tumors (16). Therefore, fully exploiting the characteristics

of T cell-derived exosomes can effectively treat tumors. In this review,

we summarize the pathogenesis and secretion of exosomes and

describe the role of T cell-derived exosomes in tumor immune

regulation and the application of T cell-derived exosomes in tumor

immunotherapy to provide new ideas for the future treatment

of cancers.
2 Biogenesis and secretion
of exosomes

Exosomes are intraluminal vesicles (ILVs) formed by inward

budding of the endosomal membrane during maturation of

multivesicular bodies (MVBs). Subsequently, MVBs fuse with the

plasma membrane to release the contained ILVs as exosomes or fuse

with lysosomes or autophagosomes for degradation (17) (Figure 1).

Various sorting mechanisms are involved in different steps of
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exosome formation (18). First, the limited membrane regions of

MVBs are generally referred to as the dispersed microdomains. The

formation of the cluster microdomain and the external mechanical

action promote membrane budding, followed by the division of the

plasma membrane into the extracellular medium or the limiting

membrane of MVBs into the MVB lumen. Currently, the mechanism

of exosome formation is well understood, and the subunits involved

in the endosomal sorting complex required for transport (ESCRT)

play an important role (19, 20). When ILVs enter the lumen of

MVBs, the involvement of ESCRT-III is required to varying degrees;

however, the processes of inclusion aggregation and membrane

budding are not entirely dependent on ESCRT (21, 22). ESCRT-

independent pathways have also been identified as alternative

mechanisms and may coexist with ESCRT-dependent machinery in

the formation of MVBs and sorting of internalized cargo (23, 24).

Exosome production is complex and often depends on the host and

the type of parent cell as well as other stimuli received by the cell.

These inclusions participate in the germination, fission, and release of

exosomes through progressive aggregation (25). In addition, the

properties and content of exosome inclusions are specific and are

often influenced by the physiological or pathological state of the

maternal cell, stimuli that regulate their production and release, and

molecular mechanisms that facilitate their production (2).
3 T cell-derived exosomes in tumor
immune modulation

Similar to other cells, T cells produce exosomes that reflect their

characteristics, such as directly killing target cells, assisting or

inhibiting B cells to produce antibodies, responding to specific

antigens and mitogens, and producing cytokines, thereby creating

an optimal microenvironment for immune cell function in paracrine

and autocrine forms (26). T cell-derived exosomes can activate other

immune cells, suppress immune responses, and participate in the

licensing of antigen-presenting cells (APCs) (26). In a recent study,

researchers attached interleukin (IL)-2 to the transmembrane domain

of platelet-derived growth factor receptor via a flexible linker and

then incorporated the gene into lentiviruses for Jurkat T cell infection.

The infected Jurkat T cells then secreted IL-2-exosomes, which

showed significant changes in the expression of miR-181a-3p and

miR-223-3p in IL-2-exosomes relative to untreated exosomes.

miRNAs increase the activity of CD8+ T cells and decrease the

expression of programmed death ligand 1 (PD-L1) in melanoma,

resulting in increased sensitivity to CD8+ T cell-mediated cytotoxicity

(27). T cells can regulate the release of distinct exosome

subpopulations depending on their activation status (28). In the

following sections, we discuss the role of different T cell subsets in

tumor immunomodulation (Table 1).
3.1 CD8+ T cell-derived exosomes

CD8+ T cells are cytotoxic T lymphocytes (CTLs), a subset of

white blood cells that secrete various cytokines to specifically kill

target cells. It can remove virus-infected cells, tumor cells, and other
FIGURE 1

The process of exosome biogenesis and secretion. The biogenesis
of exosome begins at early endosome formation through
endocytosis at the plasma membrane, and then the invagination of
the plasma membrane of LSEs forms ILVs that are ultimately
secreted as exosomes. In the end, MVBs fuse with the plasma
membrane to release exosomes. Ectosome originates from the
outward budding and fission of the plasma membrane,
subsequently, the nascent ectosomes are released into the
extracellular space.
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antigenic substances and is an important defense line of antiviral

and antitumor immunity (29). An increasing number of studies

have revealed that CD8+ T cell-derived exosomes mediate

information exchange between immune cells and tumor cells,

thereby regulating tumor development. CD8+ CTLs fully activated

by tumor antigens enhance the activation of low-affinity CD8+ T

cells by secreting exosomes, thus participating in the tumor killing

process (30, 31). For instance, Qiu et al. (32). found that

programmed cell death 1 (PD-1), which is widely expressed in

tumor-infiltrating lymphocytes of triple-negative breast cancer

(TNBC) and is significantly associated with poor prognosis of

TNBC (33, 34), can be secreted by activated T cells on the surface

of exosomes, interacting remotely with PD-L1 on the cell surface or

exosomes, and restoring tumor surveillance by attenuating PD-L1-

induced suppression of tumor-specific cytotoxic T cell activity. In

another clinical study, considering the effect of urokinase-type

plasminogen activator (uPAR) signaling on tumors (35), Porcelli

et al. collected blood samples from 71 patients with metastatic

melanoma treated with immune checkpoint inhibitors (including

responders and non-responders) and analyzed CD8+ T cell-derived

uPAR+ exosome levels. The results of this study indicated that

patients with immune checkpoint inhibitor-resistant melanoma

had low levels of CD8+ T cell-derived uPAR+ exosomes in their

blood (36). These findings suggest that CD8+ T cell-derived uPAR+
Frontiers in Immunology 03
exosomes are associated with the expression of immune checkpoint

receptors on the surface of CD8+ T cells, which is a direction for

future research. The above studies provide a potential therapeutic

strategy for modifying the exosome surface with membrane-bound

inhibitory immune checkpoint receptors to attenuate the

suppressive tumor immune microenvironment. Interestingly,

CD8+ T cell-derived exosomes can also be endocytosed by APCs,

cells in the body that can ingest, process, and transfer antigen

information to induce the immune response of T and B cells (37),

via pMHC-I/TCR interactions, and inhibit antigen-specific

dendritic cell (DC)-mediated indirect CD8+ CTL responses (38).

Specifically, exosomes derived from activated CD8+ T cells inhibited

antitumor effects by decreasing MHC-I in DCs and CD8+ T cell

activity in melanoma models (38). In addition to participating in

the regulation of tumor growth by mediating information exchange

between immune cells, CD8+ T cell-derived exosomes directly

inhibit tumor progression. For example, Zhou et al. found that

CD45RO-CD8+ T cell-derived exosomes released more miR-765

than CD45RO+CD8+ T cells. These exosomes miR-765 derived

from CD45RO-CD8+ T cells limit estrogen-driven development of

uterine corpus endometrial cancer (UCEC) via regulation of the

miR-765/proteolipid protein 2 (PLP2) axis (39). Additionally, CD8+

T cells can inhibit tumor progression by exosome-mediated

depletion of mesenchymal tumor stromal cells, in addition to
TABLE 1 Role of T cell-derived exosomes in immune modulation.

The origin of
exosomes Mechanism of action Content Reference

CD8+ T cells
Attenuating PD-L1-induced suppression of tumor-specific cytotoxic T cell
activity

PD-1 (32)

CD8+ T cells
Associated with the expression of immune checkpoint receptors on the
surface of CD8+ T cells

uPAR (36)

CD8+ T cells
Inhibited antitumor effect by decreasing the MHC-I in DCs and CD8+ T cell
activity

LFA-1 (38)

CD8+ T cells
Limiting estrogen-driven development of UCEC via regulation of the miR-
765/PLP2 axis

miR-765 (39)

CD8+ T cells Mediating depletion of mesenchymal tumor stromal cells – (14)

Exhausted CD8+ T cells Impairing the anticancer function of normal CD8+ T cells lncRNAs (40)

CD8+ T cells Activating ERK and NF-kB pathways to induce melanoma metastasis FasL (41)

CD4+ T cells Inducing CD8+ T cell-mediated antitumor responses
miR-25-3p, miR-155-5p, miR-215-5p, and
miR-375

(43)

CD4+ T cells
Inhibiting CD8+ cytotoxic T lymphocyte responses and antitumor immunity
in melanoma

LFA-1 (44)

CD4+ T cells Involving in the regulation of humoral immunity CD40L (45)

Tregs As a potential non-invasive tumor and immune cell biomarkers in HNSCC – (54)

Tregs Resulting the production of a tolerogenic phenotype in DCs miR-150-5p and miR-142-3p (55)

CD8+ CD25+ Tregs
Inhibiting DC-induced cytotoxic T lymphocyte responses and antitumor
immunity

– (56)

Tregs Promoting the expression of M2 macrophage markers – (57)

Tregs Inhibiting the proliferation of CD4+ T cells miR-146a-5p (63)
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their conventional direct cytotoxicity against tumor cells (14). The

above studies support the idea that CD8+ T cell-derived exosomes

are involved in the inhibition of tumor progression. However, CD8+

T cell-derived exosomes play a double-edged sword in

tumorigenesis and development.

Wang et al. found that exosomes derived from exhausted CD8+ T

cells can be taken up by normal CD8+ T cells and impair their

proliferation (Ki67) and cell activity (CD69) and the production of

cytokines such as IFN-g and IL-2, impairing the anticancer function

of normal CD8+ T cells, causing tumor progression (40). The research

team further used microarray and functional enrichment analyses to

identify 257 lncRNAs that actively participate in various processes

regulating the activity of CD8+ T cells, such as metabolism, gene

expression, and biosynthesis processes (40). Notably, in the above

content, we demonstrated that CD8+ T cell-derived exosomes can

activate CD8+ T cells with low affinity, which is contrary to the

conclusion of this study. This can be attributed to the differences in

CD8+ T cell subsets and activation states. In addition, CD8+ T cell-

derived exosomes have been reported to be involved in directly

promoting tumor progression, which is inconsistent with the

function of the corresponding source cells. Exosomes from

activated CD8+ T cells were shown to activate the ERK and NF-kB
pathways in melanoma cells, leading to melanoma metastasis in vivo

by increasing the expression of MMP9 via Fas signaling, suggesting a

role for CD8+ T cell-derived exosomes in tumor immune escape (41).

Owing to the dual role of CD8+ T cell-derived exosomes in tumor

progression, tumor therapy strategies targeting exosomes need to

consider the balancing mechanism involved.
3.2 CD4+ T cell-derived exosomes

T cells can be divided into various subsets based on their

immunophenotypes, mainly CD4+ T helper cells and cytotoxic

CD8+ T cells. CD4+ T cells can be further divided into Th1, Th2,

Th9, Th17, Th22, follicular helper T cells, and regulatory T cells

(Tregs), each of which produce specific effector cytokines under

unique transcriptional regulation (42). CD4+ T cells interact with

other cells, such as NK cells, macrophages, and CD8+ T cells,

through the cytokines they produce. Shin et al. revealed that CD4+ T

cell-derived exosomes increased the antitumor response of CD8+ T

cells without affecting Tregs, thereby suppressing melanoma

growth. Mechanistically, miR-25-3p, miR-155-5p, miR-215-5p,

and miR-375 within CD4+ T cell-derived exosomes are

responsible for inducing CD8+ T cell-mediated antitumor

responses (43). This further supports the notion that exosomes

are a novel form of CD8+ T cell activation by CD4+ T cells in

addition to cytokines. However, the opposite was observed in

another study, which suggested that exosomes released by CD4+

T cells inhibited CD8+ CTL responses and antitumor immunity in

melanoma (44). It is worth considering whether this opposite result

is caused by the heterogeneity of exosomes and whether there is a

balancing mechanism.

In addition to influencing cellular immunity, CD4+ T cell-

derived exosomes are involved in the regulation of humoral
Frontiers in Immunology 04
immunity (45). In this study, mice vaccinated with the hepatitis B

surface antigen (HBsAg) vaccine showed a stronger humoral

immune response to CD4+ T-cell-derived exosomes, indicating

higher serum levels of hepatitis B surface antibody (HBsAb) (45).

Additionally, CD4+ T cell-derived exosomes play an important role

in B cell responses in vitro, which significantly promotes B cell

activation, proliferation, and antibody production (45). It is well

known that hepatitis B virus is the main cause of hepatocellular

carcinoma (46–48), and the synergistic effect of CD4+ T cell-derived

exosomes on HBsAb may contribute to the inhibition of

hepatocellular carcinoma. Further research is required to confirm

this hypothesis.
3.3 Treg-derived exosomes

Tregs are a group of lymphocytes that negatively regulate the

immune response of the body and participate in tumor cells to

evade immune surveillance (49). Owing to the significant

immunosuppressive effects of Treg-derived exosomes, an

increasing number of studies have focused on their role in tumor

immune escape (50). Interestingly, Tregs have been reported to

secrete more exosomes that express CD25, CTLA-4, and CD73 on

the surface than other T cells. Exosomes expressing CD73 perform

immunosuppressive functions by producing adenosine, which

plays an important role in the anti-inflammatory response (51–

53). In a recent phase I clinical trial, 18 patients with head and neck

squamous cell carcinoma who received a combination of

cetuximab, ipilimumab, and radiation therapy were serially

monitored for Treg-derived exosomes, and Treg-derived

exosomes were found to increase from the baseline levels (54),

supporting the potential role of Treg-derived exosomes as non-

invasive tumor and immune cell biomarkers in cancer. To promote

clinical translation, researchers have further carried out relevant

basic research. Tung et al. demonstrated for the first time that

miRNAs, particularly miR-150-5p and miR-142-3p, are transferred

from Tregs to DCs via Treg-derived exosomes, resulting in the

production of a tolerogenic phenotype in DCs (55). Similarly, Xie

et al. found that exosomes derived from natural CD8+ CD25+ Tregs

significantly inhibited DC-induced CTL responses and antitumor

immunity in a mouse B16 melanoma model (56). In addition to

DCs, Treg-derived exosomes inhibit the expression of M1

macrophage markers and promote M2 macrophage markers (57).

Macrophages are divided into classically activated M1

macrophages, which mainly exert anti-inflammatory and

antitumor functions (58), and alternately activated M2

macrophages, which have immunosuppressive and tumor-

promoting abil i t ies (59). Therefore, induction of M2

macrophages by Treg-derived exosomes may promote tumor

growth. Immunosuppression of Tregs mainly inhibits the

activation and proliferation of CD4+ and CD8+ T cells (60).

Studies have shown that exosomes derived from Tregs suppress

T-cell proliferation (61, 62). In addition, Torri et al. revealed the

inhibition of CD4+ T cell proliferation by Treg-derived exosomes

(63). However, these studies have not yet confirmed the role of
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Treg-derived exosome-mediated immunosuppression of

infiltrating T lymphocytes in tumor progression, which remains

to be explored further.
4 T cell-derived exosomes in
tumor immunotherapy

4.1 Engineered T cell-derived exosomes

Engineered exosomes mainly refer to modified exosomes with

enhanced drug-loading efficiency, targeting, and resistance to

body clearance after natural exosomes are treated with

bioengineering techniques. Usually, the size and shape of these

exosomes do not change significantly (64–67), but their

membrane loaders or contents may differ significantly

depending on the research purpose. Studies have shown that the

clinical therapeutic effect of exosomes can be improved by

changing their contents and surface substances to improve their

targeting and drug-loading rate. For example, Lou et al.

constructed an miR-199a-modified engineered exosome through

genetic engineering and found that it could effectively transfer

miR-199a to liver cancer cells. The miR-199a-modified engineered

exosomes significantly increased the sensitivity of liver cancer cells

to Adriamycin in vitro. It can also significantly promote the

antitumor effect of Adriamycin in liver cancer in vivo (68).

Another example is the loading of siRNA and oxaliplatin into

bone marrow mesenchymal stem cell-derived exosomes via

electroporation, which blocks the connection of tumor cells to

macrophages, thus inhibiting the polarization of macrophages in

the tumor microenvironment (69). Jung et al. generated IL-2-

tethered exosomes from engineered Jurkat T cells expressing IL-2

at the plasma membrane via a flexible linker to induce an

autocrine effect. Levels of miRNA in T cell-derived exosomes

using IL-2 surface engineering were significantly altered, and

differentially expressed miRNAs activated CD8+ T cells,

enhancing their antitumor immune effects (27). Therefore,

strengthening immune activity through engineering modification

of CD4+ T cells and CD8+ T cell-derived exosomes is a novel

strategy to improve the efficacy of tumor immunotherapy.
4.2 Depleting exosomes or blocking the
uptake of exosomes

Given the role of Treg-derived exosomes and some CD8+ T cell-

derived exosomes in tumor immune escape, depleting exosomes or

blocking their uptake may be a novel cancer immunotherapy (70).

The Aethlon ADAPT™ system, a novel device that can remove

blood components below 200 nm, including exosomes that interact

with the immobilized affinity agent of the device, was successfully

applied for the first time in patients with hepatitis C virus. It could

be speculated that if the Aethlon ADAPT™ system is used to

eliminate immunosuppressive exosomes from T cells, it may

improve the efficacy of antitumor immunotherapy.
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4.3 Chimeric antigen receptor T cell-
derived exosomes

Chimeric antigen receptor (CAR) T cells conjugate the antigen-

binding part of an antibody that recognizes a tumor antigen and the

intracellular part of the CD3-z chain or FcϵRIg into a chimeric

protein in vitro, and patient T cells are then transfected with gene

transduction to express CAR (71). Patient T cells are

“reprogrammed” to generate a large number of tumor-specific

CAR-T cells, which have been successfully designed and used to

treat malignant blood diseases (72). However, in the process of

treating malignant tumors, CAR-T therapy inevitably has side

effects such as cytokine release syndrome, neurotoxicity, and

organ failure (73, 74). The management of CAR-T cell toxicity

remains a challenge.

CAR-T cell-derived exosomes have been reported to reduce the

cytotoxicity of CAR-T therapy and cross the blood-brain barrier

and blood-tumor barrier (13). CAR-T cell-derived exosomes

express high levels of cytotoxic molecules (FasL, Apo2L, perforin,

and grazyme A and B), making them effective vectors to provide

pro-apoptotic cues to target tumor cells carrying homologous

antigens (75). Several preclinical studies have confirmed that

CAR-T cell-derived exosomes exert inhibitory effects on solid

tumors, including TNBC and lung cancer, and are relatively safe

(13, 76, 77). The mechanism of tumor apoptosis induced by CAR-T

cell-derived exosomes is independent of FasL, Apo2L, perforin, and

grazyme. A recent study demonstrated that CAR T cells contain

RNA components of the tumor-suppressive signal-recognition

particle 7SL1 (RN7SL1), a non-coding RNA that activates

interferon-IFN stimulator genes (78). Notably, RN7SL1 is

selectively transferred to immune cells via CAR-T cell-derived

exosomes, restricting the development of bone marrow-derived

suppressor cells and enhancing the immunostimulatory properties

of DCs, thus effectively activating melanoma with endogenous

CD8+ T cells that reject CAR antigens (78). Additionally,

anticancer drugs can be loaded into exosomes from CAR-T cells

to kill target tumor cells because of their excellent potential to

penetrate the extracellular matrix of solid tumors (79). The above

studies have shown that activated CAR-T cells can secrete exosomes

to function in solid tumors and can affect the immune

microenvironment of tumors; however, the current study seems

to have failed to conclude whether CAR-T cell-derived exosomes

play a role in hot or cold tumors (Figure 2).
5 Conclusions

This review summarized the role of CD8+ T cells, CD4+ T cells,

and Treg-derived exosomes in tumor immune modulation and

revealed the potential application of T cell-derived exosomes in

tumor immunotherapy, including engineered T cell-derived

exosomes, depleting exosomes, or blocking the uptake of

exosomes and CAR-T cell-derived exosomes. However, studies on

T cell-derived exosomes remain in the exploratory stage. There are

still many hurdles to overcome before T cell-derived exosomes can
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1130033
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1130033
transition from the laboratory to the clinic. First, the purification

and characterization methods of exosomes vary from laboratory to

laboratory, and different methods may confuse the subgroups and

physicochemical properties of exosomes. Therefore, researchers

need to refer to the International Society of Extracellular Vesicles

and the standardization efforts for exosome isolation, purification,

and use for therapeutics. The second problem is exosome

production. The number of exosomes extracted from cells is small

and it is often difficult to meet the requirements of drug delivery.

Therefore, to continue expanding the applications of exosomes, a

large-scale production mode is needed. In addition, the stability and

toxicity of exosomes after modification or drug loading need to be

further explored, especially as vectors for tumor nanomedical

applications. These findings will facilitate clinical transformation

of exosomes (80). Additionally, the best exosome therapy candidate

payload is currently inconclusive and needs to be explored further

in the future.

Exosomes have many advantages over other drug delivery

systems, especially their high stability, low immunogenicity,
Frontiers in Immunology 06
ability to avoid clearance by mononuclear phagocytes, good

biocompatibility, high bioactivity, and high targeting efficiency.

We believe that with the joint efforts of immunologists, molecular

biologists, chemists, and physicians, T cell-based exosomes will

become a powerful tool in the fight against tumors in the future.
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