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Cytokines and receptors of the IL-1 family are key mediators in innate immune

and inflammatory reactions in physiological defensive conditions, but are also

significantly involved in immune-mediated inflammatory diseases. Here, we will

address the role of cytokines of the IL-1 superfamily and their receptors in

neuroinflammatory and neurodegenerative diseases, in particular Multiple

Sclerosis and Alzheimer’s disease. Notably, several members of the IL-1 family

are present in the brain as tissue-specific splice variants. Attention will be

devoted to understanding whether these molecules are involved in the disease

onset or are effectors of the downstream degenerative events. We will focus on

the balance between the inflammatory cytokines IL-1b and IL-18 and inhibitory

cytokines and receptors, in view of future therapeutic approaches.

KEYWORDS

IL-1 family cytokines, IL-1 family receptors, neuroinflammation, neurodegeneration,
Alzheimer’s disease, multiple sclerosis
1 Introduction

The interleukin-1 (IL-1) superfamily encompasses eleven structurally and

evolutionarily related cytokines that mainly act by binding to specific receptors (1). The

IL-1 receptor (IL-1R) complexes are formed by a ligand-binding chain and an accessory

chain necessary for signal transduction. The IL-1R family comprises ten related

transmembrane molecules with extracellular Ig-like domains and intracellular TIR (Toll-

Like Receptor/IL-1 Receptor) domains (2). Most IL-1 and IL-1R molecules are involved in

inflammation/immunostimulation and its regulation. It is notable that, while IL-1R are

derived from invertebrate TIR-containing receptors involved in innate immunity, IL-1

cytokines only appeared in vertebrates (likely linked to the development of adaptive

immunity) and the majority of them is only present in mammals (3, 4).
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In mammals, eleven cytokines of the IL-1 family have been

identified, the inflammatory IL-1a, IL-1b, IL-18, IL-36a, IL-36b,
IL-36g, and the regulatory/anti-inflammatory IL-1Ra, IL-33, IL-

36Ra, IL-37 and IL-38 (overview in 1). IL-1 family cytokines mainly

act by binding to receptor complexes, composed by a ligand binding

chain and an accessory signal transducing chain. Signalling is

initiate by the pairing of the intracellular TIR domains of the two

receptor chains. Receptors of the IL-1R family are ten structurally

related transmembrane proteins, which may also give rise to soluble

receptors upon gene splicing or proteolysis of the membrane chains

(overview in 2). IL-1R1 binds the agonist ligands IL-1a and IL-1b,
and its signalling depends on the engagement of the accessory chain

IL-1R3. IL-1R1 also binds IL-1Ra but in this case fails to recruit the

IL-1R3, and no activation occurs. Binding of IL-38 has also been

reported. IL-1R2 is similar to IL-1R1 in its ligand binding capacity

and IL-1R3 engagement, but it lacks the intracellular TIR domain

and its therefore an inhibitory receptor. IL-1R4 is the receptor for

IL-33, an uses the same IL-1R3 as accessory chain for signalling. IL-

1R5 is the receptor for IL-18, and uses its specific accessory chain

IL-1R7. It was reported that IL-37 also binds to IL-1R5 but is unable

to recruit IL-1R7. IL-1R6 is the ligand binding chain for all the IL-36

isoforms (IL-36a, IL-36b, IL-36g) and uses the promiscuous IL-1R3

as accessory chain. IL-1R6 also binds the receptor antagonist IL-

36Ra and fails to engage the accessory chain. Binding of IL-38 has

also been reported. IL-1R8 is an inhibitory receptor, which can

interact with several IL-1R complexes and interfere with their

signalling and may also act as inhibitory accessory chain for IL-37

bound to IL-1R5 and IL-38 bound to IL-1R6. IL-1R9 is an orphan

receptor, although binding to IL-38 has been reported,

predominantly expressed in neurons and likely involve in IL-1-

independent neuronal functions. Likewise, IL-1R10 is abundantly

expressed in the brain and has no IL-1-dependent functions (for

complete references, please see the reference lists of 1, 2).

IL-1 and IL-1R molecules expressed in brain have as their main

role the modulation of neuronal plasticity and function, in addition to

mediating immune protective functions, in both physiologic and

pathologic condition (5–8). IL-1, originally described as endogenous

pyrogen or leukocytic pyrogen, is mainly produced in the

hypothalamus in response to inflammatory agents and can induce

fever by upregulating cyclooxygenase-2, the enzyme responsible for the

synthesis of the vasoactive and inflammatory prostaglandin E2 (9, 10).

A central nervous system (CNS)-restricted expression of splice variants

of different IL-1 and IL-1R family members, as truncated forms with

regulatory functions, have been identified for both IL-1 (11) and IL-18

(12–14). In the case of IL-37, only one of its five splice variants (IL-37a)

is present in the brain (15). Some IL-1R members are only present in

the brain, including a particular variant of the accessory receptor chain

IL-1R3 (IL-1R3b), expressed in neurons and involved in IL-1-mediated

neuroprotection. Notably, the receptor complex for IL-1a and b in the

brain can be the canonical one (IL-1R1 plus IL-1R3, present

everywhere in the body) that mediates inflammatory effects, or the

alternative one (IL-1R1 plus IL-1R3b, specific for the brain) that

mediates neuroprotective effects (2, 16–18). Other brain-specific

receptors are the two orphan receptors IL-1R9 and IL-1R10, which

are mostly expressed in neurons. IL-1R9 is likely involved in memory

and learning capacity, as its mutations are linked to X-linked mental
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retardation and autism (2, 19, 20). The functions of IL-18 in the brain

are also peculiar, since the cytokine is active (inflammation and

homeostasis) even in the absence of its receptor IL-1R5, while IL-

1R5 seems to be involved in the pathogenesis of experimental allergic

encephalomyelitis (EAE, the mouse model of multiple sclerosis) in the

absence of its IL-18 ligand (21, 22). This suggests that a CNS-specific

network of IL-1 family cytokines and receptors is crucial in

maintaining brain homeostasis, thus highlighting the limitation of a

simplistic inflammatory paradigm to explain the function of these

cytokines in neuroinflammatory diseases.

In this perspective, we examine the available experimental and

clinical evidence of the involvement of these molecules in two major

neurodegenerative diseases, Alzheimer’s disease (AD) and multiple

sclerosis (MS), and propose a more global picture of the pathogenic

and pathological role of the IL-1/IL-1R system.
2 Alzheimer’s disease

2.1 Disease pathogenesis and inflammation

Alzheimer’s disease (AD) in its sporadic form is the most

common dementia diagnosis, characterized by a long progressive

process of neuronal damage that affects memory and thinking and

ultimately leads to death, in general preceded by a preclinical

condition named mild cognitive impairment (MCI) (23).

The main pathological hallmarks of AD are the extracellular

accumulation of amyloid b (Ab) peptides and the intraneuronal

neurofibrillary tangles (NFT) formed by aggregation of

hyperphosphorylated tau proteins. Neuroinflammation is the third

core feature of the disease (24, 25). Many inflammation-related genes

have been identified as important AD risk factors (26), and increased

inflammatory responses in the brain and periphery have been widely

reported in AD (27, 28). Innate immune cells, primarily brain-resident

microglia, have a dual role in AD neuroinflammation (29–33).

Microglia have a protective function by releasing neurotrophic

factors and clearing misfolded proteins, and can degrade Ab thereby

reducing its accumulation. Indeed, a transition of microglia from

homeostatic to disease-associated populations endowed with

protective potential has been described as a function of the disease

progression (34). However, during the course of AD, microglia can be

hyperactivated by accumulating danger-associated molecular patterns

(DAMPs), mainly Ab and tau, and secrete neurotoxic and

inflammatory cytokines that cause persistent neuroinflammation and

initiate/exacerbate neurodegeneration (35–38). The focus on

neuroinflammation and inflammasome activation as cause of

neuronal damage in AD (39–43) leads to assessing the role of the

inflammatory cytokines generated by inflammasome activation, in

particular the IL-1 family cytokines IL-1b and IL-18 (44).

2.1.1 IL-1
In the brain, IL-1b is required for learning and memory

processes, but, when expressed at aberrant levels, it is involved in

infection- and sterile inflammation-induced cognitive dysfunction

(45, 46). It has also been suggested that low levels of IL-1 act in the

CNS to perform non-immunological functions, while higher
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concentrations could engage brain non-neuronal cells to produce

neuroinflammation (47). Notably, brain IL-1b is produced by and

target different cells, ranging from microglia, infiltrating leukocytes,

astrocytes, to neurons. By activating different specific cell types,

including endothelial cells, neurons and choroid plexus cells, IL-1

may exert different functions of both immunological and non-

immunological nature, and neuroinflammation itself may be the

result of multiple responses to IL-1 by different brain cell types (8).

In AD, IL-1b is an important mediator of neuroinflammation

(48, 49), but also a protective factor (50), able to influence the

balance between beneficial and detrimental outcomes (51). In mice

lacking the gene encoding the IL-1 inhibitor IL-1Ra the AD-like

pathology is exacerbated (52), while the IL-1R1 blockade results in

decreased neuroinflammation, attenuated tau pathology and

reversal of cognitive deficits (53). Modulation of levels of IL-1Ra

or different IL-1R has been observed in brain and blood of AD

patients (54–58). Overall, the available experimental and clinical

data do not support an exclusively detrimental role of IL-1-driven

inflammation in AD.

2.1.2 IL-18
IL-18, its receptors IL-1R5 and IL-1R7 and its inhibitory protein

(IL-18BP) are normally expressed in the brain and modulated in

both experimental and clinical AD conditions (21). Similar to IL-1,

IL-18 could exert both detrimental and protective functions in AD.

Thus, while IL-18 dysregulation has been observed in AD patients

in association with severity of symptoms and correlated to increased

Ab production in vitro (59–62), a protective function has been also

reported in IL-18-deficient mice in both physiological (63) and AD-

like conditions (64).

2.1.3 IL-33
A third IL-1 family cytokine, IL-33, is being explored in CNS

diseases (65). IL-33 is constitutively expressed in astrocytes and to a

minor extent in oligodendrocytes, microglia and neurons; its

receptor IL-1R4 is expressed on astrocytes, endothelial cells, glial

cells and neurons (6). IL-33 can induce microglia cell proliferation

and production of inflammatory IL-1b and TNFa, and anti-

inflammatory IL-10 (66). In animal models, IL-33 decreases

inflammatory responses and improves AD-like pathology (67). In

patients, IL-33 expression in the brain is variably modulated relative

to healthy subjects (68, 69). Patients with measurable circulating IL-

33 levels have preserved cognitive functions, compared with those

that do not express the cytokine (70). Eventually, in MCI patients

treated with the neuroprotective compound homotaurine, the

improvement of cognitive functions correlates with increased IL-

33 plasma levels (71), confirming the potential protective role of this

cytokine in AD development.
2.2 Mechanisms of IL-1/IL-1R family in
AD pathology

IL-1b, IL-18 and IL-33 are dysregulated in AD and likely

exerting a dual role: driving the inflammatory pathogenic

processes associated with the disease and providing protection to
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the damaged CNS. The functions of these mediators in brain

homeostasis and pathology can be pleiotropic, redundant,

synergic and cross-regulating, aiming to switch off or amplify the

inflammatory response in a context-dependent manner. In this

scenario, the IL-1R signaling could lead to the production of

inflammatory cytokines and participate in Ab-induced
inflammasome activation in microglia, while it might even

increase the Amyloid Precursor Protein non-amyloidogenic

processing in neurons, thereby preventing neurotoxic Ab
generation (72). Overall, whether and when the different

molecules belonging to the IL-1/IL-1R family are either beneficial

or detrimental to neuronal function in the course of AD, and how

their negative feedback mechanisms influence this, is still a matter

of intense research (39). However, the general deregulation of IL-1

family members observed in patients consistently reflect the AD-

linked activation of the innate immune system, strongly suggesting

that an inflammatory condition, although not exclusively

detrimental or beneficial, is indisputably present in AD.

It is likely that neuroinflammation is both a response to Ab and

tau NFT that exacerbates their deleterious effects, and a cause of the

disease, that increases brain deposit of Ab and tau phosphorylation

starting before onset of symptoms (73, 74). Convincing new data in

patients show that microglia activation and consequent

neuroinflammation are associated with disease development and

progression (75). The infectious hypothesis (76, 77) offers a

fascinating explanation of the etiological meaning of

inflammation in the disease and the underlying role of IL-1

family cytokines. According to the observation that Ab has

antimicrobial functions (78), several microbial infections

(herpesviruses, periodontal bacteria, gut microbiota dysbiosis)

have been associated to AD. By inducing inflammasome

activation, infectious agents can induce the release of IL-1 family

cytokines, which can contribute to blood brain barrier alterations,

amplify pre-existing inflammation in the brain, influence Ab
pathology (note that infections upregulate Ab production) and

tau-related neurodegeneration. Indeed, it has been proposed that

the AD pathology can be modulated by innate immune

mechanisms associated with infectious burden, including long-

term innate memory, which affect epigenetic reprogramming of

microglia and the release of IL-1 family cytokines (79, 80).
3 Multiple sclerosis

3.1 Pathology and inflammation

Multiple sclerosis (MS) is a chronic inflammatory neurological

disorder driven by myelin-targeting CD4+ T cells. The two main

disease phenotypes are the relapsing-remitting form (RRMS) and

the primary progressive MS, with a steady loss of function (PPMS)

(81, 82). RRMS patients may evolve to a progressive disease course,

diagnosed as secondary progressive MS (SPMS). The characteristic

demyelinating lesions are localized in both white and grey matter,

and contain an abundant inflammatory infiltrate with activated

macrophages, microglia, CD8+ and CD4+ T cells, B and plasma cells

(83). Inflammatory mediators released by innate and adaptive
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immune cells lead to damage of oligodendrocytes, the cells

responsible for myelin deposition, and axonal injury. A wealth of

information, in particular in experimental models, suggests a role

for the gut microbiota in bidirectionally modulating brain

inflammation in MS, with changes in bacterial composition

inducing upregulation vs. downregulation of the production of

IL-1b and other inflammation-related factors (84–87).

3.1.1 IL-1b
Acting on astrocytes and endothelial cells, IL-1b increases

the permeability of the blood-brain barrier and allows leukocyte

recruitment (88); acting on T cells, it induces the encephalitogenic

phenotype of Th17 (89). IL1B transcript and IL-1b protein are

detected in CNS lesions of MS patients (88), and microglia display

an intense IL-1b staining (90). Changes in IL-1 levels in sera and

cerebro-spinal fluid (CSF) are non-univocal, possibly due to

patients’ heterogeneity and the interference of therapies. Elevated

serum levels of IL-1b were reported (91), and the difference with

normal subjects was higher for untreated RRMS patients with active

disease (92). Other authors report normal levels of IL-1a and IL-1b
in active patients, who however had received immunosuppressive

therapy (93). Conflicting data have been obtained also in the

analysis of CSF. Markedly increased levels of IL-1b in CSF

were reported by some authors (91, 94) but not confirmed by

others (95, 96). The possible relationship between IL-1b levels and

disease activity is also challenged by the observation that in a group

of active patients neither serum nor CSF levels were affected by high

dose steroid treatment (91).

Soluble inhibitors and decoy receptors are also modulated in MS.

IL-1Ra, undetectable in normal CNS, is expressed in lesional foamy

macrophages, which also express the anti-inflammatory factors IL-10

and Transforming Growth Factor b, and markers typical of anti-

inflammatory M2 macrophages (97). IL-1Ra levels are significantly

higher in CSF but not in serum, and even if not correlated with

disease activity, they are further increased by steroid treatment (91).

IL-1Ra levels are strongly related with disability index, suggesting the

potential role of IL-1Ra as serum biomarker of disease progression

(98). On the contrary, the soluble decoy receptor IL-1R2 is not

elevated in serum compared to normal controls, but steroid treatment

induces an increase of its levels (91). In CSF, sIL-1R2 is undetectable

irrespective of the disease stage. Finally, soluble IL-1R3 levels are

significantly elevated in sera and CSF of MS patients, but not related

to disease activity and not modulated by therapy.

3.1.2 IL-18
IL-18 levels were elevated in sera (99–101) and also in CSF,

especially in patients with active lesions (99). The findings in CSF,

however, were not confirmed in other studies (102). An increase in

serum IL-18 levels is detected in untreated RRMS (93) but also in

SPMS (102). As observed in most inflammatory disorders, the

increase in IL-18 serum levels is accompanied by a parallel

increase in its soluble inhibitor IL-18BP, aimed at counteracting

the IL-18 inflammatory effects. Although free IL-18 was not

evaluated, the IL-18BP/IL-18 ratio was higher in RRMS patients

than in controls (93).
Frontiers in Immunology 04
3.1.3 Other IL-1 family members
IL-33 has been extensively investigated in MS and EAE. The

expression levels of both the cytokine and its receptor IL-1R4 are

increased in lesions of MS patients and EAE mice (65, 103). Serum

levels of IL-33 are elevated in patients and decreased by treatment

with IFNb (103). Longitudinal assessment of peripheral expression of

IL-33 in RRMS revealed peak expression after relapses, but a clear

correlation with clinical recovery was not demonstrated (104). In

EAE mice, administration of IL-33 attenuates the disease, while

antibody-mediated or genetic blockade exacerbates it (105–107).

Similarly, IL-1R4 deficient mice develop a severe form of EAE. In

this model, IL-33 induces M2 macrophage polarization indirectly, by

stimulating mast cells to produce IL-13, and M2 cells then limit the

expansion of pathogenic Th17 cells (108). The contribution of IL-

1R4+ Treg, activated by IL-33, should also be taken into account.

Controversial results have been obtained on the direct effect of IL-33

on myelination (109, 110), but on the whole the data are consistent

with the notion that IL-33 is involved in neuroprotection and repair.

Interesting data underline the role of IL-37, an anti-

inflammatory member of the IL-1 family. Intracellularly, IL-37

acts as an anti-inflammatory transcriptional regulator.

Extracellularly, IL-37 signaling is allegedly mediated by a receptor

complex formed by IL-1R5 and IL-1R8. IL-37 is barely detectable in

PBMC from normal or MS patients; in the brain, its low expression

levels are further downregulated in active MS lesions (111).

Notably, the level of IL-37 gene expression in PBMC of MS

patients is associated with a lower number of relapses (112). IL-

1R5 and IL-1R8 are expressed at similar levels in PBMC and brain

from normal or MS patients, and the levels of IL-1R5 (which is also

the receptor for IL-18) tend to increase in active lesions. In sera, IL-

37 is detectable in 8% of RRMS patients in a stable disease phase and

42% in the active stage; its levels are increased by treatment with a

disease-modifying agent, fingolimod (112). Data from patients

suggest that the anti-inflammatory activity of IL-37 may be

defective in MS, as also confirmed by animal experiments. EAE is

milder in transgenic mice expressing human IL-37, with reduced

inflammatory infiltrate and decreased numbers of Th1 cells and

inflammatory macrophages in lesions (111). This beneficial effect of

IL-37 on EAE is lost in mice lacking IL-1R8, indicating that the

cytokine confers protection acting through the inhibitory receptor

IL-1R8. Moreover, administration of recombinant IL-37 reduces

neurological deficits and demyelination in EAE mice. Thus, IL-37 is

protective in neuroinflammation and may represent a novel

treatment in MS.
4 The NLRP3 inflammasome

The NOD-like receptor 3 (NLRP3) inflammasome, a

multiprotein complex that regulates production and release of

inflammatory cytokines, in the brain is mainly expressed in

microglia but also in astrocytes and neurons. Besides being

involved in protection from bacterial, fungal and viral agents,

NLRP3 plays a role in neurodevelopment and neuroprotection,

but its aberrant activation is crucial in neuroinflammation (113).
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Different pathways, including impaired autophagy and

dysregulated cell death mechanisms, upregulate NLRP3 activity in

AD (114). Ab and tau can directly activate NLRP3 in microglia

(115–117), and several compounds that ameliorate AD-associated

pathology reduce NLRP3 activity.

Strong evidence points to a critical role of inflammasome

activation in MS. Caspase-1 is more expressed in peripheral blood

mononuclear cells (PBMC) of MS patients than in controls (118).

Its serum levels can be considered a biomarker of MS, even if they

do not identify more active or more severe patients (101). In

untreated patients, upregulation of NLRP3 gene expression and

higher caspase 1 activity were detected in circulating monocytes

(119). NLRP3 upregulation characterized patients with PPMS and

was associated with hyperexpression of several inflammatory

chemokines and cytokines. IL-1b was one of the most expressed

genes, correlated with faster disease progression in PPMS (119).

There is a marked increase in the number of IL-1b, caspase-1, and
gasdermin D (GSDMD)-positive cells in white matter of MS versus

non-MS patients. GSDMD, activated by inflammatory caspases,

forms membrane pores responsible for pyroptosis an

inflammasome-driven programmed cell death (120). In MS

lesions, inflammasome activation and pyroptosis are detected in

microglia and oligodendrocytes, suggesting a role in demyelination.

Inhibition of inflammasome activation and caspase-1-dependent

IL-1b production have already been exploited in MS therapy: IFNb
treatment reduces NLRP3 activity and induces IL-10, thus

decreasing the production of pro-IL-1a, pro-IL-1b and mature

cytokines (121).

In experimental autoimmune encephalomyelitis (EAE), the

mouse MS model, blockade of caspase-1 expression or activity

attenuates neuroinflammation (122). Caspase-1 inhibition also

reduces GSDMD act ivat ion and pyroptos is , l imi t ing

oligodendrocyte death and demyelination (120). Similarly, NLRP3

KO or IL-18 KO mice have a less severe disease course, with a

marked reduction of CNS inflammatory infiltrate (123, 124).

Microglia-specific deletion of the gene encoding the NFkB
regulatory protein A20 leads to microglial cell proliferation,

susceptibility to LPS-induced inflammation and increased EAE

severity, reversed by NLRP3 or caspase-1 genetic deletion (125),

indicating a critical role of microglia in MS, mediated by

inflammasome activation. The inflammasome involvement in

neuroinflammation is also suggested by data in a cohort of MS

patients, in which low penetrance mutations of the NLRP3 gene

were detected in 16% of the cases (126). These mutations are

associated with mild symptoms (suggestive of autoinflammatory

disease) and increased production of IL-1b and IL-18 (127).
5 IL-1 family molecules in other main
neurodegenerative diseases

Inflammation is involved in other neurological diseases, both

neurodegenerative (see below) and of traumatic or other origin

(trauma, stroke, autism, schizophrenia, epilepsy). Focusing on

neurodegenerative disorders, these are classified in four main

groups: amyloidoses, tauopathies, alpha-synucleinopathies, and
Frontiers in Immunology 05
TDP (transactivation response DNA binding protein)-43

proteinopathies, all characterised by abnormal protein

conformations and the formation of protein aggregates in

neuronal cells in different brain areas (128, 129). AD is the most

common and prevalent of both amyloidoses and tauopathies, along

with frontotemporal dementia with parkinsonism and some forms

of prion diseases. Main a-synuclein-related diseases include

Parkinson’s disease (PD), Dementia with Lewy Bodies, and

Multiple System Atrophy, while Amyotrophic Lateral Sclerosis

(ALS) is mainly associated with TDP-43 pathology. The

Huntington disease (HD) is associated with mutations in the

huntingtin protein, which clumps within neurons provoking cell

damage and death (130).

Although it is well known and documented that all

neurodegenerative diseases share the chronic aberrant

inflammation (131), less is known on the role of IL-1 family

cytokines and receptors in specific neurodegenerative diseases

(132). In addition to AD and MS, reviewed in the previous

sections, here we will briefly examine the involvement of IL-1

family molecules in PD, HD, and ALS.

PD is characterised by the death of dopaminergic neurons in the

substantia nigra and by the cytoplasmatic aggregation of fibrillar a-
synuclein in Lewy bodies (133). Increase of a-synuclein released

outside the cells drives the activation of microglia, and the

microglia-dependent production of TNF-a, NO, and IL-1b
sustains the neuroinflammatory process in PD (134). Recent

results in the 6-OHDA mouse model showed that the increased

levels of IL-1b and TNF-a have a different kinetics, with TNF-a
appearing in the advanced disease stage, while increased level of IL-

1b in serum were already evident with a moderate degree of lesion

in substantia nigra, suggesting a prognostic value for this

inflammatory cytokine (135). Although the results on the level

and role of IL-1b in PD patients are conflicting (136), the activation

of the NLRP3 inflammasome seems to be determinant for the

development of PD at least in vitro. Indeed, when activated, the

inflammasome can cause the aggregation of a-synuclein in a

neuronal cell model of PD, as caspase-1 directly cleaves a-
synuclein generating a truncated protein highly prone to

aggregation and able to provoke cell death (137). The

involvement of the NLRP3 inflammasome activation in PD also

includes two additional mechanisms, the interaction with the

parkin protein, whose mutations are responsible of autosomal

recessive familial and sporadic early-onset PD (138, 139); and the

association with mitochondrial dysfunction that affects neuron

performance and favours neuronal degeneration (140). Although

IL-1b is a major product of the NLRP3 inflammasome activation, its

role in causing/sustaining inflammation in PD patients is still

debated (141).

Increasing evidence suggest that inflammation contributes to

the development of HD, but the involvement of IL-1 family is still

poorly known. The role of IL-1b has been investigated in mice

expressing a mutant and pathogenic huntingtin crossed with

animals knocked out for IL-1R1 (142). These mice showed more

severe neurological symptoms compared to control mice expressing

IL-1R1, suggesting a protective role for IL-1R1 signalling in

preventing the HD neuropathology. Whether IL-1b is the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1128190
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Boraschi et al. 10.3389/fimmu.2023.1128190
molecule that activates IL-1R1 signalling is not known. Although

IL-1b has been identified as one of the inflammation-related

markers of the disease in the porcine HD model (143), its level

does not increase in plasma of HD patients, at variance with IL-6 or

other inflammatory factors (144, 145). An involvement of the

NLRP3 inflammasome has been also suggested for HD, although

evidence is still poor and mostly from pre-clinical studies (146).

ALS is a neuromuscular disorder characterized by the progressive

loss of anterior-lateral horn spinal cord motoneurons (147). Sporadic

ALS affects the 90-95% of patients, while the familiar form affects the

remaining 5-10% of patients. The twomost relevant genetic mutations

associated with ALS are a defect in the hexanucleotide repeat

expansion (HRE) in intron 1 of the C9orf72 gene (which makes a

protein that regulates actin dynamics and endosomal recycling of

GluR1 at the synapse) (148), and in the free radical scavenging enzyme

Cu,Zn-superoxide dismutase (SOD1) gene (149). The involvement of

inflammation in the etiopathogenesis of ALS is starting to be

investigated, but studies are still limited (150, 151). In a recent

s tudy , the au thor s sugges t hyper inflammat ion and

immunodeficiency as primary triggers of motoneuron death in ALS,

and underline the complex link between the development ALS and T

cell and monocyte profiles of patients, as well as polymorphisms in

cytokine and chemokine receptors, suggesting a need for personalised

therapies based on immunophenotyping (152). In this regard, recently

new polymorphisms in the gene encoding IL-1b and in genes involved
in oxidative stress (e.g., SOD2) have been identified as modifiers of
Frontiers in Immunology 06
ALS progression (153). IL-1b is one of the main biomarkers of

inflammation in ALS (151, 152). Even if it is not the best marker of

ALS severity (154), its plasma levels negatively correlate with survival

in ALS patients with genetic variant C9orf72HRE (155). Among the

IL-1 family cytokines and receptors, it has been observed that only IL-

18 is associated with sporadic ALS, whereas the serum levels of the

cytokines IL-33 and IL-36 and the soluble receptors sIL-1R2 and sIL-

1R4 were comparable between ALS patients and healthy controls, and

IL-1b, IL-1Ra and IL-37 were below detection (156). The possible

pathogenic role of IL-18 in ASL has been also recently underlined by a

Whole Genome Sequencing study, which identified a genetic variant

in a noncoding region of the gene encoding the IL-18 receptor

accessory protein (IL18RAP) able to reduce mRNA stability and

motor neuron neurotoxicity, thereby decreasing 5x the risk of

developing ALS (157). A protective role has been suggested for

another member of IL-1 family, IL-33 (158). In the ALS mouse

model transgenic for G93A-superoxide dismutase 1 (SOD1-G93A),

long-term IL-33 administration delays disease onset in females but not

males, probably through peripheral Th2 response (159).
6 Conclusions and perspectives

The role of IL-1 family cytokines and receptors in the etiology and

pathogenesis of neurodegenerative diseases is still poorly understood.

However, there is strong evidence of their involvement in the initiation
TABLE 1 IL-1 family cytokines and receptors in brain physiology and pathology.

Cytokine/
receptor Physiological role Role in pathogenesis Role in pathology References

IL-1b
• Learning and memory processes
•Thermoregulation

• Induction of inflammation
•Induction of fever

• Persistence of inflammation
•Neurodegeneration

(7–10, 45–51,
88–92)

IL-1Ra
• Unknown (regulation of IL-1
activity)

• Unknown
•Increased with disease (feedback
mechanism)?

(52, 91, 97,
98)

IL-18 •Neuroprotective •Induction of inflammation •Persistence of inflammation (21, 59–64)

IL-18BP
• Unknown (regulation of IL-18
activity)

• Unknown
• Increases with disease (feedback
mechanism)?

(93)

IL-33

• Regulates microglia proliferation
• Regulates the microglial
inflammatory/anti-inflammatory
balance

• Anti-inflammatory protective effects
• Upregulated in pathology
• Negative correlation with disease
severity

(6, 65–71,
103, 108)

IL-37 • Unknown • Anti-inflammatory protective effects
• Downregulated in active disease
• Negative correlation with disease
severity

(111, 112)

IL-1R3b
• Accessory receptor mediating the
neuroprotective effects of IL-1

• Unknown • Unknown (16, 18)

IL-1R4
• Mediates the homeostatic activities
of IL-33

• Unknown
• Soluble form upregulated during
disease (feedback mechanism)?

(6, 108)

IL-1R5
• Mediates the homeostatic activities
of IL-18

• Associated with disease pathogenesis in EAE • Unknown (21, 111)

IL-1R8
• Anti-inflammatory orphan
receptor; physiological role unknown

• Unknown
• Necessary for the neuroprotective
role of IL-37

(111)

IL-1R9
• Orphan receptor, involved in
learning and memory processes

• Unknown (mutations are associated with X-linked
mental retardation, schizophrenia and autism)

• Unknown (19, 20)
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and regulation of inflammation associated to most CNS diseases, and

their participation to neuroinflammation has been widely described in

AD an MS. This is evident despite the limitations due to the current

lack of reliable animal models that realistically recapitulate the

pathological features of the human diseases, such as in the case of

sporadic AD (160). In humans, longitudinal molecular monitoring of

inflammation is also hampered by the reduced accessibility of human

brain and the limited availability of clinical studies with extensive

follow-ups (161, 162).

From the combined in vivo and in vitro functional and molecular

evidence, it is clear that these factors play a homeostatic and

neuroprotective role in healthy conditions. It is notable that the IL-

1 family system in the CNS includes several molecules and functions

that are CNS-restricted, implying tissue-specific needs and

consequent functional adaptation. Disease conditions imply an

imbalance of the IL-1 system network (Table 1).

From the available experimental and clinical evidence, we can

draw the following conclusions and suggestions.
Fron
• IL-1 family cytokines and receptors are altered in AD and

MS and related to the neuroinflammatory conditions.

• Alterations in the amount of produced inflammatory

cytokines (IL-1, IL-18) likely switch their role from

neuroprotection/homeostasis to pathological inflammation.

• The excess of inflammatory cytokines causes an excessive

induction of feedback mechanisms, e.g., the production of
tiers in Immunology 07
downregulating factors (IL-1Ra, IL-18BP, IL-33, IL-37),

which however do not succeed in rebalancing the excessive

inflammation.

•Unbalanced IL-1 family molecules contribute to alterations in

adaptive immune responses, thereby amplifying the

autoimmune aspects of neurodegenerative diseases.

• Whether anomalies in the IL-1 family cytokine and receptor

network are cause or effect of neuroinflammation and

neurodegeneration in AD and MS is not an appropriate

question, as it seems that these factors are involved in all

steps of disease, from its induction to its establishment and

downstream symptoms (Figure 1).

• The CNS-restricted peculiarities of the network of IL-1 family

cytokines and receptors suggest a tissue-specific physiological

balance and pathological dysregulation. A more thorough

understanding of the CNS specificities in the IL-1 family

system will open the way to a precision rebalancing approach

for therapeutic purposes.
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FIGURE 1

IL-1 family involvement in Alzheimer’s disease (AD) and Multiple Sclerosis (MS). IL-1 family cytokines and receptors are crucial in maintaining brain
homeostasis, with an important role in the modulation of neuronal plasticity and function, in addition to mediating immune protective functions.
In physiological conditions, many activities of IL-1 family cytokines depend on binding to specific receptors, but independent functions have been observed
for both cytokines (e.g., IL-18) and receptors (e.g., IL-1R9). In disease conditions (AD, MS), IL-1 family members are substantially modulated during disease
progression (triangles), associated with increased inflammation (partly dependent on inflammasome activation) and likely involved in all disease phases, from
initiation and establishment to progression, without a clear association with either disease initiation or progression. MF, macrophages.
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