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Introduction: Cellular senescence is a hallmark of tumors and has potential for

cancer therapy. Cellular senescence of tumor cells plays a role in tumor

progression, and patient prognosis is related to the tumor microenvironment

(TME). This study aimed to explore the predictive value of senescence-related

genes in thyroid cancer (THCA) and their relationship with the TME.

Methods: Senescence-related genes were identified from the Molecular

Signatures Database and used to conduct consensus clustering across TCGA-

THCA. Differentially expressed genes (DEGs) were identified between the clusters

used to perform multivariate Cox regression and least absolute shrinkage and

selection operator regression (LASSO) analyses to construct a senescence-related

signature. TCGA dataset was randomly divided into training and test datasets to

verify the prognostic ability of the signature. Subsequently, the immune cell

infiltration pattern, immunotherapy response, and drug sensitivity of the two

subtypes were analyzed. Finally, the expression of signature genes was detected

across TCGA-THCA and GSE33630 datasets, and further validated by RT-qPCR.

Results: Three senescence clusters were identified based on the expression of 432

senescence-related genes. Then, 23 prognostic DEGs were identified in TCGA

dataset. The signature, composed of six genes, showed a significant relationship

with survival, immune cell infiltration, clinical characteristics, immune checkpoints,

immunotherapy response, and drug sensitivity. Low-risk THCA shows a better

prognosis and higher immunotherapy response than high-risk THCA. A nomogram

with perfect stability constructed using signature and clinical characteristics can

predict the survival of each patient. The validation part demonstrated that
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ADAMTSL4, DOCK6, FAM111B, and SEMA6B were expressed at higher levels in the

tumor tissue, whereas lower expression of MRPS10 and PSMB7 was observed.

Discussion: In conclusion, the senescence-related signature is a promising

biomarker for predicting the outcome of THCA and has the potential to guide

immunotherapy.
KEYWORDS

thyroid cancer, cellular senescence, tumor microenvironment, signature,

immunotherapy, prognosis
Introduction

Thyroid cancer (THCA) is the most common malignant disease

of the endocrine system, and its incidence has steadily increased in

recent years (1). Among THCA, 90% of cancers are epithelial cell-

derived, which are then divided into papillary thyroid cancer (PTC),

follicular thyroid cancer (FTC), and anaplastic thyroid cancer (ATC).

In addition, less than 5% of THCA cases are diagnosed as medullary

thyroid cancer (MTC) (2). In 2022, statistics revealed 11, 860 and 31,

940 new cases of THCA in American men and women, respectively

(3). Despite the low mortality, some cases may progress to invasive

diseases, and recurrence and metastasis occurs in approximately 10–

30% of patients (4). Thus, aggressive THCA may benefit from

immunotherapy and targeted treatments.

Cellular senescence responds to diverse intrinsic and extrinsic

stimulation to remove senescent cells and maintain homeostasis (5).

Cellular senescence can be caused by mitosis, carcinogenic activation,

tissue damage signaling, progressive telomere shortening, oxidation,

genotoxic stress, telomere structure change, ionizing radiation,

epigenetic changes, chromatin disorders, protein steady-state

disorders, mitochondrial dysfunction, inflammation, radiation

therapy, or chemotherapy (6). Accumulation of cell damage leads

to both cell senescence and cancer. Cell senescence and cancer are

closely associated. Evidence has shown that senescence is both

beneficial and harmful to tumorigenesis and cancer progression.

Senescence causes cells to remain in a permanent cell stagnation

cycle, which can prevent tumor formation. Conversely, if senescent

cells cannot be eliminated in time and accumulate, they may cause

tumorigenesis, invasion, progression, and metastasis (7).

The genomic profile of cancer has been widely studied in recent

years. In THCA, the BRAFV600E mutation is the most frequent somatic

mutation site. The BRAFV600E mutation has been confirmed as an

independent factor influencing the radioiodine avidity of PTC with

lung metastases (8). Evidence has demonstrated that a single

BRAFV600F mutation is not related to the prognosis of THCA;

however, cooperation with other factors may lead to poor THCA

outcomes. Zerfaoui et al. reported that the nuclear interaction of the

Arp2/3 complex and BRAFV600E leads to vemurafenib resistance and

the progression of THCA (9). The thyroid gland is an organ closely

associated with immunity. Hashimoto’s thyroiditis is an autoimmune

disorder that has been confirmed to be a protective factor against lymph

node metastasis in PTC (10). PTC is characterized by lymphocytic
02
infiltration, which may be associated with improved prognosis (11).

Therefore, evaluation of THCA genomics based on specific genes, such

as ferroptosis-related, pyroptosis-related, autophagy-related, and

senescence-related genes, may have significant value for predicting

the prognosis and immunotherapy response.

There are various prediction models of other cancer types based

on the senescence-related genes which can predict prognosis and

treatment effect, demonstrating that senescence-related genes can

play important roles in various cancers. We proposed that

senescence-related genes can also be used to predict survival and

guide therapy for THCA. To provide global evidence of senescence-

related genes in thyroid cancer, we identified a senescence-related

signature and demonstrated that it can reliably predict the prognosis

of THCA. Functional enrichment analyses were conducted to explore

putative mechanisms, and the immune cell infiltration pattern,

immunotherapy response, and drug sensitivity were confirmed to

be significantly related to senescence-related signatures.
Methods and materials

Data collection and processing

THCA mRNA expression data (FPKM) and clinical information

were extracted from TCGA online database (https://portal.gdc.cancer.

gov/), which included 503 tumor and 56 normal samples. A total of 432

senescence genes were identified in the MSigDB (Molecular Signatures

Database) genetic database (Supplementary Table S1) (12). TCGA-

THCA was divided into a training group and a test group at a 1:1 ratio

using R software.
Identification of the senescence clustering

To explore the correlation between the senescence-related genes,

a protein-protein-interaction (PPI) network was constructed on

STRING (https://string-db.org/), and the functional annotations

were analyzed. To further reveal the expression patterns of

senescence-related genes in THCA, consensus clustering was

conducted to identify the best senescence clusters. The expression

of 432 senescence genes was used to conduct the consensus clustering

with the “ConsensusClusterPlus” R package (13). The consensus
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matrix and cumulative distribution function (CDF) were used to

calculate the optimal number of clusters. To determine the survival

differences between clusters, the Kaplan-Meier (K-M) method was

performed between the subtypes. Subsequently, the expression

difference of immune checkpoints was analyzed using the limma

algorithm, and p < 0.05 was considered significantly different (14). To

evaluate immune cell infiltration in the clusters, we conducted an

analysis to explore different immune cell types, such as CD8 T cells,

cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic

lineage, myeloid dendritic cells, neutrophils, T cells, and NK cells.
Establishment of the senescence-
related signature

The limma algorithm was used to identify differentially expressed

genes (DEGs) between senescence clusters (Supplementary Table S2).

Univariate Cox regression analysis was then conducted to calculate

the prognostic DEGs, with HR<1 or >1 regarded as protective or risk

genes (p < 0.05). To avoid overfitting, least absolute shrinkage and

selection operator (LASSO) regression analysis was performed to

identify signature genes using the “glmnet” package (15). The risk

score was calculated using the following formula:

o
n

n
Coef ið Þ*Expr ið Þ

Patients with THCA were divided into low- and high-risk

subgroups based on their risk score relative to the median risk

score. K-M survival analysis was conducted to evaluate the

prognosis of patients with low- and high-risk THCA. A receiver

operating characteristic (ROC) curve was used to confirm prediction

stability (16). Principal component analysis (PCA) was conducted to

evaluate the separation of low- and high-risk THCA (17). To further

validate the advantage and stability of the novel signature, the C-index

of our signature and other three models was compared (18–20).
Nomogram construction

To further improve the clinical value, a nomogram was

constructed based on age, sex, M stage, T stage, N stage, clinical

stage, and senescence-related signature (21). A calibration curve was

constructed to show the relationship between the actual and predicted

probabilities for the 1-, 3-, and 5-year OS. The discrimination

performance of each factor for THCA was evaluated using

ROC analysis.
Clinical correlation analysis
To explore the correlation between the senescence-related

signature and several clinical characteristics, subgroup analyses of

the training dataset were conducted, including age, sex, T stage, M

stage, N stage, and clinical stage. Moreover, the survival difference

between low- and high-risk THCA in distinct clinical subgroups was

evaluated using K-M survival analysis.
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Immune cell infiltration and
immunotherapy response

To explore the relationship between immune cell infiltration and

senescence-related signatures, immune cell infiltration was assessed

using the XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC,

CIBERSORT-ABS, and CIBERSORT algorithms with different colors

(22–26). The correlation coefficient was calculated to evaluate the

relationship between immune cells and the signature. The expression

of immune checkpoints in low- and high-risk THCA was analyzed

using the limma algorithm. Immune cells, including CD8 T cells,

cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic

lineage, myeloid dendritic cells, neutrophils, T cells, and NK cells,

were also analyzed in low- and high-risk THCA and presented in

violin plots.

To predict the immunotherapy response in two subsets, tumor

immune dysfunction and exclusion (TIDE), CD274 (PD-L1, death-

ligand 1), interferon-gamma (IFNG, a potent inducer of immune

response), myeloid-derived suppressor cells (MDSC), and

immunophenoscore (IPS) were calculated.
Functional enrichment analysis

To explore the putative mechanisms underlying low- and high-

risk THCA, Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analyses were conducted with the DEGs in

low- and high-risk THCA identified using the limma algorithm (p <

0.05) (27, 28). Gene set enrichment analysis (GSEA) was performed to

analyze variations in pathway activities between low- and high-risk

THCA (p < 0.05) (29). The annotated file “c2.cp.kegg.v7.5.1.

symbols.gmt” was downloaded from MSigDB. Functional

enrichment analyses were conducted using the “ClusterProfiler” R

package (30).
Assessment of the drug sensitivity

To identify the correlation between drug sensitivity and

senescence-related signatures, the half-maximal inhibitory

concentrations (IC50) of drugs were calculated using the

“pRRophetic” R package (31). Wilcoxon signed-rank tests were

used to compare the IC50 values of low- and high-risk THCA.
Exploration of signature genes in databases

To further explore the expression of the six signature genes in

THCA, the limma algorithm was used to calculate the mRNA

difference between normal and tumor samples. TCGA-THCA and

GSE33630 datasets were extracted for analysis (32).
Cell culture and RT-qPCR

The normal thyroid cell line (Nthy ori-3-1) and cancer cell line

(BCPAP) were obtained from the American Type Culture Collection
frontiersin.org
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(ATCC, Manassas, VA, USA), maintained in RPMI-1640 media

(Gibco) with 10% fetal calf serum (Gibco), and incubated in 5%

CO2 at 37°C.

Total RNA was extracted using the TRIzol lysis method. The RNA

was then reverse transcribed into complementary DNA (cDNA)

using the Hifair® III One-Step RT-qPCR SYBR Green Kit (Yeasen,

China). RT-qPCR was conducted using the Hieff® qPCR SYBR Green

Master Mix (Yeasen, China), according to the manufacturer’s

instructions. The 2−DDCt method was used to calculate the relative

gene expression levels. Primers were synthesized and designed by

GenePharma (Shanghai, China) and their detailed sequences are

listed in Supplementary Table S3. b-Actin was used as the control.
Statistical analysis

The analysis and relevant figures were obtained using R software

(version 4.1.1). The t-test was used to compare differences between

the two groups. Spearman’s analysis was used to calculate correlation

coefficients. Kaplan–Meier survival analyses with log-rank tests were

performed to assess the significant differences in OS between the two

groups. Statistical significance was set at p < 0.05.
Results

Identification of three senescence clusters

The PPI network revealed that senescence-related genes had

complex correlation (Supplementary Figure S1) and involved in

diverse cellular functions, such as organic acid metabolic process,

cellular metabolic process, and metabolic process (Supplementary File

S1). Consensus clustering results showed that there was a significant

difference when k = 3 with a curve of a gentle slope (Figures 1A-C).

Therefore, patients in TCGA-THCAwere divided into clusters 1, 2, and

3. The heatmap shows that the three clusters have clear edges

(Figure 1D). To determine whether different expression patterns of

senescence-related genes affected the prognosis of THCA, K-M survival

analysis was performed between the three clusters, which showed that

cluster 2 had the best outcome and cluster 3 had the worst (Figure 1E).

The relationship between senescence and immune activity was explored

by analyzing the expression of immune checkpoints in the three

clusters. The significantly expressed immune checkpoints included

IL10RB, PDCD1LG2, PDCD1, BTLA, CSF1R, TIGIT, LGALS9,

CTLA4, IL10, HAVCR2, VTCN1, IDO1, KDR, CD244, CD274,

TGFBR1, TGFB1, and LAG3 (p < 0.05) (Figure 1F).
Evaluation of immune cell infiltration in
senescence clusters

The MCPCOUNTER algorithm was used to explore immune cell

infiltration in the three clusters (Figure 2). Cluster 1 contained the

highest number of fibroblasts. Cluster 2 showed the highest numbers

of CD8 T cells, cytotoxic lymphocytes, myeloid dendritic cells,

neutrophils, and T cells. Cluster 3 had the highest number of

endothelial cells and monocytic lineages. The high proportion of
Frontiers in Immunology 04
immune cells in cluster 2, which can suppress cancer cells, may partly

account for the favorable prognosis.
Identification of the senescence-related
signature

Univariate Cox regression analysis was used to identify DEGs among

the three senescence clusters. There were 15 protective genes, including

XKRX, DOCK6, TCIM, NELL2, FAM111B, DTX4, TRIM21, RMI2,

LCMT1, APOE, TUSC3, AC005479.2, PGPEP1, MCM3, and PSMB7

(Hazard Ratio, 0.428, 0.187, 0.622, 0.711, 0.290, 0.688, 0.166, 0.334, 0.189,

0.711, 0.646, 0.439, 0.294, 0.248, and 0.107, respectively), as well as eight

risk genes, including ADAMTSL4, ANTXR1, TMX4, SEMA6B, CNST,

MRPS10, LPGAT1, and TMEM167A (Hazard Ratio, 2.476, 2.976, 8.495,

2.911, 3.752, 7.674, 2.951, and 8,595, respectively) (Figure 3A).

Subsequently, LASSO analysis further narrowed down the candidate

genes and 10 senescence-related genes with optimal l values were

screened (Figures 3B, C). Six senescence-related genes were identified

and used to construct the risk formula: (-1.7274663260496 * DOCK6

expression) + (1.27110457900683 * ADAMTSL4 expression) +

(-0.885359668808328 * FAM111B expression) + (1.4076646152426 *

SEMA6B expression) + (2.43200689265228 * MRPS10 expression) +

(-4.57826818302534 * PSMB7 expression). According to the median risk

score, the patients were divided into low- and high-risk subgroups. K-M

survival analysis was conducted for the training subset and the two test

subsets, revealing that low-risk THCA had a significantly better prognosis

than high-risk THCA (p < 0.001, p < 0.001, and p = 0.023, respectively)

(Figures 3D–F). ROC analysis showed that in TCGA-all subset the AUCs

of 1-, 3-, and 5-year survival were 0.959, 0.920, and 0.893; in the TCGA-

train subset, the 1-, 3-, and 5-year survival AUCs were 0.968, 0.922, and

0.960; in TCGA-test subset, the AUCs of 1-, 3-, and 5-year survival were

0.945, 0.944, and 0.776, revealing that the predictive ability of the

signature was very stable (Figures 3G–I). Setting the median risk score

as the threshold and plotting the survival status revealed that nearly all

high-risk THCA patients died, further demonstrating the stability of our

senescence-related signature (Figures 4A–F). Heatmaps showed the

expression of six signature genes in low- and high-risk THCA, and the

trends were consistent in the training and test subsets (Figures 4G–I).

PCA of the three subsets confirmed that low- and high-risk THCA had

perfect separation (Figures 4J–L). The model comparation result showed

that signature of Luo et al, Li et al, and Wang et al. had lower C-index

than our signature (0.589, 0.786, and 0.875 to 0.927) (Supplementary

Figure S2).
Construction of a nomogram

To build a more useful tool for individuals, a nomogram was

constructed based on sex, M stage, T stage, N stage, age, clinical stage,

and risk score (Figure 4M). The final nomogram scores of each

patient obtained by combining all items can be used to predict 1-, 3-,

and 5-year survival rates. Additionally, the calibration curves showed

that the nomogram had perfect accuracy in predicting the survival

(Figure 4N). Additionally, the ROC analysis showed that the

nomogram had the highest AUC (0.986) than other factors (risk

0.945, age 0.970, gender 0.613, clinical stage 0.782, T stage 0.780, M
frontiersin.org
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stage 0.487, and N stage 0.515, respectively), demonstrating that the

nomogram was the most stable predictive factor (Figure 4O).
Clinical correlation analysis of senescence-
related signature

To further explore the clinical correlation of the signature, the

relationships between age, sex, T stage, N stage, M stage, and clinical
Frontiers in Immunology 05
stage and the signature were calculated. The results showed that the

risks were higher in age > 65 than age ≤ 65, higher in T3 than T1,

higher in N1 than N0, higher in clinical stage II than clinical stage II,

and higher in clinical stage III to clinical stage II (p = 0.0012, p =

0.025, p = 0.027, p = 0.0015, and p = 0.021, respectively) (Figure 5).

Although the survival difference between low- and high-risk THCA

has been demonstrated in the training and test subsets, subgroup analysis

was also conducted to further confirm the predictive ability of the

signature. The results showed significantly better prognosis in low-risk
B

C
D

E F

A

FIGURE 1

Identification of the three senescence clusters. (A) Consensus CDF in consistent clustering (k = 2–9). (B) Relative change in area under the CDF curve
from k 2–9. (C) Tracking plot of the THCA samples (K = 2–9). (D) Consensus heatmap defining the three clusters (k = 3). (E) K-M survival analysis
showing significant prognosis between the three clusters. (F) Boxplot presenting the significant expression difference of immune checkpoints between
the three clusters. ns, no significance. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.
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FIGURE 2

Immune cell infiltration in the three clusters. Violin plot showing CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage,
myeloid dendritic cells, neutrophils, T cells, and NK cells.
B C

D E F

G H I

A

FIGURE 3

Identification and validation of the senescence-related signature. (A) Univariate Cox regression analysis identifying 23 prognostic DEGs. (B) Coefficients
of the LASSO analysis. (C) The senescence-related signature obtained six prognostic genes with a minimum lambda value. (D–F) K-M survival analysis
showing a significant survival difference between low- and high-risk THCA across the TCGA-all, TCGA-training, and TCGA-test subsets. (G–I) ROC
analysis showing the stable prediction ability of the senescence-related signature across TCGA-all, TCGA-training, and TCGA-test subsets.
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https://doi.org/10.3389/fimmu.2023.1128390
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2023.1128390
THCA than high-risk THCA in the subgroups of age > 65 years, female,

male, N0, N1, T1–2, T3–4, stage I–II, and stage III–IV (p = 0.008, p =

0.001, p = 0.010, p = 0.039, p = 0.002, p = 0.025, p = 0.001, p = 0.034, and

p < 0.001, respectively) (Figure 6).
Immune cell infiltration and activity

The seven immune algorithms showed that the senescence-

related signature was negatively correlated with NK cells, Th1 cells,

and cytotoxic cells (coefficient < -0.25), and positively correlated with

endothelial cells, stromal score, macrophages, non-regulatory CD4 T

cells, monocyte lineage, and myeloid dendritic cells (coefficient >

0.25) (Figure 7A). Regarding immune checkpoints, TIGIT, LGALS9,

CTLA4, VTCN1, NECTIN2, ADORA2A, KDR, CD274, CD160,

TGFBR1, and LAG3 were significantly different between low- and

high-risk THCA (p < 0.01) (Figure 7B). There was a higher
Frontiers in Immunology 07
infiltration of endothelial cells, monocyte lineage, myeloid dendritic

cells, and NK cells in high-risk THCA (p < 2.22e-16, p = 0.00061, p =

0.00075, and p = 0.0003, respectively). Moreover, a higher proportion

of CD8 + T cells and cytotoxic lymphocytes was observed in low-risk

THCA patients (p = 0.0079 and p = 7.8e-06, respectively) (Figure 7C).
Immunotherapy response

The TIDE score was lower in the low-risk subtype, indicating that

low-risk THCA patients may show a better response to

immunotherapy (p < 0.05) (Figure 8A). In addition, CD274, IFNG,

and MDSC levels were all higher in the low-risk subtype, which also

supported a better response for low-risk THCA (p < 0.05)

(Figure 8A). Subsequently, the IPS in the four subgroups was

explored. The results showed that in the CTLA4–PD1–, CTLA4–

PD1+, CTLA4+ PD1–, and CTLA4+ PD1+ subgroups, low-risk
B C

D E F

G H I

J K L

M
N O

A

FIGURE 4

Stability of the senescence-related signature and construction of a nomogram. (A–C) Survival curve of the THCA patients across TCGA-all, TCGA-
training, and TCGA-test subsets. (D–F) Survival status of the THCA patients across TCGA-all, TCGA-training, and TCGA-test subsets. (G–I) Heatmaps
showing the expression of signature genes in THCA patients across the TCGA-all, TCGA-training, and TCGA-test subsets. (J–L) PCA showing the perfect
separation of low- and high-risk THCA across the TCGA-all, TCGA-training, and TCGA-test subsets. (M) The nomogram constructed with the
senescence-related signature, age, gender, T stage, M stage, N stage, and clinical stage. (N) The calibration curve used to estimate the prediction
accuracy of the nomogram. (O) Multi-index ROC curve of the senescence-related signature and other factors.
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FIGURE 5

Correlation analysis showing that the senescence-related signature is associated with age, gender, T stage, N stage, M stage, and clinical stage.
FIGURE 6

K-M survival analysis presenting the significance of prognosis between low- and high-risk THCA in subgroups of age > 65, female, male, N0, N1, T1–2,
T3–4, clinical stage I–II, and clinical stage III–IV.
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THCA exhibited a higher IPS (p = 7e-09, p = 9e-05, p = 2.5e-08, and p

= 7.9e-07, respectively), which predicted a better immunotherapy

response (Figure 8B).
Functional enrichment analysis for low- and
high-risk THCA

To further investigate the putative cellular function and pathway

of low- and high-risk THCA, the DEGs between the two subtypes

were identified with the criteria of FDR < 0.05 and p < 0.05. BP

analysis showed that the top three enriched functions were thyroid

hormone metabolic processes, hormone metabolic processes, and

organic acid transport (Figure 9A). CC analysis revealed that the
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top three enriched functions were apical plasma membrane, apical

part of cell, and collagen-containing extracellular matrix (Figure 9A).

MF analysis confirmed that the d-threo-aldose 1-dehydrogenase,

aldo-keto reductase (NADP), and alditol NADP+ 1-oxidoreductase

activities were the most enriched functions (Figure 9A). KEGG

analysis demonstrated that the top five enriched pathways were

cytokine-cytokine receptor interaction, thyroid hormone synthesis,

vascular smooth muscle contraction, Wnt signaling pathway, and

phospholipase D signaling pathway (Figure 9B). GSEA revealed

differential molecular functions of the two THCA subtypes. The

results showed that butanoate metabolism, glycine, serine, and

threonine metabolism, steroid hormone biosynthesis, valine,

leucine, and isoleucine degradation, and vascular smooth muscle

contraction play vital roles in high-risk THCA (Figure 9C). In
B

C

A

FIGURE 7

Immune cell infiltration pattern in low- and high-risk THCA. (A) Correlation analysis of risk score and diverse immune cells using the XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms. (B) Boxplot showing the expression difference of immune checkpoints
in low- and high-risk THCA. (C) Violin plot showing infiltration of CD8 T cells, cytotoxic lymphocytes, endothelial cells, fibroblasts, monocytic lineage,
myeloid dendritic cells, neutrophils, NK cells, and T cells in low- and high-risk THCA. ns, no significance. * indicated P<0.05; ** indicated P<0.01; ***
indicated P<0.001.
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addition, allograft rejection, DNA replication, proteasomes,

ribosomes, and type I diabetes mellitus were the top five enriched

pathways in low-risk THCA (Figure 9C).
Drug sensitivity in low- and high-risk THCA

To predict the sensitivity of several common drugs, drug analysis was

conducted for low- and high-risk THCA. AKT inhibitor VIII,

GSK1070916, and rapamycin showed higher sensitivity in low-risk

THCA (p = 2.6e-05, p = 0.0024, and p = 7.4e-09, respectively).

Moreover, in high-risk THCA, 5-fluorouracil, bleomycin, crizotinib,

doxorubicin, erlotinib, and gemcitabine were less sensitive than high-

risk THCA (p = 3.2e-08, p = 0.018, and p = 0.033, p < 2.22e-16, p = 9.8e-

11, p = 0.0099, respectively) (Figure 10).
Expression of signature genes in THCA

To further demonstrate the abnormal expression of the six

signature genes in THCA, expression analysis was performed using

two independent datasets, TCGA-THCA and GSE33630. The results

showed that ADAMTSL4, DOCK6, FAM111B, and SEMA6B were

more highly expressed in THCA than in normal samples (p < 0.05),

whereas the expression of MRPS10 and PSMB7 was lower than that in

normal samples (p < 0.05) (Figures 11A, B).

In a real-world experiment, the RT-qPCR results were consistent

with the bioinformatic analysis, confirming that ADAMTSL4,

DOCK6, FAM111B, and SEMA6B were expressed at higher levels

in thyroid cancer cells (p < 0.05), while MRPS10 and PSMB7 were

expressed at lower levels (p < 0.05) (Figure 11C) (Supplementary

Table S4).
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Discussion

The cellular senescence system is complicated and multifaceted

and is crucial for modulating various cellular processes. Previous

studies have reported that cellular senescence has both negative and

positive effects on tumorigenesis. Peng et al. demonstrated that

autophagy can promote tumor suppression by inhibiting signals

through senescence (33). In addition, senescence is closely related

to tumor immunity. Thymic Stromal Lymphopoietin (TSLP)-

stimulated CD4+ T cells play a vital role in antitumor immunity in

advanced breast cancers. Boieri et al. reported that TSLP-stimulated

CD4+ T cells transform breast cancer cells into a senescent-like

phenotype by inducing interferon-gamma (IFN-gamma) and tumor

necrosis factor-alpha (TNF-alpha) (34). Wang et al. confirmed that

senescent cells could accumulate with age by expressing programmed

death-ligand 1 (PD-L1) and escaping T cell immunity. PD-L1+

senescent cells showed significantly higher resistance to T-cell

immunity than PD-L1- senescence cells (35). Therefore, tumor cells

may escape human immunity through cellular senescence. To provide

global evidence for senescence in THCA, a novel signature was

identified based on senescence-related genes that could stably

predict prognosis and immunotherapy response. Subgroup analysis

revealed that the senescence-related signature can serve as a

biomarker for the prognosis of THCA in patients aged > 65 years,

females, males, N0, N1, T1–2, T3–4, clinical stage I–II, and clinical

stage III–IV.

The signature comprised six genes: ADAMTSL4, DOCK6,

FAM111B, SEMA6B, MRPS10, and PSMB7. Disintegrin-like and

metalloproteinase domains with thrombospondin type 1 motif

(ADAMTS)-like proteins are secreted glycoproteins that are part of

the ADAMTS superfamily. ADAMTSL4 is one of the most widely

studied members, is associated with aggressive tumor phenotypes, and
B

A

FIGURE 8

Immunotherapy response of low- and high-risk THCA. (A) Difference of the TIDE, Exclusion, Dysfunction, CD274, IFNG, Responder, Merck18, and MDSC
score between low- and high-risk THCA. (B) IPS score of the low- and high-risk THCA in the of CTLA4- PD1-, CTLA4- PD1+, CTLA+ PD1-, and CTLA+
PD1+ subgroups. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.
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participates in microfibril formation and function (36). In glioblastoma

multiforme (GBM,WHO grade IV), ADAMTSL4 has been reported to

make a contribution to predicting survival (37). However, the function

of ADAMTSL4 in THCA requires further exploration. Dedicator of

cytokinesis 6 (DOCK6) is an atypical Rho guanine nucleotide exchange

factor (GEFs) for Rac and CDC42 GTPases. This is a complex protein

family, and DOCK6 is one of the members of the DOCK-C subfamily

that can exchange GDP for GTP for Rac1 and CDC42 (38). Previous

studies have demonstrated that overexpression of DOCK6 is associated

with migration and poor prognosis of oral squamous cell cancer (39).

DOCK6 may promote chemotherapy and radiotherapy resistance in

gastric cancer through WNT/b-catenin signaling (40). Family with

sequence similarity 111 member B (FAM111B) is a 16 kb gene situated

on human chromosome 11q12.1, which has shown functions in various

cancer types, including thyroid cancer, pancreatic adenocarcinoma,

lung cancer, and cervical cancer (41–44). Semaphorin 6b (SEMA6B)

promotes and suppresses tumor progression (45). In our analysis,

SEMA6B was shown to contribute to the development of THCA.
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Paramasivam et al. reported that gene expression screening indicates

the overexpression of MRPS10 in breast cancer (46). Another study

demonstrated that PSMB7 is an unfavorable prognostic marker for

breast cancer and is associated with anthracycline resistance (47). The

association of these genes with several types of cancer has been widely

studied. The present analysis confirmed the functions of these genes

in THCA.

The TME contains diverse cell types (endothelial cells, macrophages,

T cells, dendritic cells, etc.) and extracellular components (extracellular

matrix, cytokines, hormones, etc.) surrounding tumor cells, which affect

tumor progression (48). The thyroid gland is one of the most important

endocrine organs involved in human immunity. The TME of THCA is

even more complicated because of the effects of other diseases, such as

Hashimoto’s lymphocytic thyroiditis. Previous studies have confirmed

the coexistence of Hashimoto’s disease and papillary thyroid carcinoma

(49). Although some studies have reported that Hashimoto’s thyroiditis

may be tumor-protective while others indicate that it is tumor-

promoting, they all demonstrated that the microenvironment of the
B

C

A

FIGURE 9

Functional enrichment analysis of low- and high-risk THCA. (A) GO enrichment results across TCGA-THCA including BP, CC, and MF analysis. (B) KEGG
enrichment results showing the top related pathways across TCGA-THCA. (C) GSEA identifying the top five gene sets in low- and high-risk THCA.
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thyroid is pivotal to THCA progression (50). In the analysis of immune

cell infiltration, M2 macrophages showed higher infiltration in high-risk

THCA and M1 macrophages presented higher infiltration in low-risk

THCA. Tumor-associated macrophages (TAMs) recruited to the

microenvironment have the potential to polarize M1 or M2

macrophages according to the stimulation of TME. M1 macrophages

have a pro-inflammatory role that can activate the immune response and
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prevent tumor progression; M2 macrophages play a completely opposite

pro-tumorigenic function, both of which affect tumor development (51).

M1 and M2 macrophage infiltration in low- and high-risk THCA may

partly account for the differences in malignancy and prognosis. In

addition, other diverse immune cell types showed a significant

difference between the two subtypes, demonstrating that the TME may

play a vital role in THCA.
FIGURE 10

Drug sensitivity in low- and high-risk THCA, including AKT inhibitor VIII, GSK1070916, rapamycin, 5-fluorouracil, bleomycin, crizotinib, doxorubicin,
erlotinib, and gemcitabine.
B

C

A

FIGURE 11

Expression of the signature gene. (A) Gene expression differences across TCGA dataset. (B) Gene expression differences across GSE33630. (C) RT-qPCR
verifying the gene transcription in tumor and normal cells. * indicated P<0.05; ** indicated P<0.01; *** indicated P<0.001.
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Functional enrichment analysis revealed that various pathways

play putative roles in low- and high-risk THCA, such as cytokine-

cytokine receptor interactions, thyroid hormone synthesis, and the

Wnt signaling pathway. Cytokine-cytokine receptor interactions have

been reported to be strongly associated with the risk of diverse

cancers. As an endocrine cancer, THCA has been confirmed to be

affected by thyroid hormones. Moreover, after the surgery, the intake

of oral L-thyroxine can both prevent the recurrence of cancer and

maintain human hormones. The Wnt signaling pathway is associated

with progression, drug resistance, and cancer immunotherapy (52,

53). During the past few decades, the function of Wnt signaling in

THCA has also been studied. Zhang et al. reported that KDM1A

could promote the progression and maintain the stemness of THCA

through the Wnt signaling pathway (54). LEMD1 increases the

proliferation and migration of THCA via the Wnt signaling

pathway (55). Our analysis further demonstrated that senescence-

related signatures are associated with the Wnt signaling pathway.

The bioinformatic analysis explored the issues about the prediction

viability of senescence-related genes for thyroid cancer to predict the

prognosis, immunotherapy response, and drug sensitivity, and discussed

the putative mechanisms of senescence-related genes in thyroid cancer.

In conclusion, this study identified a novel senescence-related

prognostic signature containing six genes. Comparing to other clinical

gene predictive model, such as 21-gene recurrence score and 70-gene

signature test (MammaPrint) for breast cancer (56, 57), the 6-gene

signature has better economic viability. The risk score calculated using

the signature can independently predict the survival and immunotherapy

benefit of patients with THCA. Our new senescence-related model may

be used for THCA-targeted therapy in the future.
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57. Brandão M, Pondé N, Piccart-Gebhart M. Mammaprint™: a comprehensive
review. Future Oncol (2019) 15(2):207–24. doi: 10.2217/fon-2018-0221
frontiersin.org

https://doi.org/10.1097/JTO.0b013e3181ec173d
https://doi.org/10.1038/nbt0308-303
https://doi.org/10.2147/IJGM.S346058
https://doi.org/10.1186/s12957-022-02590-6
https://doi.org/10.1186/s12885-022-10175-5
https://doi.org/10.1186/s12885-022-10175-5
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1158/0008-5472.CAN-17-0307
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/bs.mie.2019.05.056
https://doi.org/10.1016/bs.mie.2019.05.056
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1038/bjc.2012.302
https://doi.org/10.1080/15548627.2022.2155794
https://doi.org/10.3389/fcell.2022.1002692
https://doi.org/10.1038/s41586-022-05388-4
https://doi.org/10.21037/atm-21-4946
https://doi.org/10.1155/2019/1802620
https://doi.org/10.1016/j.yexcr.2006.11.017
https://doi.org/10.1016/j.archoralbio.2021.105297
https://doi.org/10.1038/s41388-020-01390-0
https://doi.org/10.1111/cas.14483
https://doi.org/10.7150/ijbs.72397
https://doi.org/10.1097/MPA.0000000000001303
https://doi.org/10.1177/1010428317711895
https://doi.org/10.3389/fmolb.2021.687319
https://doi.org/10.3389/fmolb.2021.687319
https://doi.org/10.1093/jb/mvab004
https://doi.org/10.1093/jb/mvab004
https://doi.org/10.1038/sj.bjc.6605478
https://doi.org/10.1186/s12964-020-0530-4
https://doi.org/10.14310/horm.2002.1282
https://doi.org/10.14310/horm.2002.1282
https://doi.org/10.1210/jc.2012-2978
https://doi.org/10.3390/cancers13081946
https://doi.org/10.3390/cancers13081946
https://doi.org/10.3389/fimmu.2019.02854
https://doi.org/10.3390/cancers13040889
https://doi.org/10.7150/thno.66142
https://doi.org/10.3892/ol.2021.12703
https://doi.org/10.1056/NEJMoa2108873
https://doi.org/10.2217/fon-2018-0221
https://doi.org/10.3389/fimmu.2023.1128390
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification and validation of a novel senescence-related biomarker for thyroid cancer to predict the prognosis and immunotherapy
	Introduction
	Methods and materials
	Data collection and processing
	Identification of the senescence clustering
	Establishment of the senescence-related signature
	Nomogram construction
	Clinical correlation analysis
	Immune cell infiltration and immunotherapy response
	Functional enrichment analysis
	Assessment of the drug sensitivity
	Exploration of signature genes in databases
	Cell culture and RT-qPCR
	Statistical analysis

	Results
	Identification of three senescence clusters
	Evaluation of immune cell infiltration in senescence clusters
	Identification of the senescence-related signature
	Construction of a nomogram
	Clinical correlation analysis of senescence-related signature
	Immune cell infiltration and activity
	Immunotherapy response
	Functional enrichment analysis for low- and high-risk THCA
	Drug sensitivity in low- and high-risk THCA
	Expression of signature genes in THCA

	Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References


