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Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-

L1 have become the frontier of cancer treatment and successfully prolonged the

survival of patients with advanced non-small cell lung cancer (NSCLC). But the

efficacy varies among different patient population, and many patients succumb to

disease progression after an initial response to ICIs. Current research highlights the

heterogeneity of resistance mechanisms and the critical role of tumor

microenvironment (TME) in ICIs resistance. In this review, we discussed the

mechanisms of ICIs resistance in NSCLC, and proposed strategies to

overcome resistance.
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1 Introduction

Lung cancer is currently the second most frequently diagnosed cancer and the leading

cause of cancer mortality globally (1). Immune checkpoint inhibitors (ICIs) have changed the

cancer treatment paradigm and become the standard care for many cancers, including lung

cancer. Whether as monotherapy or in combination, ICIs have shown inspiring efficacy in

advanced non-oncogene-driven non-small cell lung cancer (NSCLC), extensive-stage small

cell cancer, as well as unresectable stage III NSCLC (2, 3). In addition, the role of ICIs in

neoadjuvant chemotherapy for resectable lung cancer is gradually being explored (4–7). To

date, ICIs targeting three different immune checkpoints have been approved by the US Food

and Drug Administration (FDA) for cancer therapy, namely cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) antibody, programmed cell death protein 1 (PD-1)

antibody, and programmed death ligand 1 (PD-L1) antibody. Over years, the application

of anti-PD-1/PD-L1 antibodies has greatly surpassed anti-CTLA-4, due to superior efficacy

and safety profiles (8).

Although ICIs have significantly improved the survival in patients, the efficacy varied in

different patient population, as a large proportion of patients had poor response to ICIs and
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succumb to disease progression, especially with ICIs monotherapy.

The disparities represented a critical knowledge gap and attracted

widespread attention, driving efforts to address this issue. Therefore, it

is important to review the current mechanism of resistance and reveal

how to ‘activate’ non-responders. In this review, we summarized the

mechanisms of ICIs resistance in lung cancer and the factors which

were associated with the clinical effects, aiming to promote better use

of ICIs in lung cancer treatment.
2 Immunotherapy overview

2.1 Anti-tumor immunity

Initiation of the anti-tumor immune response occurs when cells

of the innate immune system become alerted to the presence of

tumor, the signal of which may be conveyed by pro-inflammatory

molecules, chemokines of the tumor site, and cells of the innate

immune system (9). Tumor cells are recognized by the intrinsic

immune cells, and the recognition mechanism is inconclusive (10).

Once recognized, the intrinsic immune cells (e.g., natural killer (NK)

T cells, gd T cells, and macrophages) will trigger initial intrinsic

immunity and interferon (IFN) secretion, which promotes

chemokines production, and the recruitment of immune cells. IFN

could activate a series of IFN-dependent processes (e.g., anti-

proliferative, pro-apoptotic, anti-angiogenic) to kill tumor cells (9).

The dead tumor cells during this process makes tumor antigens

available, driving specific immunity.

Immature dendritic cells (DCs) are recruited to the tumor and

triggered by cytokine exposure or intercellular interaction. Mature

DCs take up tumor antigens, which finally presented as major

histocompatibility complex class I (MHC-I) antigenic tumor

peptides complex on DCs surface, migrate to the draining lymph

nodes, where initial tumor-specific T helper type 1 (Th1) CD4+ T cells

and CD8+ cytotoxic T lymphocytes (CTLs) are induced by antigen

cross-presentation (9). Other antigen-presenting cells (APCs) are also

involved in the process. CD4+ and CD8+ T cells migrate to the tumor

site. CD4+ T cells produce IL-2, which, together with IL-15 produced

by the host cells, helps to maintain CTLs production and viability. T

cells can also release large amounts of IFN, which, together with

intrinsic immune cells, kill tumors and induce tumor regression

through numerous mechanisms (9, 11) (Figure 1A).

Tumor regression announces the victory of the immune system

in the fight against tumors, but this is not the end. The ‘3Es’

hypothesis describes the continuous dynamic changes of immune

cells and tumor cells in the three sequential processes of elimination,

equilibrium, and escape (9, 12). Some tumor variants can escape

from killing and enter dynamic equilibrium, a phase in which killing

factors within the tumor exert a solid and continuous selective

pressure on tumor cells. Due to genomic instability, although some

of the escaped variants are destroyed, new variants carrying different

mutations re-emerge and enhance resistance to immune attack. The

result of the equilibrium is the generation of a new population of

tumor clones with reduced immunogenicity and nearly ineffective

anti-cancer defense from heterogeneous parents. It is well

established that anti-cancer defenses are ineffective in solid

tumors (13).
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2.2 Immune checkpoint inhibitors

To survive and proliferate, tumors employ various strategies to

escape anti-tumor immunity. Bypassing, overriding, or abolishing is

the key mechanisms to restart tumor elimination, and restore T cell-

mediated anti-tumor immunity in current cancer immunotherapies

(14). T cells exerting immune effects requires multiple sequential

steps, including successful antigen presentation and recognition,

activation and proliferation, transport, and execution of killing

effects. Each step is regulated by the balance between stimulatory

and inhibitory signals.

Immune checkpoints are a range of inhibitory molecules that

physiologically balance co-stimulatory pathways to fine-tune immune

effects and prevent further immune responses. They involve

inhibitory receptors and their ligands. Under normal physiological

conditions, immune checkpoints are essential for maintaining self-

tolerance, regulating the duration and intensity of normal

physiological immune responses, and minimizing collateral damage

to healthy tissues (8). Tumors can also express immune checkpoints

to escape from the elimination phase and promote progression.

Meanwhile, it also provides a chance to restore the anti-tumor

immunity of T cells through antibodies that bind to immune

checkpoints, and block inhibitory receptor-ligand interactions.

These mechanisms established a cornerstone for the development

of ICIs.

Currently, ICIs that have been approved by the FDA target three

different immune checkpoints, PD-1, PD-L1, and CTLA-4. The bind

between CD28 on T cells and B7 ligand on MHC cells is essential for

T cell function, further induction, and amplification of the immune

response (15). In response to T cell activation, CTLA-4 is induced to

upregulate on T cells, competing with higher affinity for binding to B7

ligand on the APC, which leads to downregulation of T cells and

immunosuppression (16). Anti-CTLA-4 antibodies inhibit the

binding between CTLA-4 and B7, which could prolong T cell

activation, restore T cell proliferation, and establish an immune

response to tumor-associated antigens (TAAs) (17). Ipilimumab is

the currently approved ICI targeting CTLA-4.

PD-1/PD-L1 inhibitors mainly block the feedback mechanism

between T cells and tumor cells in TME. PD-1 is expressed on T cells,

while PD-L1 is expressed on tumor cells. These two form the PD-1/

PD-L1 axis that mediates T cell function inhibition. The function of

anti-PD-1/PD-L1 antibodies lies in restoring the T cell effect by

blocking the PD-1/PD-L1 interaction (18). Currently, Nivolumab

and Pembrolizumab target PD-1, while Atezolizumab, Durvalumab,

and Avelumab target PD-L1 (2) (Figure 1B).
3 Drug resistance mechanism

To date, clinically approved ICIs targeting PD-1/PD-L1 and

CTLA-4 have shown promising efficacy and became the standard

treatments for various cancers, such as advanced melanoma, NSCLC,

and solid tumors with microsatellite instability (2, 12, 19). However,

substantial evidence indicated that responses to ICIs varied widely

among different patient population. For patients with NSCLC, the

efficacy of ICIs was largely associated with the expression of PD-L1, as

well as tumor percentage score (TPS). For example, the results of
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CheckMate-227 study suggested, treated with nivolumab in

combination with ipilimumab, a response rate (ORR) of 35.9% was

achieved in NSCLC patients with PD-L1 TPS ≥1% (20). These

findings were born out in KEYNOTE-598 study, as pembrolizumab

combined with ipilimumab provided an ORR of up to 45.4% in

patients with PD-L1 TPS ≥50%. Some candidates did not benefit from

the ICIs, and even suffered progression during the administration of

ICIs (21).

Extensive studies have been conducted to explore the mechanisms

of ICIs resistance. From the perspective of the anti-tumor immunity

process, ICIs resistance can arise at all stages, from antigen uptake and

presentation to T cell killing. For example, antigen loss, impaired

antigen presentation, reduced T cell infiltration, lack of PD-L1

expression, and other immune co-suppressive molecules were

associated with response to ICIs. In addition, intrinsic immunity

components, especially IFN, which plays a crucial role in anti-tumor

immunity, are related to ICIs resistance. Other components in tumor

microenvironment (TME), such as immunosuppressive molecules,

immunosuppressive cells, and neutralizing antibodies for PD-1
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antibodies, can also influence ICIs response. In addition, the

intestinal microbiota is involved in such progress. However, due to

the lack of sufficient data the mechanisms remain unclear at present

(22, 23) (Figure 2).
3.1 PD-L1 expression deficiency

The main effect of PD-1/PD-L1 inhibitors is to block the PD-1/

PD-L1 axis. Based on the expression pattern of tumor-infiltrating T

ce l l s (TIL) and B7-H1 (PD-L1) , the tumor immune

microenvironment was classified as four types: T1 (B7-H1−, TIL−),

T2 (B7-H1+, TIL+), T3 (B7-H1−, TIL+), and T4 (B7-H1+, TIL−) (24,

25), among of which, the Type II was most likely to respond to ICIs.

This hypothesis is supported by clinical practice, as patients with PD-

L1 positive were associated with better response to anti-PD-1 therapy.

Despite of this, but the efficacy of ICIs limited in a subset of these

patients, suggesting the existence of other immunosuppressive

pathways. For the other three types, it can be inferred that the T1
FIGURE 1

Immune checkpoint inhibitor therapy. Immune response to cancer and relationship among cancer cells, T cells and antigen presenting cells. (A) Tumor
cells are recognized by the intrinsic immune cells. Once recognized, immune cells trigger initial intrinsic immunity and IFN secretion, promoting
chemokines production, and the recruitment of immune cells. Mature DCs take up tumor antigens, which finally presented as MHC-I antigenic tumor
peptides complex, migrate to the draining lymph nodes, where initial tumor-specific Th1 CD4+ T cells and CTLs are induced by antigen cross-
presentation. IL-2 and IL-15 help to maintain CTLs production and viability. (B) Mechanism of anti-PD-1/PD-L1/CTLA-4 antibody. PD-1 is expressed on T
cells, while PD-L1 is expressed on tumor cells. These two form the PD-1/PD-L1 axis that mediates T cell function inhibition. The function of anti-PD-1/
PD-L1 antibodies lies in restoring the T cell effect by blocking the PD-1/PD-L1 interaction. CTLA-4 on T cells binds to B7 ligand on the APC, leading to
immunosuppression. Anti-CTLA-4 antibodies inhibit the binding between CTLA-4 and B7, which prolongs T cell activation, restore T cell proliferation,
and establish an immune response to tumor-associated antigens. IFN, interferon; DC, dendritic cell; MHC-I, major histocompatibility complex class I;
CTL, cytotoxic T lymphocyte; APC, antigen-presenting cell.
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type should be the least effective, as it is lack of both TIL and B7-H1.

And for T3 type, it is identified as infiltrated with TIL but lack of PD-

L1 expression, which possibly due to the lack of IFN-g production by

effector T cells ((Teffs), a sign of cellular dysfunction (24).

Unfortunately, the proportion of patients with T2 is not high. Data

from previous studies suggest that only 17% of NSCLC patients have

type II tumor immune microenvironment. Furthermore, more than

half of tumors lack PD-L1 expression or TIL infiltration (25–27).

Interestingly, some studies suggest that neither knockout nor

overexpression of PD-L1 in tumor cells affected the efficacy of PD-

L1 inhibitors, but it is the PD-L1 located on immune cells (DCs,

macrophages) that correlates with the efficacy of anti-PD-1 alone or

in combination with anti-CTLA-4. Although this finding remains to

be further validated, it suggests a role of other cellular components

within TME in the efficacy of ICIs (28).

Assessment of tissue PD-L1 expression has predictive utility for

treatment outcome (29). Notably, current clinical trials largely

examined the predictive value of PD-L1 expression on tumor cells.

This remains some limitations. For example, due to the dynamic

progression of tumors, this method can only specify tumors’ PD-L1

profile at a particular time. In addition, due to the limitation of biopsy

sample size and tumor spatial, as well as temporal heterogeneity,
Frontiers in Immunology 04
biopsies may miss tumor tissues with high PD-L1 expression. This

may explain the response of a proportion of PD-L1-negative patients

to ICIs (30, 31). Existing evidence suggested, besides of tumor cells,

the PD-L1 expression on tumor-infiltrating immune cells (e.g.,

macrophages, DCs, neutrophils, and T cells) or elsewhere could

also be assessed. By using immunohistochemistry (IHC), Taube JM

et al. found the expression of PD-L1 was also observed in the TILs and

associated macrophages/histiocytes, which was associated with the

outcome of patients with metastatic melanoma (32). Meanwhile, it

has been established that PD-L1-expressing tumor-associated

macrophages (TAMs) could impair the function of NK cells, and

contribute to the inefficient sensitivity to PD-1 inhibitors (33).

Furthermore, study performed by Hinterleitner C and their co-

workers have found the interaction between the blood platelets and

lung cancer cells. Specially, PD-L1 expression on platelets could not

only reflect that on tumor, but also inhibit CD4+ and CD8+ T cells,

which provided a new perspective to overcome the limitations of

traditional quantification of PD-L1 expression on tumor cells (34).

Further understanding the host immune system and TME will better

identify patients who will benefit from these agents. For patients with

high PD-L1 expression but insensitive to ICIs, other resistance

mechanisms may play a leading role. For example, EGFR and HER-
FIGURE 2

Mechanisms of immune-mediated resistance to ICIs. (A) Lack of PD-L1, (B) Neoantigen-depletion, (C) Antigen presentation defect, (D) Tumor-mediated
immune-suppression or –exclusion, (E) Immune inhibitory receptors, (F) Abnormal IFN signaling pathway, (G) Immunosuppressive cells, (H) Metabolic
reprogramming, (I) The ‘3Es’ hypothesis. IFN, interferon; ICIs, immune checkpoint inhibitor.
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2 mutations, and the fusion of ALK, ROS1, RET, MET could define

NSCLC subsets with minimal benefit from ICIs, despite of high PD-

L1 expression (35).

On the other hand, in addition to membrane-bound form, PD-L1

could be secreted as a truncated form, which called soluble PD-L1.

Preclinical evidence suggested that this form also contributed to the

resistance to immunotherapy (36, 37). In a retrospective study, blood

samples from patients treated with ICIs were analyzed. The results

revealed that soluble PD-L1 levels could be regarded as an

independent prognostic factor, as inferior outcomes were observed

in patients with high soluble PD-L1 (38). This finding has been

conquered in other studies (39–41). But the potential mechanism

needs to be further investigated.
3.2 Antigen presentation disorders and
antigen deficiency

Tumor cells may have defects in the processing and presentation

of antigen and antigen, resulting in the inability of the immune system

to detect new antigens and initiate an effective immune response.

Each human leukocyte antigen class I (HLA-I) molecule binds specific

peptides derived from intracellular proteins and is expressed on the

cell surface for presentation to CD8+ T cells. b2 microglobulin (B2M)

is necessary to maintain the stability of HLA-I molecules, and

mutations in B2M can lead to MHC instability and failure of

antigen presentation. This mechanism has received more attention.

In a study of NSCLC, acquired homozygous loss of B2M led to a lack

of HLA-I molecule expression in tumors, and mouse models also

exhibited resistance after the knockdown of B2M, suggesting that

disruption of HLA-I molecule-associated antigen presentation can

lead to ICIs resistance (42). The lack of HLA-I expression in small-cell

lung cancer shows minimal ICIs activity, and HLA-I upregulation

through IL-27/STAT3 activation can enhance ICIs efficacy (43). In

addition, some studies suggest that 40% of NSCLC patients have a

heterozygous loss of HLA, which is associated with tumor immune

escape, but it is not clear how it relates to ICIs drug resistance (44).

The genotype of HLA may also influence the tumor response to

ICIs. The anti-tumor activity of ICIs depends on CD8+ T cells and

HLA-I-dependent immune activity (45). The HLA-I molecule is

highly polymorphic, and each variant binds a particular peptide

ligand. Thus, if HLA-I locus is heterozygous, it is most likely to

bind the largest combinations of peptide ligands. In contrast, more

presence of homozygous genes at the HLA-I locus theoretically is

expected to provide relatively fewer combinations of MHC complex

to CTLs (46). Studies have shown that maximal heterozygosity of

HLA-I A/B/C improves overall survival (OS) after ICIs therapy,

compared to patients with at least one homozygous HLA locus.

Among NSCLC patients treated with nivolumab, those not

expressing HLA-A*02 and alleles had inferior outcomes with

progression-free survival (PFS) of 7.5 months, while HLA-A*-01

positive patients had the best outcome with a PFS of 22.6 months.

Regarding the impact of heterozygosity on prognosis, heterozygotes

in HLA-A were associated with worse OS, while heterozygotes in

DRB1 prolonged OS, which highlights the influence of host germline

genetics (47). Moreover, tumor cells may also express non-classical

MHC-I antigens (like HLA-G, HLA-E), which can bind to inhibitory
Frontiers in Immunology 05
receptors on T cells and other immune cells to suppress cell function,

causing ICIs resistance (23).
3.3 Inhibitory co-stimulatory
factor expression

The expression of co-suppressor molecules in TME is the

underlying mechanism of tumor immune escape, and targeting the

PD-1/PD-L1 co-inhibitory axis demonstrates that blocking co-

inhibitory signaling can reactivate T cells to mediate tumor

elimination or control. However, the expression of co-inhibitory

molecules other than PD-L1 on cancer cells could potentially lead

to the failure of ICIs therapy.

Following the first series of inhibitory receptors (PD-1, PD-L1,

CTLA-4), three new inhibitory receptors stood out: lymphocyte

activation gene 3 (LAG-3), T cell immunoglobulin and mucin

domain 3 (TIM-3), and T cell immunoreceptor with Ig and ITIM

domains (TIGIT). LAG-3 is expressed on activated NK cells, Teffs,

regulatory T cells (Tregs), B cells, and plasma cell-like DCs,

preventing immune overactivation (48–50), TIM-3 has been

identified on Tregs, DCs, NK cells, and monocytes, and has similar

effects to LAG-3. TIGIT is also a co-inhibitory receptor on various

immune cells (49). These molecules are promising therapeutic targets,

and there is some evidence that they are associated with anti-PD-1

resistance. In 90 patients with advanced NSCLC treated with anti-PD-

1 therapy, elevated LAG-3 expression was associated with PD-1

blockade insensitivity and resulted in shorter PFS (51). And in

histology, LAG-3 enrichment suggests an immune contexture

represented by CD8+ T cell dysfunction, which is associated with a

worse prognosis (52). Another study also suggested anti-PD-1

resistant NSCLC harbored higher expression levels of TIM-3, LAG-

3, and CTLA-4 on CD4+ and CD8+ T cells in, but only TIM-3 was

significantly increased, suggesting the TIM-3 upregulation surrogate

mechanism (53). It is noteworthy that studies on renal cell carcinoma

(RCC) suggest that the expression of LAG-3, TIM-3, and TIGIT is

exclusive at the single-cell level, with most suppressive costimulatory

receptor-positive cells expressing mainly one of them, and no

circumstance of three molecules are all low expressed. Among the

three members, RCC with high LAG-3 expression had the worst

survival rates and the most severe immunosuppressive

microenvironment. It was resistant to anti-angiogenic therapy and

ICIs, suggesting that tumor classification and outcome prediction can

be based on dominant immunosuppressive molecules (54). TIGIT can

also be elevated in NSCLC after resistance to anti-PD-1 therapies, but

this remained controversial (42). Some clinical trials combining anti-

PD-1 with anti-LAG-3/TIM-3/TIGIT have shown improved anti-PD-

1 efficacy, providing strategies to overcome drug resistance (48,

55–57).

V-domain immunoglobulin suppressor of T cell activation

(VISTA), or PD-1 homolog (PD-1H), is a novel inhibitory immune

checkpoint, which is expressed on myeloid cells, lymphoid cells, and

tumoral cells (58, 59). A study showed that VISTA was detected in

99% of NSCLC cases and predominantly expressed on stromal cells.

But its expression was correlated spatially with immune infiltration

and PD-1/PD-L1 expression, and regulated by local cytokines and

IFN, suggesting that VISTA may not induce PD-1 resistance (60).
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However, upregulation of VISTA on infiltrating immune cells has

been reported in prostate cancer treated with ipilimumab (anti-

CTLA-4), suggesting its role in anti-CTLA-4 resistance (61). In

addition, HMBD-002, an anti-VISTA antibody, can reduce

myeloid-derived suppression of T cell activity and prevent

neutrophil migration, stimulating a pro-inflammatory phenotype

characterized by a Th1/Th17 response, making it a promising

therapeutic target for ICIs combination (62).

CD91, also known as low-density lipoprotein receptor-related

protein-1 (LRP-1), was a receptor expressed on antigen-presenting

cells (APCs). Recent studies explored its role in immunosurveillance

and found it was critical to trigger immune responses. Sedlacek AL et

demonstrated that CD91 could not only activate NK cells through

APCs in vivo, but also cytokines in NK cells. This procedure was

essential for T cell and APC function (63). In addition, by stimulating

the secretion of cytokines from macrophages, CD91 induced the

activation of DCs to produce co-stimulation. When the expression of

CD91 on DCs was depleted, mice were more likely to suffer the

development of tumors induced by chemical compound. And in

clinical practice, patients with advanced melanoma harboring high

CD91 expression had better prognosis. Based on this, authors

highlighted the potential function of CD91 in immunotherapy (64).

However, it still needs further investigation. For example, heat shock

protein (HSP) gp96 could combine with CD91. But the dose of gp96

had opposite roles, as low dose contributed to Th1 immune responses,

and high dose induced immunosuppression via Tregs (65–67).

Despite all this, the importance of CD19-mediated immune

responses possess a variety of research potential.
3.4 Signaling pathway abnormalities

Lymphocyte infiltration and PD-L1 expression are vital factors for

effective ICIs, and most tumors with anti-tumor immunodeficiency

was lack of CD8+ T cell infiltration and tend to be resistant (68).

Several signaling pathway abnormalities are associated with

lymphocyte infiltration in TME and PD-L1 expression on the

surface of cancer cells.

Existing evidence indicated that Wnt/b-catenin pathway

activation can lead to non-inflammatory TME and cause anti-PD-

1/PD-L1 resistance. In detail, b-catenin activation can lead to failure

of DCs and effector T cell recruitment, resulting in impaired immune

response (69–71). In addition, b-catenin can regulate Treg cell

infiltration (72). PTEN is a negative regulator of the PI3K/AKT

pathway, and PTEN loss leading to anti-PD1 resistance has been

reported in various cancers, such as lung cancer and melanoma (70,

73). PTEN loss in tumor cells increases the expression of

immunosuppressive cytokines, leading to reduced T cell infiltration

in tumors and inhibition of autophagy. This could further reduce T-

cell-mediated cytotoxicity and cause ICIs resistance (73–75).

Moreover, patients carrying PTEN mutations could not benefit

from ICIs, even if they possess high tumor mutation burden (TMB)

and positive PD-L1 expression. But combined with temsirolimus

(mTOR inhibitor), synergic therapeutic effects can be reached,

which provided a combination option (76).

The RAS/MAPK pathway is a significant factor driving PD-L1

expression (77, 78), but its activation in triple-negative breast cancer
Frontiers in Immunology 06
is associated with reduced TIL infiltration (79, 80), which may cause

immune escape and ICIs resistance. If MAPK activation causes low

TIL infiltration and high PD-L1 expression simultaneously, it is

ambiguous whether ICIs resistance could occur. In contrast, studies

in melanoma suggest that MAPK pathway inhibition with targeting

agents can lead to cross-resistance between targeted therapies and

ICIs, following reduced infiltration of CD103 DCs (81), suggesting

multiple functions of MAPK activation. In conclusion, the

impact of MAPK on anti-PD-1 effects in NSCLC needs to be

further investigated.

The PI3K/AKT/mTOR pathway was also associated with the

expression of PD-L1. For example, by activating b-catenin and the

downstream mTOR signaling, AKT pathway increased PD-L1

expression (82). Meanwhile, Liu M et al. found that PD-1 on

myeloid-driven suppressor cells (MDSCs) could bind to PD-L1, and

trigger PI3K/AKT pathway in B cells, which further impaired the

function of T cells and led to tumor immune escape (83). It has been

confirmed in a study that the combination of mTOR inhibitor

(rapamycin) and anti-PD-1 blocked the progression of NSCLC

(82). Currently, a phase I trial is active, which aims to evaluate the

efficacy and safety of mTOR inhibitor combined with durvalumab for

stage I-IIIA NSCLC (NCT04348292). We are looking forward to

the results.
3.5 Interferon pathway

IFNs are essential for anti-tumor immune response and critical

cytokines in cancer elimination. IFNs are classified into three types:

type I (IFN-a, IFN-b, IFN-ϵ, IFN-k, and IFN-w), type II (IFN-g), and
type III (IFN-l), which have multiple roles in anti-tumor cell

proliferation, promotion of apoptosis, anti-angiogenesis, increasing

antigen processing and presentation of APCs. Through multiple

pathways, IFN can ultimately exert anti-tumor immune effects by

increasing intrinsic and adaptive immune cell functions, and IFN

mainly induces intracellular changes through the JAK/STAT pathway

(84). Despite these positive effects of IFN, chronic IFN exposure

exerts solid selective pressure on tumors and promotes tumor

immune escape. In this process, tumors can not only upregulate the

expression of immunosuppressive receptors and metabolites (PD-L1,

CYLA-4, indoleamine 2, 3-dioxygenase (IDO)). but also

downregulate JAK inhibitors, leading to sustained activation of the

JAK/STAT3 pathway and promoting tumor growth (85). Sustained

IFN exposure also attracts Tregs and suppressive MDSCs infiltration,

leading to immunosuppression. Therefore, it is reasonable to discuss

the effect of IFN on ICIs resistance.

The contribution of IFN to anti-PD-1 resistance is currently

evaluated. On the one hand, the inactivation of the IFN effector

pathway could impair IFN effects. For example, loss-of-function

mutations in JAK1/2 can lead to a lack of PD-L1 expression,

resulting in no response to ICIs, regardless of high TMB (86, 87).

In addition, studies suggest that ICI-resistant melanomas contain

B2M loss, which mediates resistance to CD8+ TIL, and JAKmutations

create a severe pan-T cell immune escape phenotype (88). The second

aspect is that IFN can initially induce anti-tumor effects but develop a

range of mechanisms leading to resistance during ICIs treatment.

Sustained IFN-g signaling can lead to STAT1-related epigenomic
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changes to enhance the expression of IFN-stimulated genes (ISG),

which leads to PD-L1 non-dependent resistance and multiple T cell

inhibitory receptor ligands (89). Notably, another study suggests that

STAT pathway silencing can lead to MHC II inhibition and immune

escape, which may also be associated with ICIs resistance (88).

Further exploration is necessary. In a mouse lung cancer model,

IFN-g was observed to cause phase separation of Yes-associated

protein (YAP) to form condensation and translocate to the nucleus

to form a potent transcription center, promoting the expression of

multiple genes, including CD155 (ligand for TIGIT), leading to CTLs

function inhibition and anti-PD-1 resistance (90). In addition,

chronic IFN-I has been shown to trigger lipid peroxidation of

terminal CD8+ T cells and accelerate their depletion, suggesting an

effect of IFN on immune cell metabolism, which may also contribute

to ICIs resistance (91).
3.6 Tumor microenvironment (TME)

TME is a highly heterogeneous environment composed of cancer

cells, stromal tissue, extracellular matrix, and immune cells,

characterized by high vascularization, glucose depletion, and

hypoxia, where collective molecular signaling of immune cells

affects tumor outcome by influencing the balance of inhibitory

signaling and cytotoxic responses in the vicinity of tumor cells (23,

92). The acquisition and maintenance of cancer features, such as

proliferative signaling, resistance to cell death, induction of

angiogenesis, activation of invasion and metastasis, triggering

tumor-promoting inflammation, and avoidance of immune

destruction, rely to varying degrees on TME (93, 94). The immune

system is an essential determinant of TME, and complex interactions

between tumor cells and host immune responses are related to

multiple components, including tumor parenchymal cells,

fibroblasts, mesenchymal cells, blood, lymphatic vessels, TIL,

chemokines, and cytokines.

Various components in TME can shape the immunosuppressive

microenvironment and lead to ICIs resistance (23). Tregs negatively

regulates the function of T cell (95). In cancer, Tregs mediate the

dysfunction of the CD8+ T cells, which is characterized by

upregulation of surface inhibitory receptors (e.g., CTLA-4).

Furthermore, Treg-mediated IL-2 deprivation can exacerbate this

dysregulation, leading to immune escape (96). Whether Tregs can

cause ICI resistance is inconclusive, but some studies suggest its

possible role in ICIs resistance. Co-blockade of PD-1 and PD-L1 in

triple-negative breast cancer can upregulate the expression of

immune checkpoints (e.g., CTLA-4, TIM-3, LAG-3) on Tregs,

which could potentially lead to more severe T cell dysfunction

through other co-inhibitory molecules expression (97). Moreover,

selective inhibition of TGF-b1 released from Treg cells can overcome

anti-PD-1 resistance (98), suggesting that TGF-b may be one of the

reasons for Treg-mediated resistance (99). In addition, oxidative

stress in TME can lead to Treg cell apoptosis. Apoptotic Tregs can

release large amounts of ATP that further convert to adenosine via

CD39 and CD73, exacerbating immunosuppression and eliminating

PD-L1 blockade-mediated T cell activation (100).

TAMs are abundantly distributed and highly plastic in TME, and

they are often defined as M1 andM2 subpopulations (101). M1 TAMs
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are the primary to trigger inflammation in the early stage of cancer.

After that, TAMs undergo M2 polarization in response to signals in

the TME (102). In contrast to tumor cells, PD-L1 expression on

TAMs is mainly independent on local IFN-g level. TAMs residing in

TME have been shown to inhibit the anti-tumor effects of ICIs

through multiple mechanisms (103), and TAMs enrichment-

mediated anti-PD-1 resistance is independent of PD-L1 status

(104). First, M2 TAMs can lead to T cell exclusion. In lung

adenocarcinoma (LUAD), CD8+ T cell can interact with TAMs,

leading to its poor migration and low CTLs infiltration in the TME.

TAMs depletion reverses the circumstance and restore ICIs resistance

(105). Additionally, induction of TAMs reprogramming to the M1

type could restore ICIs resistance, indirectly proving the role of M2

TAMs in ICIs resistance. Meanwhile, studies suggest that the re-

polarization of M2 to M1 may cause PD-L1 upregulation, so ICIs

combined with TAMs reprogramming may be a novel therapeutic

strategy (106). Secondly, IDO is an essential immunomodulatory

enzyme that inhibits T cell proliferation, promotes Treg cell

differentiation, and induces TAMs and DCs to differentiate to

suppressive phenotypes, producing potent immunosuppression

(107). TAMs could in turn induce M2 transformation, exacerbating

the immunosuppressive phenotype (89). Although various

studies have demonstrated the contribution of IDO to T cell

dysfunction, how M2 TAM-derived IDO-induced T cell tolerance

contributes to PD-1/PD-L1 blockade resistance still needs to be

thoroughly investigated.

MDSCs are heterogeneous bone marrow cells recruited to

immunosuppressive TME. Some studies suggest that MDSCs may

serve as a prognostic marker for ICIs, but the relationship between

MDSCs and ICIs resistance has not been fully revealed. In NSCLC

patients, the peripheral blood of non-responders had a higher

frequency of MDSCs and fewer NK cells, compared with

responders at the end of one round of PD-1 treatment (108). And

high MDSCs in the peripheral blood was negatively associated with

anti-PD-1 efficacy and prognosis (109, 110). Some studies also suggest

that inhibition of MDSCs migration to TME may enhance the efficacy

of anti-PD-1 and overcome PD-1 resistance (111–115). This evidence

suggests that MDSCs may be involved in anti-PD-1 resistance.

Theoretically, MDSCs, as a class of suppressive immune cell

population, can interact with other immune cell components,

secrete negative immune regulatory molecules, and are associated

with resistance to chemoresistance and targeted therapy. Their

relevant mechanisms in immunotherapy resistance deserve to be

investigated (116–118).
3.7 Genetic mutations

It has been shown that genomic alterations in cancer cells can lead

to ICIs resistance. Homozygous deletion of the 9p21.3 gene is one of

the common genomic defects, accounting for approximately 13% of

all cancers. 9p21 deletion is associated with a ‘cold’ tumor immune

phenotype. This phenotype is characterized as reduced abundance of

TIL (especially T/B/NK cells) immune cell trafficking and activation,

PD-L1 positivity, and activation of immunosuppressive signaling.

Clinical studies have demonstrated that patients with 9p21 loss have

significantly lower response rates to ICIs and worse outcomes (119).
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In addition, KRAS mutations are common oncogenic mutations in

NSCLC, and KRAS G12C mutations are associated with higher levels

of inflammation in TME and better ICIs response (35, 120). However,

conversely, KRAS-G12D mutations can suppress PD-L1 expression

through the PI3K/AKT pathway and reduce chemokine CXCL10/

CXCL11 levels through downregulation of high-mobility group AT-

hook 2 (HMGA2), leading to reduced CTLs recruitment and ICIs

resistance (121).

Serine/threonine kinase 11 (STK11) is a critical oncogene, and

STK11 mutation is a common mutation secondary to KRAS

mutation. Compared with wild-type STK11, NSCLC patients

carrying STK11 mutations have a significantly lower OS rate (122).

Genetic ablation of STK11 in animal models directly promotes

resistance to anti-PD-1 therapies, and in a cohort of NSCLC

patients, STK11mut was associated with PD-L1 deletion, suggesting

STK11 is related to PD-L1 expression and ICIs resistance. Moreover,

STK11-deficient tumors were associated with a low density of CTLs.

However, the negative impacts of STK11/LKB1 genomic alterations

on resistance to ICIs are also seen in PD-L1 positive NSCLC,

suggesting that PD-L1 expression is partially dependent on STK11

(123). In the periphery, STK11mut tumors have lower NK cells and

CD4+/CD8+ effector memory T cells. In TME, there is a significant

upregulation of neutrophil-related markers (CXCL2, IL-6, CSF3) and

inhibitory immune checkpoint killer Ig-like receptor (KIR), indicating

the poor outcome of STK11 mutation may be attributed to

enrichment of immunosuppressive mechanisms (124).

Moreover, kelch-like ECH-associated protein 1 (KEAP1)

mutation can be seen in 20% of NSCLC and is the third most

frequently mutated gene in LUAD, with a common substrate of

neuropilin 2 (NRP2) (125). And KEAP1 is like to co-mutate with

STK11 and KRAS (126). A study suggests that KEAP1 mutation in

NSCLC is correlated with inferior ICIs response (127), and patients

carrying both STK11 and KEAP1 mutations had worse outcomes

compared with those harboring one mutation, suggesting an additive

effect of these mutations (128, 129). Despite KEAP1 show its role in

chemotherapy resistance (130), the contribution of KEAP1 mutation

to ICIs resistance is unclear. The study shows that patients who

harbored KEAP1 mutation had higher PD-L1 expression, compared

with wild type, which may assist ICIs efficacy (131). But other studies

also point out that the contribution of KEAP1 mutation to ‘cold’

microenvironment was characterized by failure in IFN expression,

innate immune cell recruitment and TIL infiltration (132–136).

There are some ‘driver mutations’ in cancer that are responsible

for both the initiation and maintenance of the malignancy. Receptor

protein tyrosine kinases like EGFR and ALK are typical examples,

whose mutations are related to ICIs resistance (137). The EGFR

signaling pathway is one of the most important oncogenic pathways

in NSCLC (138). Recent studies demonstrated their impact on the

immune system was apart from tumor biology, and relationships

between activation of EGFR and PD-L1 upregulation have been

widely validated clinically in NSCLC patients (139, 140). But under

high PD-L1 circumstances, EGFR-mutant cancer is insensitive to

ICIs. Studies show that EGFR-mutant and ALK-positive NSCLCs lack

concurrent PD-L1 expression and high levels of CD8+ TILs (141).

EGFR mutation is correlated with uninflamed TME with

immunological tolerance and weak immunogenicity, resulting in an

inferior response to PD-1 blockade (142).
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Tumors carrying oncogenic mutations usually follow the

principle of oncogenic addiction, which means that the evolution of

these tumors depends on the specific activity of an activated oncogene

that confers a survival advantage to tumor cells (143, 144).

Consequently, these tumors were usually characterized as low TMB

and ‘cold’ TME, which is related to ICIs resistance (144, 145). For

driver mutation-positive NSCLC, target therapy is currently the

optimal choice. Considering the effect of driver mutations on the

immune system, combining targeted therapy and immunotherapy

may be feasible. Unfortunately, the therapeutic role of ICIs in

oncogene-driven NSCLC remains unclear. The level of evidence

supporting the use of immunotherapy for patients with NSCLC

harboring driver mutations is quite low, which is because patients

with EGFR or ALK alterations are often excluded in most ICIs trails

(144). Some clinical trials that expect to find rationale to combine

tyrosine kinase inhibitor (TKI) and ICIs show limited clinical benefits

but with more adverse events (146, 147) (Table 1). Therefore, more

factors need to be considered to determine the feasibility of

combining ICIs and targeted therapy.
3.8 Metabolism

Metabolic reprogramming is considered a new hallmark in cancer

(152). Metabolic reprogramming was essential for the proliferation,

differentiation, and various functional assays of immune cells (153,

154). In addition, nutrient depletion, hypoxia, reactive nitrogen, and

oxygen intermediates production in TME force immune cells to

undergo metabolism reprogramming, which further impair immune

cell function and cultivate an immunosuppressive TME (155–157).

Metabolites in the TME can, in turn, affect immune cell differentiation

and their function (158). It has been shown that PD-1 can lead to an

immunosuppressive landscape through immune cell metabolism

reprogramming, and ICIs application can reinvigorate the immune

response (159, 160). Based on this, it is rationale to discuss the

relation between ICIs resistance and cancer metabolism.

Existing evidence suggested that oxidative metabolism and

hypoxia may contributed to ICIs resistance. In head and neck

squamous carcinoma, tumors resistant to ICIs showed a more

active oxidative metabolism, leading to TME hypoxia and a

decrease of CD8+ T cells (161). Studies in melanoma also shown

that enhanced tumor oxidative metabolic activity contributed to

increased oxygen consumption, which correlated with T cell

depletion and reduced immune activity (162, 163). In conclusion,

tumors resistant to ICIs was characterized as a ‘hypermetabolic’

phenotype, with an upregulation of oxidative phosphorylation

activity. On the one hand, such phenotype exacerbated hypoxia,

which contributed to T cell apoptosis by inhibition of CCR7 and

NK cells (164). Meanwhile, tumor cell hypermetabolism may lead to

T cell metabolic starvation, resulting in loss of glycolytic potential

(163). Although how PD-1 treatment impacts tumor oxidative

metabolism is unknown, these studies suggest that TME hypoxic

state after ICIs treatment could be served as a potential

prognostic biomarker.

T cell metabolism may relate to ICIs resistance. It was established

that PD-1 signaling activation can attenuate T cell glycolysis,

glutaminolysis, and branched-chain amino acid metabolism. It can
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also affect mitochondrial sub-microstructure, leading to reduced

mitochondrial depolarization and mitochondrial dysfunction, which

could impair cellular oxidative phosphorylation. In contrast, fatty acid

oxidation was enhanced during the management of ICIs (165, 166).

Overall, PD-1 signaling activation altered T cell metabolic activity,

which prevents terminal differentiation and glycolysis-induced death

of T cells (166). Consequently, blockading PD-1 signaling with ICIs

may accelerate apoptosis and deletion of Teffs, resulting in no

response to ICIs.

Glutamine metabolism is essential for tumors, while glutamate is

necessary for T cell activation and expansion (167). When tumor cells

competitively intake glutamine could lead to T cell dysfunction and

ICIs resistance (168). A subset of lung squamous carcinoma resistant

to ICIs was defined as the hypermetabolic, which was dependent on

glucose and glutamine. When glutamine intake was inhibited, the

effect of ICIs was restored. These findings established a cornerstone

that the inhibition of glutamine metabolism may enhance the efficacy

of ICIs (169). In addition, after inhibiting the glutamate/cystine

reverse transporter, melanoma cells secrete large amounts of PD-L1

in the form of exosomes to induce M2 polarization of TAM, leading

to ICIs resistance (170). Combined with the evidence above, high

glutamate in tumor cells is suggested to be detrimental to

ICIs response.

Moreover, glutamate has novel atypical functions. Cancer cells

with abnormal glutamate decarboxylase (GAD) expression could

synthesize g-aminobutyric acid (GABA). Subsequently, GABA

binds and activates GABAB receptors to inhibit GSK-3b and

enhance b-catenin signaling, stimulating tumor cell proliferation,

and inhibiting CD8+ T cell infiltration, leading to anti-PD-1

resistance (171).

Disturbances of lipid metabolism also contribute to the

development of cancer, as well as ICIs resistance. First, it has been

mentioned above that chronic IFN can lead to lipid peroxidation in
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terminal CD8+ T cells and accelerate their depletion (91). Second,

oxidized low-density lipoprotein (LDL) in serum not only suppresses

T cell function but also upregulates heme oxygenase 1 (HO-1)

expression, which induces a cytoprotective stress response to avoid

cancer cell apoptosis and leads to ICIs resistance (172). Furthermore,

cholesterol is vital in T cell function and ICIs sensitivity. Elevated

cholesterol in T cells upregulates the expression of various

immunosuppressive receptors (e,g, PD-1, TIM-3, LAG-3) and

impairs ferroptosis of tumor (173). It also modulates the

endoplasmic reticulum stress pathway to inactivate T cells (174),

leading to immune depletion. Moreover, inhibiting cholesterol

esterification in T cells by acetyl-CoA acetyltransferase (ACAT1, a

cholesterol esterase) enhances the effector function and proliferation

of CD8+ T cells. It enhances ICIs effect due to elevated cholesterol

levels in the CD8+ T cell plasma membrane, which enhances T cell

receptor aggregation and synapse formation (175).

Although many studies suggest a role for metabolism in

immunosuppression, and targeting metabolism can improve ICIs

effect, they do not demonstrate that metabolic profiles can

distinguish ICIs responders from non-responders (176). In

addition, current studies are preclinical, it is unclear whether

targeting metabolic pathways will promote ICIs response in clinical

practice. More definitive mechanisms of resistance remain to

be explored.
3.9 Microbiota

Microbiota, has a vital role in various aspects of human

physiology. The gut microbiota has a significant role in regulating

host metabolism and directing the development and function of

immune system. Studies suggest that the primary response to ICIs

in patients with epithelial tumors and melanoma may benefit from
TABLE 1 Clinical trials investigating the effects of ICIs in driver mutation-positive NSCLC.

Study Patients Strategy Results Reference

TATTON
(NCT02143466)

EGFR+
Osimertinib plus Durvalumab Group A: progress on a
previous EGFR TKI Group B: first-line osimertinib plus
durvalumab

Group A: ORR:43%, mDOR: 20.4m; Group B: ORR: 82%,
mDOR: 7.1m

146

CheckMate-012
(NCT01454102)

EGFR+ Nivolumab + Erlotinib ORR: 15%; 24-week PFS rate: 48% 148

-(Safety
evaluation)

ALK+/ROS+/
MET+ ICI + Crizotinb

ICI + Crizotinb: increase ALT level: 45% increase AST level:
36.4% Crizotinib alone: increase ALT level: 8.1%. increase
AST level: 3.4%

149

COSMIC-021
(NCT03170960)

EGFR-/
ALK-/ROS1-

Cabozantinib + Atezolizumab (C+A) Vs Cabozantinib
(C)

C+A: ORR: 19%; DCR: 80%; mOS: 13.8m C: ORR: 6%; DCR:
65%; mOS: 9.4m

150

WJOG8515L
EGFR+

(EGFR TKI
resistant)

Nivolumab (N) vs Pemetrexed + Carboplatin (PC)
N: mPFS: 1.7m; OS: 20.7m;
P+C: mPFS: 5.6m; OS: 19.9m

151

CheckMate-722
(NCT02864251)

EGFR+

(EGFR TKI
resistant)

Nivolumab + Chemotherapy Active –

KEYNOTE-789
(NCT03515837)

EGFR+

(EGFR TKI
resistant)

Pemetrexed + Platinum vs Pemetrexed + Platinum +
Pembrolizumab

Active –
f

ICI, immune checkpoint inhibitor; TKI, tyrosine kinase inhibitor; ORR, objective response rate; DOR, duration of response; PFS, progression-free survival; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; OS, overall survival
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the gut microbial ecosystem (177–180). Several clinical and preclinical

evidence has validated the gut microbiota’s impact on ICIs efficacy

(178–183).

Microbiota composition is related to ICIs sensitivity. Combining

anti-PD-1 with fecal microbiota transplantation (FMT) from healthy

donors could enhance sensitivity to anti-PD-1 treatment (184). The

antibiotic application which could change microbiota composition

may impair the efficacy of ipilimumab. Moreover, anti-CTLA-4-

induced TIL infiltration was significantly reduced in germ-free mice

(180). Clinical trials of FMT in combination with anti-PD-1/PD-L1

also showed promising results, as 6 of 15 patients benefitted from it.

Increased CD8+ T cell activation and reduced myeloid cell were

identified (185). These suggest that microbiota is necessary for ICIs

treatment. Moreover, CTLA-4 blockade reverses the gut microbiota

repertoire, leading to an increase of bacteria, which diminishes the

effects of ipilimumab. And this provided new insights into acquired

resistance to anti-CTLA-4 (186).

The efficacy of ICIs in epithelial tumors was correlated with the

abundance of Akkermansia muciniphila (AKK) (179), and the study

in advanced NSCLC conquered the conclusion (177). AKK-free feces

can confer resistance to anti-PD-1 in mice, and the baseline

expression of AKK is positively correlated with increased ORR and

OS. on the other hand, studies suggest that inosine, a metabolite of

Bifidobacterium pseudolongum, can interact with T cell A2A receptors

to enhance anti-CTLA-4 effects (187). In advanced NSCLC, patients

with abundant Bifidobacterium breve have superior PFS than patients

with undetectable bifidobacteria (188).

In colon cancer, intestinal innate lymphoid cell 3 (ILC-3) was

severely dysregulated. ILC-3 can interact with T cells via MHC-II to

induce microbiota colonization, eliciting type I immune responses.

Transferring microbiota from patients with dysregulated intestinal

ILC-3 to mice induces ICIs resistance, suggesting that immune cells

can directly influence intestinal microbiota colonization, which in

turn affects the anti-tumor immune response (189).

In all, current evidence shows that bacterial species and

microbiota composition are associated with ICIs effect. Moreover,

an increasing number of studies suggest that microorganisms may be

present in tumor tissues, and involved in tumor progression and ICIs

resistance (190, 191). The mechanisms remain unclear. However,

some mechanisms have been proposed, such as cross-reaction

between cancer antigens and microbial peptides, direct presentation

of intracellular bacterial peptides by cancer cells (25, 187, 189, 192).

Based on this, relative therapeutic approaches have been proposed,

such as fecal microbiota transplantation, bacterial isolates and

consortia, probiotic therapy (190). More research is still needed to

determine microbiota’s role in immunotherapy and ICIs resistance.
3.10 Other potential mechanisms

Epigenetics has a vital role in regulating gene expression (193).

Anti-Silencing Function 1A Histone Chaperone (ASF1A) encodes a

member of the H3/H4 family of histone chaperone proteins and is a

critical component of the histone donor complex during nucleosome

assembly. It also binds to bivalent promoters and transcription factors
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to regulate gene expression (194, 195). ASF1A deficiency sensitizes

LUAD to anti-PD-1 by promoting M1 TAM polarization and T cell

activation, suggesting that ASF1A may be a regulator of anti-PD-1

therapeutic sensitivity (194).

In addition, it has been shown that a secreted PD-L1 splicing

variant, which lacks a transmembrane structural domain,

competitively binds anti-PD-L1 monoclonal antibodies, neutralizing

their effects and leading to drug resistance in NSCLC (196).
4 Firing up the cold tumor:
Strategies overview

A classification has been proposed based on the clinical response

to ICIs treatment. Tumors are considered ‘hot’ if they respond to ICIs

and ‘cold’ was characterized as the lack of HLA-I expression, low PD-

L1 expression, and infiltration of immunomodulatory cells (197). The

third category of ‘warm’ tumors has also been proposed, but this

group lacks sufficient clinical information details (12, 198). However,

this classification remains controversial. For example, tumor can have

a low initial antigen presentation effect by reducing neoantigen

expression, resulting in reduced T cell activation, or tumor

overexpressing multiple suppressive immune checkpoint molecules.

Both of them were identified as ‘cold’ tumors. but the response to ICIs

cannot be generalized. Therefore, how to fire up ‘cold’ tumors is the

key to overcoming ICIs resistance.

Combination therapy is the most common treatment, but it

should be based on an in-depth understanding of the mechanisms

of ICIs resistance, rather than simply combining existing therapies

(25). Radiotherapy/chemotherapy combined with anti-PD-1/PD-L1

therapy has become the standard treatment for advanced NSCLC. Its

rationale has been elaborated, such as enhancing tumor antigenicity,

modulating suppressive immune cells, promoting pro-inflammatory

factor release and antigen presentation (11, 199, 200). A large number

of clinical trials have demonstrated its effectiveness (201, 202). In

addition, some studies suggest that ICIs therapy is ineffective after

first-line chemotherapy, and transcriptional analysis shows significant

downregulation of gene expression related to antigen processing and

presentation, as well as IFN and chemokine-related pathways,

suggesting that immunotherapy after chemotherapy is not beneficial

(203). In addition, anti-PD-1/PD-L1 combined with anti-CTLA-4 has

complementary anti-tumor mechanisms. Ipilimumab combined with

nivolumab has been approved for the treatment of advanced

melanoma, renal cell carcinoma, and metastatic colon cancer (204).

Clinical trials in NSCLC have also shown promising results.

Checkmate-227 showed superior outcomes of nivolumab in

combination with ipilimumab, compared to chemotherapy,

especially for patients with TPS ≥ 50% (205). Another phase II

clinical trial investigated the impact of durvalumab in combination

with tremelimumab in NSCLC patients resistant to anti-PD-1, with

10% overall response rate of and 30% disease control rate (206).

In addition, there are many novel drugs for combination therapy,

such as targeted therapies (207–210), lysing viruses (211), cancer

vaccines (212), Chinese herbal medicine (213, 214), and nanoparticles

(215, 216). Meanwhile, metabolism and microbiome with
frontiersin.o
rg

https://doi.org/10.3389/fimmu.2023.1127071
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1127071
immunotherapy is ongoing. For example, inhibition of mitochondrial

metabolism using atovaquone reduces MDSCs and Tregs infiltration,

while CD4+ TIL infiltration increases (217). Targeting the fatty acid

metabolizing enzyme Stearoyl-CoA desaturase-1 (SCD1) combined

with anti-PD-1 also have a synergistic anti-tumor effect, by reducing

Wnt/b-catenin signaling and promoting DCs recruitment (218).

Although some studies showed promising results, there are still

many challenges, such as the double-edged impact of glutaminase

antagonism on T cell (167, 219, 220). The combination of IDO

inhibitors with ICIs did not provide clinical benefit for patients

(221). Moreover, several combination therapies are partly achieved

by intratumor injection, limiting its clinical application. Therefore,

more exploration is necessary.
5 Summary and perspective

Although ICIs have led to a paradigm shift in cancer treatment,

resistance to ICIs has limited its application and the mechanism

represents a critical knowledge gap. Here, we discussed ICIs resistance

mechanisms. Briefly, factors such as neoantigen presentation,

epigenetic modifications, tumor heterogeneity, quantity, and quality

of immune cells in TME simultaneously determine the response to

ICIs therapy (2). However, the interaction of these factors increases

the complexity of the study, and there are still many mechanisms

need to be explored.

Although significant efforts have been made to overcome the

resistance to ICIs, but up to the present they remain investigational

and need to be confirmed in the future.
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