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Introduction: The risk of progression to tuberculosis disease is highest within the

first year after M. tuberculosis infection (TBI). We hypothesize that people with

newly acquired TBI have a unique cytokine/chemokine profile that could be used

as a potential biomarker.

Methods: We evaluated socio-demographic variables and 18 cytokines/

chemokines in plasma samples from a cohort of people deprived of liberty

(PDL) in two Colombian prisons: 47 people diagnosed with pulmonary TB, 24

with new TBI, and 47 non-infected individuals. We performed a multinomial

regression to identify the immune parameters that differentiate the groups.

Results: The concentration of immune parameters changed over time and was

affected by the time of incarceration. The concentration of sCD14, IL-18 and IP-

10 differed between individuals with new TBI and short and long times of

incarceration. Among people with short incarceration, high concentrations of

MIP-3a were associated with a higher risk of a new TBI, and higher

concentrations of Eotaxin were associated with a lower risk of a new TBI.

Higher concentrations of sCD14 and TNF-a were associated with a higher risk

of TB disease, and higher concentrations of IL-18 and MCP-1 were associated

with a lower risk of TB disease.

Conclusions: There were cytokines/chemokines associated with new TBI and TB

disease. However, the concentration of immune mediators varies by the time of

incarceration among people with new TBI. Further studies should evaluate the

changes of these and other cytokines/chemokines over time to understand the

immune mechanisms across the spectrum of TB.

KEYWORDS

tuberculosis infection, TST conversion, Mycobacterium tuberculosis, cytokines,
chemokines, tuberculosis
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1 Introduction

To reduce the burden of Tuberculosis (TB) worldwide, two key

components will be necessary: 1) prevention of new TB infection

(TBI) and 2) prevention of the progression from TBI to TB disease

(1). The global prevalence of TBI is 24.8% (95% CI: 19.7-30.0%) and

21.2% (95% CI: 17.9-24.4%) based on the results of the interferon-

gamma release assays (IGRAs) and tuberculin skin test (TST),

respectively (2). Prevalence among people who are at higher risk

for TBI, including people deprived of liberty (PDL), is generally

higher than the community at large in the same geographic location

and can be as high as 88.8% (3).

Control of the progression to TB disease relies on accurate TBI

diagnosis. However, this is one of the significant challenges in the path

toward TB elimination. The main limitations of current tests (TST and

IGRAs) are their inability to distinguish between TBI and TB disease or

to predict TB progression to active disease (4–8). Despite numerous

articles reporting immunemarkers associated with TBI and TB disease,

there is high heterogeneity in the design, participant selection, sample

processing (including the stimulation protocols), measured markers

and analysis that limits comparing study results (9).

TB disease occurs most frequently among people newly infected

with TB, mainly within the first year of acquiring mycobacterial

infection (10). Identifying and prioritizing those with new TBI within

the first year of mycobacterial infection to offer TBI treatment could

be an effective measure to decrease TB transmission.

This study focused on incarcerated population because of the

high risk of exposure to TB and progress to TB disease (11). We

analyzed data and samples collected from two prisons where we

have previously shown high rates of TB infection and disease (12,

13). This study aimed to determine the plasma concentration of 18

cytokines/chemokines associated with the presence of new

Mycobacterium tuberculosis (MTB) infection and compare it with

the concentration among people with pulmonary TB diagnosis and

exposed but uninfected people.
2 Methods

2.1 Ethics statement

Approval for the study was obtained from the Ethics

Committees of the Universidad Pontificia Bolivariana and the

University of Manitoba. The Instituto Nacional Penitenciario y

Carcelario (INPEC) and the director of each prison approved the

project. In all cases, written consent forms were explained and

signed in the presence of two witnesses (always people deprived of

liberty -PDL).
2.2 Study design, settings, and population

This cohort study was conducted in Colombia between

September 2016 and December 2018 in two medium and high-

security men’s prisons. According to the inclusion criteria, the

cohort included 124 PDL with a negative two-step TST at
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enrolment (Supplementary Material 1). Complete information

related to the protocol, procedures, eligibility, recruitment, follow-

up and epidemiological data for this cohort study has been

published elsewhere (13).

During the cohort study, the TBI incidence rates varied between

2,402.88 cases per 100,000 person-months (95% CI 1,364.62 -

4,231.10) in PDL with short time of incarceration to 419.66 issues

per 100,000 person-months (95% CI 225.80 - 779.95) in individuals

with a long time of incarceration (13). For this reason, the cohort

was divided into two subgroups: 64 “PDL with short incarceration”

for those who were enrolled in follow-up upon incarceration or

within the first three months of incarceration, and 60 “PDL with

long incarceration” for people who started their follow-up after one

year or more of imprisonment.

The primary outcome in the cohort was a new TBI

(documented TST conversion). In the end, there were 25 new

TBIs among 124 people with a negative two-step TST at

enrolment. Thirteen out of 25 were people with short

incarceration, and 12/25 new TBIs were people with long

incarceration. Ninety-nine individuals remained TST negative

after the follow-up. Supplementary Material 1 has information

about the new TBI diagnosis criteria.

In addition, we included 51 of 88 (57.95%) people with a new

pulmonary TB diagnosis during the study period. The prison

healthcare system performed the microbiological diagnoses, and

we also collected sputum samples to confirm Mycobacterium

tuberculosis. People were invited to participate in the study after

the TB diagnosis. Supplementary Material 1 describes the eligibility

criteria and the TB diagnosis.
2.3 Procedures

2.3.1 Data collection
The socio-demographic data were collected from all individuals

at baseline: age; history and time of prior incarceration; use of drugs

(inhaled, injected, or smoked), smoking, and alcohol consumption;

comorbidities (chronic obstructive pulmonary disease, diabetes,

chronic kidney disease, HIV, and any other immunosuppressive

condition); contact with a person diagnosed with TB disease

(outside and inside the prison); history of prior TB, including

date of the last episode, and outcome; weight and height. To

determine previous exposure to the BCG vaccine, the field team

sought the presence of the BCG scar.

2.3.2 Blood sample collection
All PDL included in the study provided blood samples at

baseline and every three months during their follow-up. The

samples were collected in sodium heparin tubes, and plasma was

separated and stored at -80°C until processing.

We processed 148 samples as follows: a) 58 samples of PDL with

a new TBI (21 samples at baseline, 18 at pre-conversion [3 months

before TST conversion], and 19 at the time of TST conversion); b)

43 samples of PDL of the last follow–up available among people that

remain TST negative and had the longest follow-ups; c) and 47

samples at baseline of people diagnosed with TB disease (Figure 1).
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We excluded 4/51 participants diagnosed with TB because 3 had

HIV co-infection, and one did not have a plasma sample at baseline.

2.3.3 Cytokines and chemokine selection
and detection

The cytokines/chemokines quantified in the study were selected

based on: 1) a systematic review we conducted to identify the

relevant cytokines/chemokines associated with TBI (14), 2)

published reviews about the pathophysiology of M. tuberculosis

infection (15–17), 3) results from animal models (guinea pig,

macaques and mice) (15, 16, 18–20), 4) immune response to

intracellular bacteria (21, 22), 5) M. tuberculosis pathway (23)

(available at: http://www.genome.jp/kegg/pathway.html) and 6)

our previous results among people diagnosed with TB disease (24).

Commercial multiplex and single bead-based fluorescent assay

kits were used to quantify 18 cytokines/chemokines of interest from

plasma samples as follows: Macrophage Inflammatory Protein 3a
(MIP-3a/CCL20), Human Cytokine/Chemokine magnetic Panel

III, Milliplex® Map kit); Interleukin 18 (IL-18), Human IL-18

Singleplex Magnetic Bead kit, Milliplex® Map kit; soluble CD14

(sCD14), Human Cardiovascular Disease (CVD) Panel 6 Magnetic

Bead kit, Milliplex®Map kit; Eotaxin 1 (CCL11), Interferon gamma

(INF-g), Interleukin 5 (IL-5), Interleukin 6 (IL-6), Interleukin 10

(IL-10), Interleukin IL-12 p40 homodimer (IL-12[p40]), Interleukin
Frontiers in Immunology 03
13 (IL-13), Interleukin 15 (IL-15), Interleukin (IL-17), Interleukin-1

receptor antagonist (IL-1RA), human interferon-inducible protein

10 (CXCL10/IP-10), monocyte chemoattractant protein-1 (CCL2/

MCP-1), macrophage inflammatory protein 1a (CCL3/MIP-1a),
macrophage inflammatory protein 1b (CCL4/MIP-1b), Tumor

necrosis factor alpha (TNF-a), Human Cytokine/Chemokine

magnetic Bead Panel, Milliplex® Map kit, Millipore Corporation,

Billeria, MA, USA.

The assays were performed according to the manufacturer’s

instructions, using 25 µl of plasma per sample (5 µl to run the

sCD14 assay) and overnight incubation. Standards were

reconstituted and serially diluted to generate standard curves.

Two controls with low and high concentrations, provided by the

commercial kit, were included in each assay and considered positive

controls for the experiment. Results were analyzed in the BioPlex-

200 instrument (Bio-Rad, Mississauga, Canada), reported as mean

fluorescence intensity, and converted to pg/ml or ng/ml using the

BioPlex® Manager version 6.0 (Bio-Rad, Mississauga, ON).

To control for potential biases, all specimens were analyzed,

blinded to the clinical status, and longitudinal samples were

performed by the same person and analyzed on the same plate.

Samples with values outside the standard curve range were assigned

a value of one-half of the lower limit of detection (LOD divided by

2) in pg/mL.
FIGURE 1

Flow chart of people included in the study. TB: tuberculosis; TST: tuberculin skin test. New TBI [people with negative two-step TST that became
positive during follow-up were divided into TBI with short incarceration (they had ≤3 months of incarceration at enrolment) and TBI with long
incarceration (they had ≥1 year of incarceration at enrolment)].
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2.4 Analysis

We used descriptive statistics (median [IQR] and n [%]) to

report cytokines/chemokines and socio-demographic variables, and

chi-squared and Kruskal Wallis tests to evaluate differences between

groups. The primary outcome of this study was a new TBI stratified

by short and long incarceration.

In individuals with new TBI, we compared the concentration of

the immune mediators at baseline, three months before the TST

conversion (pre-conversion point) and TST conversion. Wilcoxon

test was used to compare the changes in cytokines/chemokines over

time. In addition, we used the Mann-Whitney test to compare each

follow-up between individuals with a new TBI with short and long

times of incarceration.

Then, we compared plasma concentration of cytokines/

chemokines in people with new TBI with short and long

incarceration to non-infected individuals and people diagnosed

with pulmonary TB using the Kruskal-Wallis test. We used

multinomial logistic regression to determine the association

between each cytokine/chemokine and new TBI with short or

long incarceration compared to TB disease and non-infected

groups. All cytokines/chemokines were log-transformed to adjust

for skewness before the multivariable analysis. Variables included in

the final regression model were selected using the biological

plausibility criteria, a manual backward elimination method. We

adjusted the model by age, BCG scar, contact with a person

diagnosed with TB and drug use. All models were adjusted by

cluster effect (15 different courtyards in the two prisons).

All analyses were done using STATA® version 14. A two-tailed

p-value <0.05 was considered significant. Considering the multiple

comparisons were made when we evaluated the cytokine

concentration between the groups, a p-value <0.01 was considered

significant, applying the Bonferroni correction.
3 Results

3.1 Study participants

The median time of TST conversion (new TBI) among the short

incarceration group was 12.3 months, and in the new TBI with long

incarceration group was 40.5 months (Figure 1). The majority of

new TBIs occurred in one prison (75%).

There was no significant difference between groups regarding

the mean age (Table 1). Ten individuals in the study had a body

mass index ≤18.5 kg/m2, and 9 of them had a TB diagnosis.

Individuals diagnosed with TB reported higher consumption of

smoked drugs (61.7%) and inhaled drugs (34%) compared to the

other groups (p ≤ 0.001). There was no difference in the frequency

of alcohol consumption and tobacco use (p>0.051) (Table 1).

Having contact with a person diagnosed with TB was reported in

8.3% of the new TBI group, 34% of people diagnosed with TB, and

19.2% in the non-infected group. Table 1 reports socio-

demographic information at baseline.

IL-10, IL-12, IL-13, IL-15, IL-17A, IL-1RA, IL-5, IL-6 and MIP-

1a had more than 40% of the results below the lower detection
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limit. We did not see consistent trends of these results within and

between groups or by the follow-up time. Therefore, these

cytokines/chemokines were excluded from the analysis and results.
3.2 The concentration of cytokines/
chemokines among the new TBI group is
affected by the time of incarceration

Supplementary Material S2 reports the median concentrations of

all immune parameters at baseline, pre-conversion and TST

conversion by short and long incarceration among the new TBI group.

Our results showed that there were no differences in the

concentrations of MIP-3a (Figure 2A), Eotaxin (Figure 2B), INF-

g (Figure 2D) and MIP-1b (Figure 2F). We found higher

concentrations of sCD14 at baseline compared to pre-conversion

and TST conversion points; the change was more evident in PDL

with long incarceration (Figure 2C). PDL with short incarceration

showed increased plasma levels of IL-18 at baseline and pre-

conversion, compared to the time of TST conversion (Figure 2E).

MCP-1 showed an increased concentration over time, with a higher

concentration at the time of TST conversion (Figure 2G). We also

found that in PDL with short incarceration, IP-10 decreased three

months before TST conversion (Figure 2H).

The concentrations of sCD14 (Figure 2C) and IL-18 (Figure 2E)

were higher among people with new TBI and short incarceration

compared to those with long incarceration (p< 0.05). The

concentration of IP-10 (Figure 2H) was higher in people with

long incarceration.
3.3 Cytokines/chemokines concentrations
are different between groups

We found higher concentrations of sCD14 and TNF-a among

people diagnosed with TB, MIP-3a among people with new TBI

and short incarceration, and IL-18 and MCP-1 among people with

new TBI and long incarceration (Table 2). We did not find

differences in the concentration of Eotaxin, INF-g, MIP-1b, and
IP-10 among the groups (Figures 3B, 3D, 3F, 3H).

The concentration of sCD14 was higher in the TB disease group

compared to non-infected individuals and new TBI with long

incarceration group (Figure 3C). TNF-a was higher in the TB

disease group compared to non-infected individuals (Figure 3I).

MIP-3a was higher in the new TBI with short incarceration

compared to the TB disease group (Figure 3A). MCP-1 was

higher in the new TBI with long incarceration compared to the

TB disease group (Figure 3G). IL-18 (Figure 3E) and MCP-1

(Figure 3G) concentrations were lower in the TB disease group

compared to non-infected individuals.
3.4 There are cytokines/chemokines
associated with a new TBI and TB disease

In the multivariable analysis, only having a BCG scar was

associated with decreased risk of a new TBI in people with short
frontiersin.org
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TABLE 1 Baseline characteristics of study participants diagnosed with a new TBI (with short and long incarceration), TB disease, and non-infected people.

Variable
Not infected

(n=47)
n (%)

New TBI, short incar-
ceration
(n=11)
n (%)

New TBI, long incarceration
(n=13)
n (%)

TB
disease
(n=47)
n (%)

p-
value

Age, years, median [IQR] 34 [30-44] 33 [30-39] 31 [25-56] 32 [26-37] 0.201

Time of current incarceration, months,
median [IQR]

11.2 [1.6-39.4] 12.3 [8.9-12.9] 40.5 [27.8-54] 33.1 [14-
53.4]

0.001

BMI ≤18.5 1 (2.2) 0 0 9 (19.1) 0.013

Prison <0.001

Prison One 22 (46.8) 7 (63.6) 11 (84.6) 47 (100.0)

Prison Two 25 (53.2) 4 (36.7) 2 (15.4) 0

Comorbidities 9 (19.1) 0 4 (30.7) 9 (19.1) 0.284

COPD 3 (6.4) 0 1 (7.7) 3 (6.4) 0.849

Diabetes mellitus 1 (2.1) 0 2 (15.4) 2 (4.3) 0.173

Psychiatric illness 3 (6.4) 0 1 (7.7) 0 0.256

Others 3 (6.4) 1 (9.1) 0 4 (8.5) 0.736

Inhaled drug use 0.001

Never 32 (68.1) 6 (54.5) 9 (69.2) 14 (30.0)

Past 11 (23.4) 5 (45.5) 3 (23.1) 16 (34.0)

Current 4 (8.51) 0 1 (4.17) 17 (34.0)

Smoked drug use <0.001

Never 28 (59.6) 7 (63.6) 7 (53.8) 7 (14.9)

Past 11 (23.4) 2 (18.2) 3 (23.1) 11 (23.4)

Current 8 (17.0) 2 (18.2) 3 (23.1) 29 (61.7)

Tobacco consumption 0.294

Never 18 (38.3) 6 (54.5) 3 (23.1) 11 (23.4)

Past 12 (25.5) 1 (9.1) 4 (30.7) 10 (21.3)

Current 17 (36.2) 4 (36.4) 6 (46.1) 26 (55.3)

Alcohol use 0.051

Never 12 (25.5) 3 (27.4) 1 (7.7) 8 (17.0)

Past 22 (46.8) 7 (63.6) 8 (61.5) 17 (36.1)

Current 12 (25.5) 0 3 (23.1) 22 (46.8)

Occasional 1 (2.13) 1 (9.1) 1 (7.7) 0

History of contact with a TB case 9 (19.1) 1 (9.1) 1 (7.7) 16 (34.0) 0.087

Contact with prisoner 7 (14.9) 1 (9.1) 1 (7.7) 14 (29.8)

Contact with relative 2 (4.3) 0 0 2 (4.1)

BCG Scar 45 (95.7) 8 (72.2) 8 (61.5) 41 (87.2) 0.007
F
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IQR, interquartile range; TB, tuberculosis; COPD, Chronic obstructive pulmonary disease; BCG, Bacillus Calmette-Guerin. New TBI [people with negative two-step TST that became positive
during follow-up were divided into TBI with short incarceration (they had ≤3 months of incarceration at enrolment) and TBI with long incarceration (they had ≥1 year of incarceration at
enrolment)]. *p-value using the Kruskal-Wallis test for quantitative variables and Chi-square test for qualitative variables. Variables with statistical significance are shown in bold.
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incarceration. The other socio-demographic variables (age, history

of having contact with a person diagnosed with TB, and drug use)

were not associated with new TBI or TB disease. Although having a

BMI of less than 18 kg/m2 and alcohol consumption were

significant factors, the multinomial model did not converge when

we included those variables due to the low number of outcomes in

the ‘yes’ category.

In the final multinomial model (Table 3), we identified that higher

concentrations of MIP-3a were associated with a higher risk of a new

TBI. The presence of a BCG scar and higher concentrations of Eotaxin

were associatedwith a lower risk of a newTBI amongpeoplewith short

incarceration compared to non-infected individuals.

Higher plasma concentrations of sCD14 and TNF-a were

associated with an increased risk of TB disease. Finally, we found

that higher concentrations of IL-18 andMCP-1 were associated with
Frontiers in Immunology 06
a lower risk of TB disease compared to non-infected

individuals (Table 3).
4 Discussion

The main results of our study were: 1) the concentration of

immune mediators in persons with a new TBI varies according to

the time of incarceration (short or long incarceration); and 2)

Among people with short incarceration, high concentrations of

MIP-3a were associated with a higher risk of a new TBI, and higher

concentrations of Eotaxin was associated with a lower risk of a new

TBI. Higher concentrations of sCD14 and TNF-a were associated

with a higher risk of TB disease, and higher concentrations of IL-18

and MCP-1 were associated with a lower risk of TB disease.
A B

D E F

G IH

C

FIGURE 2

Cytokines/chemokines concentrations among people with new latent tuberculosis infection at baseline, pre-conversion, and TST conversion, by the
time of incarceration. New TBI [people with negative two-step TST that became positive during follow-up were divided into new TBI with short
incarceration (they had ≤3 months of incarceration at enrolment) and new TBI with long incarceration (they had ≥1 year of incarceration at enrolment)].
Values are reported in pg/ml for all cytokines/chemokines, except for sCD14 where results are reported in ng/ml. Boxplots are median and interquartile
range. (A) MIP-3a; (B) Eotaxin; (C) sCD14; (ng/ml) (D) INF-g; (E) IL-18; (F) MIP-1b; (G)MCP-1; (H) IP-10; (I) TNF-a.
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TABLE 2 The concentration cytokine/chemokine and differences between the groups (new TBI [with short and long incarceration], TB disease, and non-infected).

Cytokines/
Chemokines

Non-infected
pg/ml (IQR)

New TBI and short incarcera-
tion

pg/ml (IQR)

New TBI and long incarcera-
tion

pg/ml (IQR)

TB disease
pg/ml (IQR)

p-
value*

sCD14 (ng/ml) 2213.8 (1851.9-
2579.9)

2610.8 (1863.6-3413.0) 2314.9 (1596.8-2619.5) 3063.4 (2605.7-
4233.1)

0.0001

MIP-3a 13.6 (10.9-18.2) 21.6 (14.8-26.9) 14.2 (9.9-24.9) 8.7 (4.1-13.4) 0.0001

IL-18 125.4 (84.5-220.8) 91.6 (86.3-198.9) 148.4 (59.9-191.1) 64.8 (38.1-100.5) 0.0001

Eotaxin 249.3 (141.3-375.9) 146.8 (59.8-218.8) 334.0 (100.4-587.2) 190.4 (118.3-333.4) 0.2421

INF-g 0.19 (0.05-0.8) 0.4 (0.05-0.6) 0.12 (0.05-0.3) 1.44 (0.05-4.1) 0.1714

MIP-1b 11.1 (8.2-17.0) 12.4 (9,7-19.6) 8.5 (6.7-15.5) 15.0 (10.1-19.2) 0.1532

TNF-a 4.4 (3.7-6.3) 4.3 (3.5-5.8) 5.4 (3.8-7.0) 6.6 (5.2-8.5) 0.0466

IP-10 217.4 (133.2-303.6) 233.7 (177.1-267.5) 199.7 (174.8-280.2) 328.7 (179.7-518.6) 0.0842

MCP-1 246.9 (207.3-307.5) 253.9 (193.1-369.8) 256.0 (243.1-305.8) 174.2 (133.6-231.7) 0.0006
F
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IQR: interquartile range; TB: tuberculosis; TBI: tuberculosis infection *p value using Kruskal-Wallis test. New TBI [people with negative two-step TST that became positive during follow-up were
divided into TBI with short incarceration (they had ≤3 months of incarceration at enrolment) and TBI with long incarceration (they had ≥1 year of incarceration at enrolment)]. Variables with
statistical significance are shown in bold.
A B

D E F

G IH

C

FIGURE 3

Immune parameters concentrations among people who converted the TST (new TBI with short incarceration [n= 11] and TBI with long incarceration
[n= 13]), people diagnosed with TB disease (n=47), and non-infected people (n=47). New TBI [people with negative two-step TST that became
positive during follow-up were divided into new TBI with short incarceration (they had ≤3 months of incarceration at enrolment) and new TBI with
long incarceration (they had ≥1 year of incarceration at enrolment)]. (A) MIP-3a; (B) Eotaxin; (C) sCD14 (ng/ml); (D) INF-g; (E) IL-18; (F) MIP-1b;
(G) MCP-1; (H) IP-10; (I) TNF-a. Values reported in pg/ml for all cytokines, except for sCD14 reported in ng/ml. Boxplots are median and interquartile
range. p-value using the Mann-Whitney U test and adjusted by multiple comparisons.
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In this study, immune mediators’ concentration varied among

people newly infected by the time of incarceration. Levels of sCD14

and IL-18 were increased in individuals with short incarceration

and IP-10 in those with long incarceration. These variations

between people could occur for several reasons: 1) early exposure

to M. tuberculosis can induce increased macrophage activation,

leading to elevated sCD14 concentration. 2) Continuously exposed

individuals (≥1 year in prison) could eliminate the bacteria

repeatedly, owing to an effective immune response. 3) Other

factors associated with prison entry include stress, physical

activity, or dietary patterns. Several studies have documented

changes in the production of pro-inflammatory cytokines when

people are under a chronic stressful situation (25), variable levels of

physical activity/exercise (26), or when a stress-generating situation

is compounded by an infectious process, such as influenza

vaccination (27). People deprived of liberty are exposed to acute

and chronic stressors, given the social and safety conditions that

prevail in prisons in which they live or the changes associated with

freedom deprivation (28). In other words- the inflammatory milieu

induced by environmental factors related to imprisonment may

alter the immune response, thereby increasing the risk of MTB

infection (29).

We found that increased circulating levels of MIP-3a were

associated with a higher risk of having new TBI after short

incarceration. The MIP-3a/CCL20 is a dendritic cell, T cell, B cell

and monocyte chemoattractant involved in lymphocyte

homeostasis and trafficking, cell proliferation and activation (21,

30, 31). Rivero-Lezcano et al. reported that the expression of MIP-

3a increased up to 39-fold when monocytes from healthy donors

were infected with M. tuberculosis (32), and Lee et al. showed that
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MIP-3a was up-regulated in PBMC and bronchoalveolar lavage

fluids from people diagnosed with TB compared to healthy controls

after in vitro stimulation with the 30 kDa antigen (Ag) of M.

tuberculosis (33). MIP-3a concentration in serum/plasma samples

is an attractive target for further evaluation in newly acquired MTB

infection studies among people with documented recent exposure.

In our research, PDL with a new TBI and with short incarceration

had lower circulating levels of Eotaxin. Eotaxin has been reported as

inhibited after in vitro infection by M. tuberculosis (34), decreased

in people diagnosed with TB disease, and with increasing levels after

anti-TB treatment (35).

After adjusting for the other co-variables, individuals with

elevated concentrations of MCP-1, a potent chemotactic factor for

monocytes (36), had a lower risk of TB disease. In a model of

macaques previously vaccinated with BCG, the production of b-
chemokine MCP-1 increased in lung lesions of animals after five

weeks of infection with MTB (37). These immune molecules are

mainly associated with the recruitment of monocytes/macrophages,

in keeping with the observation that animals had a higher frequency

of macrophages (CD14+ CD68+) in peripheral blood three weeks

post-infection with MTB (37). In this case, the increase in cells and

b-chemokines may be a sign of the recruitment of these cells from

peripheral blood to the site of infection in the lung. Our results

show that the concentrations of MCP-1 were lower among the TB

disease group compared to non-infected individuals; however, most

reports about this chemokine have shown increased concentration

among people diagnosed with TB (38, 39). Results may be different

because of stimulation with mycobacterial antigens or the absence

of stimulation in whole blood samples. Increased concentrations of

MCP-1 have been reported in stimulated samples from individuals
TABLE 3 Cytokines/chemokines associated with new TBI with short or long incarceration, TB disease compared to non-infected people in a
multinomial regression model.

Cytokines/
Chemokines

(Log transformed)

New TBI with short incarceration New TBI with long incarceration TB disease

cRR+ [95% CI] aRR*+ [95% CI] cRR+ [95% CI] aRR*+ [95% CI] cRR+ [95% CI] aRR*+ [95% CI]

Non-infected 1 [Reference] 1 [Reference] 1 [Reference] 1 [Reference] 1 [Reference] 1 [Reference]

sCD14 1.17 [0.09-13.92] 2.62 [0.59-11.69] 0.87 [0.31-2.41] 0.76 [0.09-6.40] 24.17 [8.66-67.42] 77.78 [7.60-796.16]

MIP-3a 2.40 [1.47-3.93] 7.46 [2.01-26.72] 0.80 [0.29-2.18] 0.96 [0.32-2.93] 0.28 [0.11-0.66] 0.33 [0.09-1.19]

IL-18 0.55 [0.16-1.88] 0.31 [0.04-2.57] 0.86 [0.39-1.93] 1.00 [0.48-2.08] 0.30 [0.10-0.88] 0.13 [0.02-0.91]

Eotaxin 0.53 [0.35-0.83] 0.35 [0.19-0.65] 1.27 [0.56-2.90] 1.31 [0.60-2.84] 0.81 [0.53-1.25] 1.35 [0.61-2.98]

INF-g 1.09 [0.76-1.56] 1.13 [0.60-2.13] 0.85 [0.52-1.39] 0.81 [0.35-1.87] 1.28 [1.05-1.56] 1.45 [0.91-2.30]

MIP-1b 1.56 [0.61-4.01] 6.87 [0.74-63.74] 0.49 [0.25-0.98] 0.50 [0.09-2.55] 1.78 [0.92-3.45] 2.91 [0.73-11.57]

TNF-a 1.10 [0.44-2.76] 0.27 [0.04-1.80] 1.34 [0.61-2.92] 2.53 [0.23-28.28] 2.00 [0.64-6.27] 3.38 [1.01-11.24]

IP-10 1.13 [0.72-1.77] 0.72 [0.17-2.95] 1.21 [0.65-2.27] 1.06 [0.16-6.80] 2.58 [1.51-4.42] 1.41 [0.29-6.97]

MCP-1 1.81 [0.35-9.40] 1.75 [0.10-29.26] 3.15 [1.74-5.69] 1.65 [0.30-8.91] 0.9 [0.15-0.55] 0.03 [0.006-0.18]

BCG scar 0.12 [0.01-1.04] 0.04 [0.002-0.43] 0.07 [0.01-0.57] 0.12 [0.003-5.67] 0.29 [0.05-1.52] 0.07 [0.003-1.32]

Age in years 0.98 [0.95-1.02] 0.95 [0.88-1.02] 1.02 [0.99-1.04] 1.01 [0.95-1.08] 0.98 [0.95-1.00] 0.98 [0.91-1.04]
cRR, crude relative risk *aRR: adjusted relative risk based onmultinomial logistic regression analysis; TB, tuberculosis. New TBI [people with negative two-step TST that became positive during follow-
up were divided into TBI with short incarceration (they had ≤3 months of incarceration at enrolment) and TBI with long incarceration (they had ≥1 year of incarceration at enrolment)]. All variables
included in the multinomial regression model were selected through a manual backward elimination method. +The bivariable and multivariate models are adjusted by cluster effect (15 courtyards).
Variables with statistical significance are shown in bold.
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diagnosed with active TB, but higher concentrations in un-

stimulated samples among non-infected individuals compared to

individuals diagnosed with TB (40). Some additional explanations

for those differences between the studies are the ancestry of the

population, the specimen (serum, whole blood, or supernatants of

cultured PBMC), and the presence of genetic polymorphisms

regulating IL-18 or MCP-1 production (41) in the populations,

which could alter the final structure, concentration, or function of

the protein.

We also found that higher concentrations of sCD14 and TNF-a
were associated with a higher risk of TB disease. These immune

mediators are highly involved in monocyte/macrophage activation

and trafficking pathways (42, 43). Macrophages are the main niche

for the growth and survival of M. tuberculosis (44); likewise,

macrophages are the most important cells for infection control in

animal and human models and critical cells in the host response

during active disease (44–46) trying to limit the systemic spread of

mycobacteria (47). Soluble CD14, whose membrane-bound portion

is highly expressed in these cells, is a mediator of macrophage

activation and serves as a receptor for mycobacterial

lipoarabinomannan (43). It has been reported among people

diagnosed with TB disease (48, 49), with or without concurrent

HIV infection (47, 50), and individuals with diabetes mellitus (51).

A published article by Lawn SD et al. suggests that sCD14 might

increase the concentration of TNF-a due to the high load of

mycobacterial antigens among people living with HIV and co-

infected with TB disease (47). In our study, people diagnosed with

TB had higher plasma concentrations of TNF-a, presumably

contributing to cell recruitment, the production of other pro-

inflammatory cytokines, and apoptosis of MTB-infected cells (52).

Similar to our study, TNF-a has been reported to be increased in

adults (49, 53–56) and children (57) diagnosed with TB disease.

Our findings show lower concentrations of IL-18 and MCP-1

among the TB group compared to non-infected individuals. Other

researchers have shown that M. tuberculosis-stimulated culture

supernatants from people diagnosed with TB have lower

concentrations of IL-18 compared to those from healthy TST

converters (58). IL-18 has an important function in TB as a pro-

inflammatory cytokine (59); it plays an important role in the T-cell-

helper type 1 (Th1) response, primarily by its ability to induce IFN-

g production in T cells and natural killer (NK) cells (60) and in

combination with IL-12 triggers the antimicrobial protein

cathelicidin and autophagy, resulting in inhibition of intracellular

mycobacteria in macrophages and lung epithelial cells (61). Still,

studies in humans are not conclusive. For example, Yamada G et al.

(62) showed that increased serum IL-18 concentrations were

associated with TB disease compared to healthy individuals

(including TST converters).

Future studies are needed to validate and complement our

cytokine and chemokine findings.

We did not find associations between IP-10, IL-17, IL-10, and a

new TBI (the first one was not different between groups, and the

latter two had concentrations below the lower detection limit),

contrary to other publications (63, 64). This discrepancy may be

attributed to the measurement of immune mediators after

mycobacterial antigen and mitogen stimulation in prior studies
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(53, 56, 65–75), in contrast to the unstimulated measurements in

our study. In the case of IL-17, there are six members in the IL-17

family, including IL-17A. IL-17B, IL-17C, IL-17D, IL-17E, and IL-

17F (76, 77). Our study only measured Il-17A. Therefore, it is

possible that other not measured subunits, such as IL-17F, were

increased in plasma samples. In the same way, IL-17 is described as

essential in the lung during recent infection (60). Still, perhaps

blood sampling in the context of recent infection may have

contributed to the reduced systemic level of IL-17.

Another reason for discrepant results may be that individuals

included in other longitudinal studies were evaluated with only one

TST administration, and those with a negative TST may represent a

false negative result (61). In our previous studies, a second

administration of TST identified an additional 11.6% positive TST

individuals (78).

Our study’s most crucial distinguishing feature is the study

design (cohort). In cross-sectional studies, the duration an

individual has had TBI cannot be quantified. The main limitation

of a cross-sectional approach is that human and primate studies

have demonstrated there is a spectrum of TB stages (5, 6, 79, 80), on

which there is little published work (4, 6), and that potentially could

alter the concentration of the immune parameters according to the

stage of the infection. The cohort design allowed us to quantify the

concentration of cytokines at a temporal point close to the time of

infection (new infection) and identify individuals in whom infection

occurred recently. BorgstromWE et al., using mathematical models

and CD4+ T-cell flow-cytometry data, showed that the most

specific prediction of recent TBI was a high proliferative CD4+

response to CFP-10 and PPD, and a low response to ESAT-6 at ≤1

month after exposure (81).

Our study has other strengths: rigorous selection criteria among

people diagnosed with TB, including only those with

microbiological confirmation and with less than 15 days of

treatment, rule out of booster effect, and rigorous monitoring and

follow-up every three months to all uninfected participants.

The main limitation of this study is that some bacterial factors

may modify the response to cytokines, such as the virulence of some

strains; however, in people with TBI, it is not feasible to isolate the

mycobacterium, and therefore the role of MTB strain cannot be

assessed yet.
5 Conclusion

Our study found that immune markers vary according to the

time of incarceration. Among people with short incarceration, high

concentrations of MIP-3a were associated with a higher risk of a

new TBI, and higher concentrations of Eotaxin were associated with

a lower risk of a new TBI. Higher concentrations of sCD14 and

TNF-a were associated with a higher risk of TB disease, and higher

concentrations of IL-18 and MCP-1 were associated with a lower

risk of TB disease. It is necessary to have more cohort studies that

evaluate the changes over time of these and other cytokines/

chemokines to understand the immune mechanisms across the

spectrum of TB.
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