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Introduction: Ageing in the human bone marrow is associated with immune

function decline that results in the elderly being vulnerable to illnesses. A

comprehensive healthy bone marrow consensus atlas can serve as a reference

to study the immunological changes associated with ageing, and to identify and

study abnormal cell states.

Methods: We collected publicly available single cell transcriptomic data of 145

healthy samples encompassing a wide spectrum of ages ranging from 2 to 84

years old to construct our human bone marrow atlas. The final atlas has 673,750

cells and 54 annotated cell types.

Results: We first characterised the changes in cell population sizes with respect

to age and the corresponding changes in gene expression and pathways. Overall,

we found significant age-associated changes in the lymphoid lineage cells. The

naïve CD8+ T cell population showed significant shrinkage with ageing while the

effector/memory CD4+ T cells increased in proportion. We also found an age-

correlated decline in the common lymphoid progenitor population, in line with

the commonly observed myeloid skew in haematopoiesis among the elderly. We

then employed our cell type-specific ageing gene signatures to develop a

machine learning model that predicts the biological age of bone marrow

samples, which we then applied to healthy individuals and those with blood

diseases. Finally, we demonstrated how to identify abnormal cell states by

mapping disease samples onto the atlas. We accurately identified abnormal

plasma cells and erythroblasts in multiple myeloma samples, and abnormal

cells in acute myeloid leukaemia samples.

Discussion: The bone marrow is the site of haematopoiesis, a highly important

bodily process. We believe that our healthy bone marrow atlas is a valuable

reference for studying bone marrow processes and bone marrow-related

diseases. It can be mined for novel discoveries, as well as serve as a reference

scaffold for mapping samples to identify and investigate abnormal cells.
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Introduction

The human immune system plays a crucial role in fending off

challenges from viruses and microbes, as well as malignancies. As

an individual ages, the immune system ages alongside, characterised

by immune cell population size changes, functional capability

alterations, and mutation accumulation (1). These degradations of

the immune system in turn increase the risks of infections and

cancers (2, 3). Chronic, low-grade inflammation, or inflammageing,

also develops with age and is a risk factor for various diseases

including diabetes mellitus and cardiovascular diseases (4, 5). As the

bone marrow (BM) is the main source of new immune cells, it is

important to study ageing-related changes in the bone marrow and

how they contribute to the weakening of the immune system.

To date, most immune ageing studies employed flow cytometry

to analyse peripheral blood samples (1). Flow cytometry has high

throughput and is low cost compared to sequencing experiments

but can only measure 20+ parameters, or 40+ parameters for

destructive mass cytometry. To probe transcriptome-wide

changes, sorted cells can be subjected to bulk sequencing but this

limits the analysis of differences to predefined cell types. Mouse

samples are also commonly used as they are the easiest to obtain.

For human-based studies, the reported age-associated changes in

peripheral blood cell population abundance include shrinking naïve

T cell populations, increasing effector/memory and regulatory T cell

populations, shrinking B cell subsets, and increasing monocyte

populations (1). Overall, there is also a clonal shift towards

myeloid-biased hematopoietic stem cells (HSCs), which result in a

skew towards circulating myeloid populations (6).

In the past decade, advances in single-cell technologies have

lowered costs while increasing the scale of data generated. This has

spurred an increasing number of studies exploiting single-cell RNA

sequencing (scRNA-Seq) to profile different tissues including the

bone marrow. The consequent explosion of publicly available data

affords us opportunities to construct large scale cell atlases from a

wide array of sample datasets. To date, several human bone marrow

atlases have been constructed. Most incorporate both healthy and

diseased samples to investigate the differences between them with

only a handful of studies that focus on healthy bone marrow. Hay

et al. sequenced over 100,000 cells from eight healthy donors,

spanning 35 annotated cell types (7). They also characterised the

immunological differences due to gender and age. They detected

minimal gender-specific differences but HSC frequency was found

to reduce with age. However, the low number of healthy donors

makes it difficult to establish strong and generalisable conclusions.

The Human Cell Atlas also hosts a larger updated census of more

than half a million immune cells from samples that include bone

marrow and umbilical cord blood (8). However, there currently

appears to be no associated analysis published.

Here we present our healthy bone marrow atlas constructed

with 145 publicly available scRNA-Seq datasets from 22 studies. As

a single cell resource, it can be mined to gain insights into healthy

bone marrow tissue and serve as a reference onto which we can map

disease samples to investigate disease pathology. We first employed

it to investigate ageing-related changes in the bone marrow. We

identified cell populations that proportionally change with age and
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the related changes in gene expression and associated pathways. We

then trained an age predictor model with cell type-specific ageing

gene signatures to investigate the apparent age of disease samples

with respect to their chronological age. There we found acute

myeloid leukaemia (AML) samples to have a lower apparent age

for more aged samples while younger samples had a higher

predicted age. Finally, we mapped blood cancer samples onto the

atlas to identify abnormal cell types and associated transcriptomic

changes. We were able to identify abnormal plasma cells and

erythroblasts in multiple myeloma (MM) samples, and abnormal

cells in acute myeloid leukaemia samples.
Results

Construction of human healthy bone
marrow cell atlas and its application in
identifying cells and gene signatures
associated with ageing and diseases

To construct our reference healthy human BM atlas, we used

145 publicly available human BM scRNA-Seq datasets with publicly

available sequencing reads from 22 projects (Figure 1A). Of the 145

samples, 92 samples have age information, with age ranging from 2

to 84 years and a median of 45 years (Supplementary Table 1). Our

collected data also includes 34 foetal BM samples. From samples

with gender information, the gender ratio is relatively balanced at

54 female and 45 male samples. 91 samples were sorted using a

variety of strategies. All samples were sequenced using the 10x

Genomics sequencing platforms.

The raw reads were previously processed as part of the DISCO

database (9). We employed our pipeline to remap the reads to a

single reference genome, GRCh38 (Ensembl 93), for annotation

consistency and to reduce potential technical effects. We then

processed the resulting read counts using the Seurat package (10).

Standard quality control steps on UMI counts, number of detected

genes, and the fraction of mitochondrial and ribosomal genes were

applied to filter out low quality cells. To remove the significant

batch effects present, we employed our FastIntegration tool

developed for atlas-scale integration (11) (Supplementary

Figure 1). This was followed by unsupervised clustering and

differential gene expression analysis. We then annotated each

cluster’s cell type using canonical marker genes (Supplementary

Figure 2 and Supplementary Table 2).

Our constructed healthy BM atlas is currently the largest among

existing healthy BM atlases (7, 12, 13) in both cell count and

number of donor samples. It consists of 673,750 cells with 54

annotated cell types (Figure 1B). The cell types present mostly

overlap with the previously constructed healthy BM atlas by Hay

et al. (7) but are annotated at higher resolution of cell subtypes with

known markers. Our annotated cell types can be divided into five

major groups: T/NK cells, B cells, monocytes and DCs, progenitor

cells, and erythrocytes/megakaryocytes. Other smaller clusters of

cells identified are osteoclasts, fibroblast, and mesenchymal stromal

cells. For the T/NK cells, we could divide the naïve population into

CD4+ and CD8+ subtypes, the CD8+ T cells into GZMK and GZMB
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subtypes, and NK cells into CD16+ and CD56+ subtypes. We also

identified mucosal-associated invariant T (MAIT), gamma-delta T,

and regulatory T (Treg) cells. For B cells, we could identify the

subtypes along its developmental path from the common lymphoid

progenitors (CLP) to pro-B, pre-B, naïve B, memory B, and plasma

cells. The monocyte populations found were the CD14+ and CD16+

subtypes, while the dendritic cells were divided into classical

dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs).

We compared our annotations with available annotations of the

contributing samples (GSE185381 (14) and Census of Immune

Cells (8)) and we found good concordance among the major cell

types (Supplementary Figure 3).
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Using the unsorted samples, we computed the distributions of

cell type proportions (Figure 2A). Mature T cells formed the majority

of cells in the bone marrow with naïve CD4+ T cells being the most

numerous. Naive CD8+ T cells expectedly showed a much lower

average percentage with this skew being attributed to the high failure

rate of CD8+ T cells during selection in the thymus (15). Other cell

types, namely monocytes, B cells, and NK cells, made up significant

fractions. Overall, these proportions are in line with previous studies

on the cell types present in the bone marrow (13).

By integrating a large number of cells into a single atlas, there

are sufficient cells to populate the secondary developmental

pathways. Here our atlas illustrates the different developmental
A

B

FIGURE 1

Healthy BM atlas construction, annotation, and analysis. (A) Integration and analysis of publicly available healthy BM samples to construct the atlas.
145 healthy BM samples were used to build the final atlas with 673,750 cells in 54 cell types. Blood disease samples of acute myeloid leukaemia and
multiple myeloma were projected onto the healthy BM atlas to identify disease-specific populations. Age-correlated cell type frequency changes
and associated dysregulated genes and pathways were identified. Identified age-associated gene signatures were then used with machine learning
to predict cell age. (B) UMAP of the integrated healthy BM atlas with cells coloured by their cell type annotation. For an interactive version of this
atlas, please visit DISCO at http://www.immunesinglecell.org/atlas/bone_marrow.
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pathways of pDCs (marked by IRF7), namely myeloid and

lymphoid origins (16) (Figure 2B). The myeloid origin pathway

(blue) traces from the DC precursor populations and is marked by

the myeloid-associated LYZ. The lymphoid origin pathway (green)

traced from the CLP population and is marked by JCHAIN and

HIST1H4C. Within the T cell population, we could also distinguish

the Treg cell subset (Figure 2C). The large cell count enabled us to

increase the resolution of clustering and identify rare cell types in

the bone marrow, such as osteoclasts (Figure 2D) and mesenchymal

stromal cells. These cells were not annotated in previous healthy

bone marrow atlases. As the integration included foetal data

samples, we could identify foetal erythrocytes expressing HBG1

and HBG2 (foetal HBG+ erythrocyte).
Frontiers in Immunology 04
Bone marrow atlas captures age-related
changes in immune cell populations

In ageing studies, blood cell population changes are typically

analysed using peripheral blood samples. We first examined cell type

frequency changes in the bone marrow and compared them against

those reported in human blood samples. Due to large variances in cell

populations across samples and studies, we only used samples from

three studies, namely GSE120221 with 25 samples (13), GSE185381

with 10 samples (14), and the Census of Immune Cells dataset with 8

samples (8). We selected these studies as they had large numbers of

unsorted samples with age information. The remaining studies were

either composed of sorted samples or had too few donor samples (<5).
D

A

B

C

FIGURE 2

Detailed cell type populations and annotation. (A) Percentage of cells for each cell type in unsorted bone marrow samples. (B) pDC development
pathways of myeloid and lymphoid origins. (C) Treg cell population identified by canonical markers. (D) Osteoclast/macrophage cells identified by
canonical markers.
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We tested the correlations for each annotated cell type using a

linear model with the study batch as covariate. Two cell types,

effector/memory CD4+ T and CD16+ NK cells, had statistically

significant positive correlations across all samples (Figure 3A,

Supplementary Table 3). The effector/memory CD4+ T cell’s

correlation was statistically significant when combining the

regression output from all three studies and even within the

GSE120221 and Census study sets, giving us the greatest

confidence in this result. Moreover, this correlation has also been

found in peripheral blood by Li et al. (17). Increasing proportions of
Frontiers in Immunology 05
CD16+ NK cells have also been reported in the blood of elderly

individuals (18).

Among the annotated cell types negatively correlated with age,

the naïve CD8+ T cell population had the largest average coefficient

and was consistent across the three studies. Decline in naïve T cell

populations have been reported for peripheral blood in different

studies (17, 19, 20) and is well recognised. For the corresponding

naïve CD4+ T cell population, we obtained a negative correlation

with the GSE120221 and GSE185381 sets, but a positive correlation

with the Census study set (Supplementary Figure 4). The latter
D

A

B
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FIGURE 3

Analyses of age-correlated changes in the bone marrow. (A) Regression plots showing significant changes in cell type frequencies with respect to
age for naïve CD8+ T cell, effector/memory CD4+ T cell, and common lymphoid progenitor in the bone marrow. (B) UpSet plot with set size
depicting the number of significant age-related DEGs for each of the respective cell types and intersection size illustrating the number of age-
related DEGs unique to a cell type or shared with other cell types depending on which cells have been filled in the respective columns. (C)
Regression plots showing the upregulation of sample averaged RPL13A expression for multiple cell types across age. (D) Regression plots of sample
averaged expression of GADD45 and ZBTB16. (E) Heatmap of age-associated dysregulated pathways in different cell types.
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result is unexpected and can be explained by the small number of

samples (n=8) coupled with high variability within the data that can

mask the expected age-related decline. Another notable cell type

negatively correlated with age is the CLP population. As progenitor

cell types, changes in these populations have disproportionate

impact on mature cell type populations and consequently the

immune system’s functions. This decline in the proportion of

lymphoid-biased progenitors and consequent myeloid bias in

haematopoiesis is widely reported (21). The computed

correlations for all cell types are given in Supplementary Table 3.
Cell type-specific ageing gene signature
and pathway changes correlated
with ageing

We next investigated the cell type-specific genes with expression

that correlate with age, using all samples with age metadata

(Figure 3B). Among the annotated cell types, GMP cells had the

largest number of age-associated differentially expressed genes

(DEGs) with 663 genes, while IFN-activated T cells had the least

with 107 genes. Most of these genes were shared among few cell

types, with only 20 genes shared in 10 or more cell types. The most

conserved DEG was RPL13A in 17 cell types (Figure 3C). RPL13A’s

upregulation with age has also been reported for almost all tissue

types of mice (22). Other genes of note include IMMP2L and DIP2B

which showed downregulation with age in 10 cell types. Switching

off IMMP2L signalling has been shown to drive cell senescence (23).

Similarly, DIP2B knockout cells expressed senescence markers

found in ageing cells (24). We also found positive age correlations

for chemokines CCL4, CCL4L2, and CCL5 in tissue-resident NK

cells, CCL4L2 in CD16+ NK cells, CCL4 in CD56+ NK cells, and

CCL3 in GZMK+ CD8+ T cells (Supplementary Table 4).

With ageing, the skew towards myeloid lineage haematopoiesis is

well documented (25). Within the MPP population, we investigated

transcriptomic changes that can contribute to the decline in

differentiation towards the lymphoid lineage. Here we found two

notable genes, GADD45B which was upregulated with respect to age,

and ZBTB16 that was downregulated (Figure 3D).GADD45B has been

characterised as a myeloid differentiation gene and plays a role in the

response of myeloid cells to stress stimulation (26, 27), while the

ZBTB16 gene is a negative regulator of myeloid cell development (28).

We followed up with pathway analysis of the age correlated

genes using EnrichR (29). Here we show the enriched Reactome

pathways (Figure 3E). The different cell types show a wide range of

dysregulated pathways. We note that the CD14+ MHCIIlow

monocytes, late haemoglobin+ erythrocytes, memory B cells, and

pre-B cells similarly show dysregulated translation processes. Other

B cell subtypes, namely pro-B cells and naïve B cells, show

dysregulated mRNA processing pathways, and the naïve B cell

subset also show dysregulated cellular stress pathways. For the

interferon-activated T cells, the dysregulated pathways are

primarily centred around metabolism and interferon signalling.

The metabolic changes in T cells due to ageing is linked to cell

senescence and reduced functionality, though the exact mechanisms

are under investigation (30).
Frontiers in Immunology 06
Age prediction of disease samples show
divergence from chronological age

Cancer is generally recognised as an ageing-related disease.

While ageing increases the risk of cancer, it has also been

reported that cancer can alter the expression trends of ageing-

related genes (31). We theorised that diseases including cancer can

modify the gene expression of diseased cells to appear younger or

older than their chronological age. Thus, we investigated how

diseased cells’ age predicted by their transcriptome differ from

their chronological age. We first trained a cell age predictor using

the healthy atlas. The predictor was constructed using elastic net

regression and the age-related DEGs identified for each cell type.

For each sample, we computed the age of each cell type present, and

the median predicted age was used as the overall predicted age. The

feature gene set were selected via regularisation in the elastic net

regression, and we employed 10-fold cross validation to check the

hyperparameters (Supplementary Figure 5). The resulting predictor

was able to predict the ages of healthy individuals with a correlation

coefficient of 0.92 and an error of 6.3 years (Figure 4A). We further

tested our predictor using the corresponding cell types from healthy

blood samples, obtaining good predictions with CD14+ monocytes

and Treg cells (Figure 4B). List of blood samples are presented in

Supplementary Table 5.

We then used the age predictor to predict the age of patients

diagnosed with acute myeloid leukaemia (AML) and multiple

myeloma (MM). The predicted ages of the cancer samples

showed the trends of older patients being predicted to have a

younger age while younger patients were predicted to have an

older age (Figure 4C and Supplementary Table 6). For the AML

samples, the predicted ages fall in the range of 32 to 51 years old

with an average of 41.8. For the MM samples, the predicted ages fall

in the range of 49 to 60 years old with an average of 53. This

suggests that cancer alters gene expression patterns to portray a

cancer-specific apparent age that may be different across different

cancer types. In the case of AML, this also affects the paediatric

disease subtypes. Future investigation into this apparent cell age

phenomenon will encompass other blood cancers.
Blood cancer-specific cells identified by
mapping disease samples onto atlas

To demonstrate our healthy BM atlas’ applicability as a

reference for identifying diseased cells, we mapped samples of

AML and MM onto our atlas. By integrating healthy and diseased

samples together, abnormal cells can be identified. We first mapped

10 MM samples from GSE189460 onto our healthy atlas and

performed label transfer to annotate the cells (Figure 5A). We

also computed a cell type prediction confidence score based on each

cell’s distance to its neighbours in the reference atlas (Methods).

Lower prediction confidence scores denote mapped cells that were

phenotypically different from cells found in the healthy atlas, which

in this case implied diseased cells. Among the mapped cells, the

lowest scores were found among the predicted plasma and
frontiersin.org
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erythroblast cells (Figure 5B). The predicted plasma cell types

correspond to the malignant plasma cells that accumulate in the

bone marrow while abnormalities in the erythroblast compartment

correspond to the disrupted erythropoiesis process which gives rise

to the common MM symptom of anaemia (32).

We compared the malignant plasma cells to their healthy

counterparts and obtained 80 DEGs (p< 0.05 and |logFC| > 0.5)

(Figure 5C and Supplementary Table 7). The upregulated genes

include the previously reported JUND (33), FOSB, PDIA2 (34), and

CCL3 (35). Elevated levels of CCL3 in the bone marrow is of

particular interest as it has been proposed to suppress

erythropoiesis and cause anaemia in MM patients (36). In the list

of downregulated DEGs, low CD27 expression in malignant plasma

cells has been reported to be correlated with poor prognosis (37)

while the tumour suppressor gene WWOX has been found

downregulated due to translocations or deletions (38). In the

enrichment analysis, dysregulated pathways include TP53 and

cytokine signalling (Figure 5D). The dysregulation of cytokine

signalling is an expected characteristic of malignant plasma cells
Frontiers in Immunology 07
due to the high levels of cytokines that also serve as

chemoattractants that attracts them to the bone marrow (39).

We next mapped 10 AML samples from GSE185381 (14) onto

our BM atlas (Figure 5E). We performed label transfer to label

the AML sample cells and computed the prediction confidence

score for each cell. Comparison of the computed scores with

the malignant cell labels in the original annotation showed good

correlation with the malignant cells have low scores (Figure 5F).

The malignant cells’ transferred labels are primarily progenitor

types and myeloid types (monocytes and dendritic cells), which

have been previously reported (40). This presents an approach

towards identifying malignant cells as an alternative to employing

mutation detection.
Discussion

The bone marrow is the site of haematopoiesis, a highly

regulated process that must be responsive to the body's needs.
C

A

B

FIGURE 4

Age prediction using identified age-associated DEGs with machine learning. (A) Regression plots showing the correlation between chronological age
and median predicted age of the respective cell types in healthy BM samples. (B) Regression plots showing the correlation between chronological
age and median predicted age of select peripheral blood cell types. (C) Heatmap depicting the differences (error) between chronological age and
predicted age of diseased BM samples.
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Like other bodily processes, haematopoiesis is profoundly affected

by ageing. Well described by multiple studies, the ageing process

brings about many changes to the cell populations in the bone

marrow, including shrinking naïve cell populations, accumulating

memory cell populations, and myeloid bias in cellular output (1). In

this work, we constructed a reference healthy BM atlas using

published scRNA-Seq datasets with publicly available reads. The

samples’ ages spanned the lifespan of most individuals, from 2 to 84

years of age, with 33 additional foetal samples. We first investigated

age-related changes in the BM. We recapitulated some of the

reported cell population changes with respect to age and

identified accompanying gene expression changes. Among the

age-correlated genes, most were cell type-specific with only a

small number being shared among the different cell types.
Frontiers in Immunology 08
Notably, we found the downregulation of IMMP2L and DIP2B,

which have been implicated in cell senescence. We also found

chemokines upregulated in different NK cell subtypes. Future work

will aim to refine the ageing-associated genes and pathways, and

investigate the mechanisms linking to reduced immune functions.

In the BM atlas constructed by Human Cell Atlas consortium (7),

HSC cell frequency decreased with age. This was not replicated in our

analysis. This discrepancy may be explained by HSCs representing a

very small percentage of each sample (<4%), making the measured

frequency prone to errors. Thus, a much larger number of samples

and larger cell counts per sample are needed to reduce the error

margins and verify this observation. Moreover, the HCA atlas used

only eight samples from donors between the ages of 25 and 53, which

limited the study’s statistical power.
D

A B
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C

FIGURE 5

Projecting diseased BM samples onto healthy reference to identify disease-specific cells. (A) Multiple myeloma datasets projected onto the healthy
BM atlas. (B) Confidence scores of cell type prediction of MM samples. (C) Heatmap of DEGs between plasma cells from MM samples versus healthy
samples. (D) Pathway enrichment analysis of MM plasma cell DEGs. (E) Projection of AML datasets onto the healthy BM atlas. (F) Confidence scores
of cell type prediction with AML samples.
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We also employed the cell type-specific genes that were

correlated with age to train a cell age predictor. With the

predictor, we found chronologically younger blood cancer

samples to have an older predicted age while older blood cancer

samples showed a younger predicted age. As cancer cells possess

characteristics of immortality, active cell division, and higher

metabolic activity, they can appear phenotypically younger. For

chronologically younger samples, the genomic and even

environmental changes associated with cancer may also alter gene

expression to seemingly reflect an older cellular age. Higher stress

levels than healthy tissue, cellular dysregulation, and activated but

ineffectual DNA repair pathways can be contributing factors as well.

Most disease studies construct cell atlases that combine both

healthy and diseased samples to study the differences between them.

However, a comprehensive healthy tissue atlas is still valuable to

disease studies. As recently demonstrated by Dann et al. (41), using

a separate healthy reference as a reference scaffold to map disease

samples and matched healthy controls can improve the

identification of disease-associated cell states and reduce the

number of control samples while preserving the rate of false

discoveries. Here, our constructed healthy BM atlas encompassing

a large number of donor samples from multiple studies and across a

wide age range, is a comprehensive healthy reference that can serve

as a baseline for comparative studies with diseased samples. As bone

marrow samples require an invasive procedure to obtain, using our

healthy atlas to reduce the needed number of healthy control

samples is greatly beneficial. For this work, we demonstrated the

mapping of disease samples onto our atlas to identify diseased cell

states. We identified abnormal plasma cells and erythroblasts in

MM samples, as well as AML-specific abnormal cells. The diseased

cells can be easily identified by their low cell type prediction

confidence scores. We further inspected the differentially

expressed genes of the MM plasma cells and identified previously

reported disease markers.

We believe that our BM atlas is a valuable reference for studying

healthy bone marrow processes and bone marrow-related diseases.

As more BM scRNA-Seq data become available, we will continuously

update and improve on our atlas currently available in the DISCO

(11) atlas collection: http://www.immunesinglecell.org/atlas/

bone_marrow. We will also pursue future studies on bone marrow

diseases using our atlas as the reference scaffold.
Methods

Single-cell RNA-Seq data collection,
integration, and annotation

We retrieved healthy bone marrow sample datasets from the

DISCO database (9). The datasets were previously preprocessed

from raw reads and mapped onto the human reference genome,

GRCh38 (Ensembl 93). Except for data integration with

FastIntegration, we employed the Seurat package (10) for

downstream data analyses. For each sample, we filtered the cells
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based on their unique molecular identifier (UMI) counts, the

number of detected genes, and the fraction of mitochondrial and

ribosomal genes. As the data were acquired in different experiments,

we utilised the distribution of QC metrics from each sample to

manually determine the cut-offs applied for filtering. Subsequently,

samples with less than 200 cells were removed and the gene

expression for each cell was normalised to the total expression

using the “NormalizeData” function found in the Seurat package.

We next applied our FastIntegration algorithm to integrate the

retained data samples. For each sample, we first identified the top

3000 highly variable features. Thereafter, we merged the lists from

all samples and selected the top 3000 most common ones. These

highly variable features were used to identify the anchors between

samples and the anchors were then used for the subsequent

integration and batch correction steps. After integration, the

batch-corrected gene expression values were standardised using

the “ScaleData” Seurat function and Principal Component Analysis

(PCA) was performed. The first 30 PCs were then used for Uniform

Manifold Approximation and Projection (UMAP) to enable

visualisation. For clustering, we built the KNN graph based on

the Euclidean distance in PCA space and applied the Louvain

algorithm. The Wilcoxon rank sum tests were used for identifying

differentially expressed genes (DEGs) in each cluster, which were

subsequently utilised for manual cell type annotation.
Identification of age-related cell types

We selected three projects (GSE185381, GSE120221, and

HCA_HematopoieticImmuneCellAtlas) that had unsorted data

and sample sizes larger than 5. For each cell type, we performed

linear regression on the proportion of each cell type with age with

the following model:

xj = b0Agej + b1Projectj

where xj is the percentage in sample j. A Spearman correlation p

value was computed for each project and an overall p value for the

linear model.
Age-related gene identification and
enrichment analysis

To identify age-correlated genes, we averaged the batch-corrected

gene expression values of each cell type in each sample. We only

considered cell types found in at least 20 samples and with at least 20

cells. Only the genes expressed in > 10% cells were used. Subsequently,

we correlated gene expression with age using the Pearson correlation

and retaining genes with p value less than 0.01 as age-related genes. For

gene set enrichment analysis, we used Enrichr (29) with gene sets from

the KEGG, GO, Reactome, and TRUST databases. Pathways with an

adjusted p value less than 0.01 were selected for visualisation. We also

compared our identified age-related genes with the gene list in

GenAge's database (42) and genes identified in epigenetic clocks (43).
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Age prediction

Based on the identified age-related genes, we trained a model to

predict the age of a sample. As the age-related genes we

identified were linearly correlated with age, we applied elastic net

linear regression from the glmnet package (44) to build an age

prediction model for each cell type. The performance of this model

was evaluated using 10-fold cross validation (Supplementary

Figure 5), and the median predicted age of all cell types was taken

as the predicted age for the sample. To estimate the model’s

accuracy, we calculated the median absolute difference between

the predicted age and chronological age. Prior to predicting the age

of new cell samples, we first mapped them to the reference atlas and

using only the cells that were confidently mapped for the

age prediction.
Mapping of diseased samples to bone
marrow atlas

We downloaded single-cell RNA-Seq data of acute myeloid

leukaemia and multiple myeloma samples from the DISCO

database. For each disease, we first integrated the data of all

samples using FastIntegration. Subsequently, another round of

integration was performed to integrate the diseased samples

together with the healthy bone marrow atlas with the latter

serving as the reference. Finally, we used the integrated data for

PCA, UMAP generation, and clustering. We annotated the disease

sample cells based on the most prevalent cell type among its 30

nearest neighbours in the reference atlas. We then compute a

confidence score by taking the inverse of the distance between

each cell and its 30 nearest neighbours, and then normalising it to a

range of 0 to 1. The confidence scores were fit into a two-

component Gaussian mixture distribution, with cells in the first

component being deemed as confidently assigned.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Materials. Further inquiries can be

directed to the corresponding author. The scripts used in the study

can be downloaded from the Github repository: https://github.com/

JinmiaoChenLab/Bone_Marrow_Aging.
Author contributions

JC conceptualised and supervised the study. ML and NL

analysed the data, annotated the cell types, developed the age

predictor, and generated the figures and tables. KA, NL, JC, and

ML wrote the manuscript. All authors contributed to the article and

approved the submitted version.
Frontiers in Immunology 10
Funding

This work was supported by an Open Fund Individual Research

Grant (Mapping hematopoietic lineages of healthy and high-risk

acute myeloid leukaemia patients with FLT3-ITD mutations using

single-cell omics #OFIRG18nov-0103) from Ministry of Health,

Singapore; A*STAR, Use-Inspired Basic Research (UIBR) Fund,

2021-2024, “Identify novel targets for cell type-specific

immunotherapy using spatial & single-cell omics in conjunction

with AI analytics”; and A*STAR, Industry Alignment Fund - Pre-

Positioning Programme (IAF-PP) H22 J2a0043, “T cell vaccination

and monitoring platform”, T-MoVac; Open Fund Individual

Research Grant (Mapping hematopoietic lineages of healthy and

high-risk acute myeloid leukemia patients with FLT3-ITD

mutations using single-cell omics #OFIRG18nov-0103) from

Ministry of Health, Singapore.
Acknowledgments

The authors like to thank Jingjing Ling for the helpful

discussions and suggestions to improve the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1127879/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

(A) UMAPs of healthy BM samples before and after integration, coloured by

project ID. (B) Comparison of cell type labels in the original studies (left) and
our constructed bone marrow atlas (right).
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SUPPLEMENTARY FIGURE 2

Cell type-specificDEGheatmaps. Heatmapof topDEGs for each labelled cell type.

SUPPLEMENTARY FIGURE 3

Cell type annotation comparison. Heatmap comparing cell type annotation of
constructed atlas and annotation from original samples.

SUPPLEMENTARY FIGURE 4

Regression plot of naïve CD4+ T cell age correlation. Regression plots of cell
type frequency changes with respect to age for all cell types in the bone

marrow for naïve CD4+ T cells.

SUPPLEMENTARY FIGURE 5

Errors for 10-fold cross validation of cell age predictor. Median error of
prediction computed in the 10-fold cross validation of cell age predictor.

SUPPLEMENTARY TABLE 1

Data sample metadata.
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Cell type-specific differentially expressed genes.

SUPPLEMENTARY TABLE 3

Cell type correlations with age.

SUPPLEMENTARY TABLE 4

Cell type-specific age-correlated genes.

SUPPLEMENTARY TABLE 5

List of peripheral blood samples used for age prediction.

SUPPLEMENTARY TABLE 6

Age predictions of diseased samples.

SUPPLEMENTARY TABLE 7

Multiple myeloma malignant plasma cell DEGs.
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