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Identification of a novel
senescence-associated signature
to predict biochemical
recurrence and immune
microenvironment for
prostate cancer

Chenglin Han, Yuxuan Deng, Bin Yang, Peng Hu, Bintao Hu,
Tao Wang, Jihong Liu*, Qidong Xia* and Xiaming Liu*

Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
Background: Prostate cancer (PCa) is an age-associated malignancy with high

morbidity and mortality rate, posing a severe threat to public health. Cellular

senescence, a specialized cell cycle arrest form, results in the secretion of various

inflammatory mediators. In recent studies, senescence has shown an essential role

in tumorigenesis and tumor development, yet the extensive effects of senescence

in PCa have not been systematically investigated. Here, we aimed to develop a

feasible senescence-associated prognosis model for early identification and

appropriate management in patients with PCa.

Method: The RNA sequence results and clinical information available from The

Cancer Genome Atlas (TCGA) and a list of experimentally validated senescence-

related genes (SRGs) from the CellAge database were first obtained. Then, a

senescence-risk signature related with prognosis was constructed using

univariate Cox and LASSO regression analysis. We calculated the risk score of

each patient and divided them into high-risk and low-risk groups in terms of the

median value. Furthermore, two datasets (GSE70770 and GSE46602) were used to

assess the effects of the risk model. A nomogram was built by integrating the risk

score and clinical characteristics, which was further verified using ROC curves and

calibrations. Finally, we compared the differences in the tumor microenvironment

(TME) landscape, drug susceptibility, and the functional enrichment among the

different risk groups.

Results: We established a unique prognostic signature in PCa patients based on

eight SRGs, including CENPA, ADCK5, FOXM1, TFAP4, MAPK, LGALS3, BAG3, and

NOX4, and validated well prognosis-predictive power in independent datasets. The

risk model was associated with age and TNM staging, and the calibration chart

presented a high consistency in nomogram prediction. Additionally, the prognostic

signature could serve as an independent prediction factor due to its high accuracy.

Notably, we found that the risk score was positively associated with tumor

mutation burden (TMB) and immune checkpoint, whereas negatively correlated

with tumor immune dysfunction and exclusion (TIDE), suggesting that these
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patients with risk scores were more sensitive to immunotherapy. Drug

susceptibility analysis revealed differences in the responses to general drugs

(docetaxel, cyclophosphamide, 5-Fluorouracil, cisplatin, paclitaxel, and

vincristine) were yielded between the two risk groups.

Conclusion: Identifying the SRG-score signature may become a promising

method for predicting the prognosis of patients with PCa and tailoring

appropriate treatment strategies.
KEYWORDS

prostate cancer, cell senescence, biochemistry recurrence, prognostic signature,
tumor immunity
Introduction

Prostate cancer (PCa) is a highly prevalent malignancy in men

worldwide, and its incidence still exhibits a steady growth because of

the popularity of serum prostate-specific antigen (PSA) screening (1).

Although conventional PSA test contributes to early intervention

before metastasis, overdiagnosis, and overtreatment are inevitable in

therapy due to its poor specificity. Clinicians may perform

unnecessary biopsies or immoderate over-treatment of low-risk PCa

patients. Radical prostatectomy (RP) and radiotherapy are considered

standard clinical management strategies for patients with localized

prostate neoplasm. Unsatisfactorily, about one-third of patients still

encounter biochemical recurrence (BCR) during follow-up, indicating

a risk of underlying clinical metastases and poor prognosis (2, 3).

Given the high dependency of PCa cells on androgen for proliferation

and survival, androgen deprivation therapy (ADT) is initially capable

of providing oncological control and symptomatic improvement in

most patients; however, these patients ultimately relapse and develop

into advanced castration‐resistant prostate cancer (CRPC) within two

years, and the five-year overall survival rate is not optimistic. As each

biological biomarker has its own limitations, thus it is of great

significance to explore reliable molecular markers and prognosis

models that contribute to early diagnosis and inform decision-

making in the era of precision medicine.

Aging is a gradual decline of an organism over time. Emerging

evidence has demonstrated a subtle connection between PCa and aging

phenotype, particularly cellular senescence characterized by a typically

irreversible growth arrest and morphology alteration and senescence-

associated secretory phenotype (SASP) (4). SASP mainly refers to the

secretion of various bioactive molecules, including pro-inflammatory

cytokines, growth factors, and metalloproteases. During the aging

process, cellular senescence is triggered by multiple intrinsically and

extrinsically detrimental stresses, such as oxidative stress, DNA damage,

telomere shorting, and inappropriate activation of oncogenes (5).

Interestingly, cellular senescence exhibits dual roles in the initiation

and growth of tumors, which partially results in intratumor

heterogeneity to a certain extent (6). In the past decades, senescence

was defined as an adaptive response of cells against unfavorable

conditions. In the context of cancer, senescence-mediated life
02
stagnation is a critical intrinsic mechanism of antitumor defense since

(pre)neoplastic cells can be prevented from proliferation and

progression (7). This concept has recently been queried by conflicting

evidence showing that non-malignant andmalignant cells with lastingly

persistent senescence can acquire carcinogenic properties.

Indeed, senescent cells have been demonstrated to exist in the

murine and human tumor microenvironment (8). Though mitotically

inactive, senescent cells are metabolically active. They undergo

chromosomal aberrations and generate a “fertile” microenvironment

through SASP release, ultimately leading to their malignant

transformation. Fibroblasts account for a large component within

tissues, therefore the pro-tumoral senescent microenvironment

remodeling is inextricably related to a shift in fibroblast behavior (9).

The senescent fibroblasts significantly increased the number of

immunosuppressive myeloid-derived suppressor cells (MDSCs) and

Treg cells, mainly through IL-6 secretion, while averting PD-L1-

mediated immunosuppression by releasing amphiregulin (10, 11).

Regardless of their specific mechanisms, anticancer chemotherapeutics

inevitably induced a senescent phenotype transformation in stromal

fibroblasts and their paracrine secretion activity, sustaining the

clonogenic and invasive potential of PCa cells (12). Remarkably, the

alteration of inflammatory cytokines in senescent dendritic cells (DCs)

and effector T cells was not sufficient to achieve immune-mediated

clearance of tumor cells. Until now, the extent to which cellular

senescence facilitates PCa is still clearly clarified.

Because of the tumor heterogeneity, a thorough understanding of

senescence could provide valuable insights into tumor formation and

progression. In the study, we explored the expression patterns of

cellular senescence-related genes (SRGs) and developed a prognosis-

predictive signature based on eight SRGs (CENPA, ADCK5, FOXM1,

TFAP4, MAPK, LGALS3, BAG3, and NOX4) using bioinformatic

technology. Additionally, a practical senescence-risk algorithm was

built to proceed with quantitative risk stratification of patients with

PCa. Our study demonstrated that the prognosis of patients with

different risk scores was discrepant, and revealed the relationship

between the senescence-risk score and clinicopathologic

characteristics, as well as the immune microenvironment. It also

correlated with TMB, TIDE, and chemotherapeutic sensitivity. Thus,

this research would provide valuable biomarkers for PCa diagnosis
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and monitoring and aid in determining the best patient-specific

course of treatment.
Methods

Data source

The RNA-seq results and corresponding clinical characteristics in

PCa samples were obtained from The Cancer Genome Atlas (TCGA)

database and Gene Expression Omnibus (GEO) database. The profiles

of SRGs (Table S1) were extracted from the CellAge Data Portal.

Notably, GSE70770 and GSE46602 were employed as external

validation datasets.
Defining differentially expressed SRGs

Gene expression patterns were log2 transformed using the

“edgeR” package, then the differentially expressed genes (DEGs) in

normal prostate tissues and PCa tissues were obtained by the R

package “limma”. Notably, the filter thresholds were set as follows: |

log2 (FC)| > 1 and the false discovery rate (FDR)< 0.05. Volcano Plot

and heatmap were conducted with the “pheatmap” R package for

visualizing the gene expression differences. Finally, we performed an

intersection of SRGs and DEGs and acquired a group of differentially

expressed SRGs for further analysis. Following this, we performed

univariate Cox regression to screen SRGs with prognostic value.

Differential expression SRGs with univariate Cox regression p< 0.05

were regarded as essential SRGs in PCa. Interested in whether protein

level expression of these essential SRGs is stable. We systematically

investigated the mutation atlas and co-mutation status of these

essential SRGs in PCa.
Construction and evaluation of the
prognostic model

Having identified essential SRGs associated with prognosis. Then,

we used the least absolute shrinkage and selection operator (LASSO)

regression to achieve the final elimination of potential indicators with

nonzero coefficients (13). The risk model was eventually established

based on the standardized expression levels of these screened

variables weighted by their coefficients derived from the LASSO

regression analysis. The risk score was calculated using the

following formula:

risk score =o
n

i=1
ki ∗Xi

Here, k and X represent their relative expression levels and

regression coefficients. To avoid extreme values and equally reflect

on the senescence degrees, we divided patients into high- and low-risk

subgroups with the cut-off of the median risk value. A TCGA-PCa

internal cohort and two GEO external cohorts (GSE70770 and

GSE46602) were applied to check the validity of the predictive

model. We investigated the relevance of risk scores to clinical

variables by wilcoxon test, and respectively estimated their
Frontiers in Immunology 03
independent prognostic values through the univariate/multivariate

Cox regression. ROC curves were plotted to evaluate the predictive

performance of different clinical pathological characteristics. We

developed a nomogram for predicting non-BCR probability on

account of the risk score and other clinical factors, which was

further evaluated by calibration curves.
Analysis of immune landscapes

The tumor mutational burden (TMB) data were calculated from

the TCGA_PRAD cohort. The association between risk score and

TMB was then analyzed. We also compared the differences in

frequencies of the top mutant 20 genes in the two senescence-risk

groups. The Kaplan-Meier (KM) method was applied to compare the

differences in BCR-free survival between patients with multiple

modes of risk and TMB. We estimated the relative abundance of

immune and stromal cells of each patient from the TCGA database by

applying different algorithms (TIMER, CIBERSORT, QUANTISEQ,

CIBERSORT-ABS, MCPCOUNTER, XCELL, and EPIC). In addition,

correlation coefficients were calculated to determine the relationship

between risk score and infiltrated immune cells. Moreover, we

explored the expression levels of a panel of essential immune

checkpoint targets in high- and low-risk groups. The tumor

immune dysfunction and exclusion (TIDE) score was employed to

reflect the immune evasion of tumor cells and their response to

immune checkpoint inhibitors (ICIs). An association analysis

between risk score and TIDE value was performed, and the

differences in TIDE value among the two subgroups were examined

using the Wilcoxon test.
Drug sensitivity prediction

The ProPhetic algorithm was used to predict the response to

common therapeutic agents, and the half maximal inhibitory

concentration (IC50) was then compared to investigate the drug

sensitivity to conventional chemotherapy among high- and low-risk

patients through “pRRophetic” R package.
Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genome (KEGG) analyses were carried out on the screened candidate

genes using the “ClusterProfiler” R package, and corresponding

GSVA analysis were carried out by R package “GSVA” to

determine whether the risk score was correlated with the

senescence levels in PCa patients.
Protein expression patterns verification of
modeling genes

From the Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/), the immunohistochemical results of the
frontiersin.org
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final genes enrolled in the predictive model were further obtained to

support their differential expression status between PCa and normal

tissue in protein level.
Results

Screening of differentially expressed
prognostic SRGs

A total of 663 PCa patients obtained from 3 independent cohorts

were included in this study, and their basic characteristics were

summarized in Table 1. Firstly, to systematically delineate the

impact of senescence in prostate tumors, we first extracted the

SRGs from the CellAge database and compared their expression in

tumor tissues versus adjacent tissues from the TCGA database. With a

cut-off |log2FC|>1 and FDR<0.05, the profiles of differentially
Frontiers in Immunology 04
expressed SRGs were displayed in volcano and heatmap plots

(Figures 1A, B), which revealed 40 down-regulated genes and 31

up-regulated genes (Table S2). Of these, 13 risky genes (hazard ratio,

HR > 1) and 3 protective genes were finally sorted out as biochemical

recurrence (BCR)-associated factors through univariate Cox

regression analyses, as illustrated in Figure 1C. Furthermore, the

mutation probability of these 16 genes was only 1.03% in 484 prostate

tumor samples, yet several genes could be mutated simultaneously

(Figures 1D, E). These findings demonstrated that the functions of

preliminarily selected SRGs were highly stable and connected.
Construction of prognostic model

Thereafter, LASSO regression analysis and tenfold cross-validation

was performed to identify more meaningful variables for the senescence-

risk signature associated with BCR. The LASSO coefficient profiles were
TABLE 1 The basic characteristics of patients included in the three cohorts.

Overall GSE46602 GSE70770 TCGA p

n 663 36 203 424

Age (%) <0.001

41 2 (0.3) 0 (0.0) 1 (0.5) 1 (0.2)

42 1 (0.2) 0 (0.0) 1 (0.5) 0 (0.0)

43 1 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

44 3 (0.5) 0 (0.0) 1 (0.5) 2 (0.5)

46 6 (0.9) 1 (2.8) 0 (0.0) 5 (1.2)

47 6 (0.9) 0 (0.0) 1 (0.5) 5 (1.2)

48 6 (0.9) 0 (0.0) 2 (1.0) 4 (0.9)

49 6 (0.9) 0 (0.0) 0 (0.0) 6 (1.4)

50 9 (1.4) 0 (0.0) 3 (1.5) 6 (1.4)

51 11 (1.7) 0 (0.0) 2 (1.0) 9 (2.1)

52 11 (1.7) 1 (2.8) 2 (1.0) 8 (1.9)

53 16 (2.4) 1 (2.8) 1 (0.5) 14 (3.3)

54 18 (2.7) 0 (0.0) 5 (2.5) 13 (3.1)

55 25 (3.8) 1 (2.8) 6 (3.0) 18 (4.2)

56 23 (3.5) 0 (0.0) 5 (2.5) 18 (4.2)

57 35 (5.3) 3 (8.3) 5 (2.5) 27 (6.4)

58 26 (3.9) 3 (8.3) 4 (2.0) 19 (4.5)

59 26 (3.9) 4 (11.1) 4 (2.0) 18 (4.2)

60 22 (3.3) 1 (2.8) 5 (2.5) 16 (3.8)

61 32 (4.8) 1 (2.8) 7 (3.4) 24 (5.7)

62 33 (5.0) 1 (2.8) 11 (5.4) 21 (5.0)

63 38 (5.7) 4 (11.1) 9 (4.4) 25 (5.9)

64 32 (4.8) 1 (2.8) 6 (3.0) 25 (5.9)

65 26 (3.9) 1 (2.8) 5 (2.5) 20 (4.7)

(Continued)
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generated against the log(k) sequence and the optimal parameter

(Figures 2A, B). We eventually determined 8 hub genes and their

regression coefficients in the prognostic risk model (Table 2). Figure

S1A showed that they closely interacted with each other.

We calculated the risk score of each sample from the TCGA-

PRAR cohort according to the formula mentioned above, and then

separated all patients into high-risk (n=212) and low-risk (n=212)

subgroups with the median value of 3.75 (Figure S1B). As shown in

Figures 2C, D, patients with high-senescence scores were more likely

to develop BCR in the advanced stage when compared to those in the

low group. In addition, the high-risk and low-risk clusters could be

distinguished and visualized in the PCA plot according to the risk

score model, whereas it was impossible to separate the two subsets

using all SRGs (Figures S1C, D).
Frontiers in Immunology 05
Figure S1E depicted the relationship of the expression of 8

candidate genes with clinical attributes, including T staging, N

staging, and age. There were statistical differences in the senescence

risk score among age ((≤65 and >65), T-staging (T2, T3, T4), and

N-staging (N0, N1), as elucidated in Figures 2E–G. The risk score

raised as the pathological staging increased, which might represent a

worse clinical outcome. Next, univariate and multivariate Cox

regression analysis were applied to explore the prognosis-predictive

value of risk score and above clinical parameters. As presented in

Figures 2H, I, both T staging and risk score were independent

prognostic indicators for PCa. The ROC curve demonstrated that

the predictive model exhibited high sensitivity and specificity, with an

area under the curve (AUC) value of 0.715 (Figure 2J). Therefore, we

speculated that the senescence-risk signature was acceptable.
TABLE 1 Continued

Overall GSE46602 GSE70770 TCGA p

66 33 (5.0) 0 (0.0) 4 (2.0) 29 (6.8)

67 29 (4.4) 3 (8.3) 8 (3.9) 18 (4.2)

68 29 (4.4) 6 (16.7) 1 (0.5) 22 (5.2)

69 19 (2.9) 3 (8.3) 5 (2.5) 11 (2.6)

70 12 (1.8) 0 (0.0) 2 (1.0) 10 (2.4)

71 10 (1.5) 1 (2.8) 1 (0.5) 8 (1.9)

72 11 (1.7) 0 (0.0) 2 (1.0) 9 (2.1)

73 6 (0.9) 0 (0.0) 2 (1.0) 4 (0.9)

74 2 (0.3) 0 (0.0) 0 (0.0) 2 (0.5)

75 3 (0.5) 0 (0.0) 0 (0.0) 3 (0.7)

76 1 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

77 1 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

78 1 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

unknow 92 (13.9) 0 (0.0) 92 (45.3) 0 (0.0)

T (%) 0.316

T1-2 253 (38.2) 19 (52.8) 81 (39.9) 153 (36.1)

T3-4 402 (60.6) 17 (47.2) 119 (58.6) 266 (62.7)

unknow 8 (1.2) 0 (0.0) 3 (1.5) 5 (1.2)

BCR = BCR/Non-BCR (%) 142/521 (21.4/78.6) 22/14 (61.1/38.9) 64/139 (31.5/68.5) 56/368 (13.2/86.8) <0.001

ADCK5 (mean (SD)) 3.86 (0.46) 3.92 (0.42) 3.85 (0.42) 3.86 (0.47) 0.698

BAG3 (mean (SD)) 6.55 (0.62) 6.39 (0.54) 6.49 (0.66) 6.59 (0.61) 0.054

CENPA (mean (SD)) 2.76 (0.44) 2.74 (0.42) 2.83 (0.45) 2.72 (0.44) 0.016

FOXM1 (mean (SD)) 3.21 (0.46) 3.32 (0.42) 3.25 (0.40) 3.19 (0.49) 0.091

LGALS3 (mean (SD)) 6.35 (0.88) 6.04 (0.73) 6.36 (0.93) 6.37 (0.87) 0.095

MAPK12 (mean (SD)) 3.52 (0.52) 3.61 (0.47) 3.60 (0.53) 3.48 (0.52) 0.013

NOX4 (mean (SD)) 2.82 (0.41) 2.88 (0.44) 2.90 (0.40) 2.78 (0.40) 0.003

TFAP4 (mean (SD)) 3.50 (0.31) 3.54 (0.34) 3.54 (0.30) 3.47 (0.31) 0.017

riskScore (median [IQR]) 3.81 [3.50, 4.13] 3.97 [3.78, 4.14] 3.89 [3.63, 4.16] 3.75 [3.42, 4.10] <0.001

Risk = high/low (%) 374/289 (56.4/43.6) 28/8 (77.8/22.2) 134/69 (66.0/34.0) 212/212 (50.0/50.0) <0.001
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Validation of the risk score in the test set

To further verify this prognostic index’s reliability, we selected two

datasets (GSE70770 and GSE46602) as validation tests. Based on the

same cut-off value, patients in two cohorts were subdivided into high-

and low- risk subsets, respectively (Figures S2A, B). There was a negative
Frontiers in Immunology 06
correlation between the risk score and BCR in PCa patients in the

GSE70770 dataset. Nevertheless, no statistically significant difference in

BCR was observed between the two groups in the GSE46602 dataset,

which may be attributed to the small sample size (Figures S2C, D). We

respectively evaluated the BCR-free survival status of each sample in the

two cohorts and obtained a similar yield described before (Figures 3A, B).
B

C D

E

A

FIGURE 1

Identification of 16 vital differentially expressed SRGs in PRAD. (A) Volcano map of differentially expressed SRGs. (B) Heatmap of differentially expressed SRGs.
(C) Forest plot displayed 16 prognosis-associated genes identified by univariate Cox regression. (D) The mutation atlas of these essential SRGs. (E) Co-mutation
status of these essential SRGs.
TABLE 2 The senescence effects of corresponding coefficients of 8 hub genes in this risk model.

Gene Senescence _effect Coef

ADCK5 Induces 0.436959694590544

BAG3 Inhibits -0.164716968019639

CENPA Inhibits 0.0464710448463931

FOXM1 Inhibits 0.447384503744576

LGALS3 Inhibits -0.073349813641182

MAPK12 Induces 0.0947576387538311

NOX4 Induces 0.489534901499645

TFAP4 Induces 0.120995001609793
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Next, we combined all patients from the three cohorts and

implemented a meta-analysis (Figure 3C). The result indicated that the

8-gene prognosticmodel was in good validity (HR = 3.40, 95%CI = 1.45–

8.01, P = 0.03). Integrating the risk score and two clinical parameters (age

and T-staging), we plotted a quantitative algorithm that predicted the

percent weight of BCR status in PCa patients (Figure 3D). Herein, we

randomly plugged a patient into the prognostic nomogram and

calculated his non-BCR probability as 0.969, 0.881 and 0.839 at 1, 3

and 5 years, respectively. We established corresponding calibration

curves, which showed an excellent consistency between predicted and

actual BCR probabilities at 1, 3 and 5 years (Figure 3E). Clearly, these

findings demonstrated that the nomogram had robust

prognostic accuracy.
Tumor mutation burden analysis

Considering that genetic alterations involved oncogenesis and

tumor progression, we drew the mutation spectrum of patients with

low-risk and high-risk scores from the TCGA database, respectively

(Figures 4A, B). Somatic variants analysis displayed the top twenty
Frontiers in Immunology 07
mutated genes, including SPOP, TP53, and PTEN, consistent with the

previously reported conclusions. Among of them, the mutation

frequency of the well-known TP53 remarkably increased from 4%

to 15%, accompanied by the 2-fold proportion of PTEN mutation in

the high-risk group. A significant positive correlation also existed

between TMB and the risk score, as illustrated in Figures 4C, D. The

BCR curve manifested that both TMB and high-risk scores

contributed to worse clinical outcomes of PCa (Figures 4E, F),

which was in line with our expectations.
Immune microenvironment analysis

We next assessed the relationship between 8 SRGs as well as

senescence scores and senescence-associated secretory phenotype

(SASP) activity (Figure 5A). Patients with the immune-

inflammatory subtype (C3) were considered to have a favorable

prognosis (Figure 5B), whereas the risk score was negatively

associated with the C3 immune subtype. Next, we explored the

relationship between the risk score with immune checkpoints

(ICPs) to predict immunotherapy benefits. As shown in
B C

D E F G

H

I

A

J

FIGURE 2

Construction of the prognostic model. (A, B) Results of LASSO regression analysis. (C) Scatter plot of BCR status of each patient in the TCGA cohort. (D) Kaplan-
Meier BCR curves between high- and low-risk groups. (E-G) Correlation of clinical features (Age, T staging and N staging) with risk score. (H, I) Forest plots
showed the association between clinicopathological features (including risk score) and prognosis through univariate and multivariate Cox regression analysis.
(J) ROC curves of prognostic factors.
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Figures 5C, D, the expression levels of most ICPs, such as CTLA4,

CD86, and NRP1, were significantly up-regulated in the high-risk

group, and exhibited a positive correlation with the risk score. Next,

we employed the seven algorithms to analyze immune

microenvironment characteristics (Figures 5E, F). We noticed that

the risk score could evaluate the distribution differences of immune

cell subsets in the prostate tumor tissue. Specifically, the ratio of CD4+

and CD8+ T cells decreased significantly in high-risk patients, yet with

an apparent increase in M2 macrophages, T-cell regulatory (Tregs),

and other harmful immune cells.

To determine the best patient-personalized management in the

clinical setting, we compared the differences in sensitivity toward

chemotherapeutic agents between the two clusters. The TIDE score

was applied to assess immunotherapy efficiency, where a lower TIDE

value meant a better response to immunotherapy. Patients universally

acquired lower TIDE scores in the high-risk group, representing their

more sensitivity to immunotherapy (Figure 5G).
The interaction of risk score and
chemotherapy sensitivity

IC50 referred to the half inhibitory concentration, indicating that

the lower the IC50, the more sensitive patients were to therapeutic
Frontiers in Immunology 08
agents. From the boxplots, we observed that patients with high-risk

scores exhibited stronger sensitivity toward most chemotherapeutic

drugs, including docetaxel, cyclophosphamide, 5-Fluorouracil,

cisplatin, paclitaxel, and vincristine (Figures 6A–F). Altogether,

these results hint that the combination of ADT and these drugs

could improve the antitumor therapeutic potential for such patients

with high-risk scores.
Functional enrichment analysis

Gene set enrichment analysis (GSEA) was conducted to explore

further the profiles of signaling pathway activation among two

senescence-risk subgroups. As illustrated in Figures 7A, B, the

enrichment of biological functions in the high-risk group was

mainly manifested in the cell cycle, primary immunodeficiency, and

the ribosome. In contrast, the top five KEGG pathways in low-risk

patients were “arrhythmogenic right ventricular cardiomyopathy”,

“cardiac muscle contraction” , “dilated cardiomyopathy” ,

“hypertrophic cardiomyopathy” and “tight junction”. Based on the

GO enrichment analysis, we discovered that the biosignatures in the

high-risk patients participated in the positive regulation of these

functions, such as “complement activation”, “phagocytosis

recognition” and “immunoglobulin complex”. On the contrary, the
B

C

D E

A

FIGURE 3

Validation of the risk model (A, B) Kaplan-Meier curves of patients in two risk groups. (C) Meta-analysis of three cohorts. (D) Nomogram was constructed
based on Age, risk score and T staging. (E) Calibration curves of 1-. 3- and 5- year BCR-free survival.
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biological pathways of “muscle contraction” and “contractile fiber”

were significantly activated in patients with low-risk scores

(Figures 7C, D). Furthermore, we verified that risk scores were

positively associated with “oncogene-induced senescence”,

“telomere stress-induced senescence” and “cellular senescence”,

whereas correlating negatively with “the positive regulation of cell

aging” and “multicellular organism aging” (Figure 7E).
Immunohistochemical analysis

We analyzed the expression of hub genes in the senescence-risk

signature using immunohistochemistry (IHC) staining. Compared to

the normal tissue, the levels of CENPA, ADCK5, FOXM1, TFAP4,

and MAPK were up-regulated in prostate tumor tissue, with a

decrease in the expression of LGALS3 and BAG3 (Figures 8A–G).
Frontiers in Immunology 09
Discussion

The morbidity of PCa ranks first in urology, accounting for 56%

of all urological cancers in 2020 (14). However, diagnosis and therapy

against PCa still face enormous challenges on account of enormous

inter-tumor heterogeneity regarding clinicopathological, molecular,

and morphological characteristics. Therefore, we must tailor

appropriate therapeutic strategies to avoid unnecessary treatment

for low-grade tumors, while insuring accurate and rapid

intervention in high-risk cases.

The role of senescence has attracted considerable attention in a

variety of fields. The current perspective indicates that age is the most

critical risk factor for prostate tumorigenesis. According to the

Hayflick limit, most somatic cells divide naturally up to 40–60

times and eventually undergo cellular senescence, a state that

imposes stable cell cycle arrest (15). As an essential biological
B

C D

E F

A

FIGURE 4

Tumor mutation burden (TMB) analysis. (A, B) Mutation spectrum in top 20 genes of high- and low-risk patients. (C) Comparation of TMB between the
two risk groups. (D) Correlation of TMB with risk scores. (E) BCR-free survival analysis for high- and low-risk patients. (F) BCR-free survival analysis for
four groups with different patterns with TMB and risk scores. .
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behavior, senescence works like a safeguard to eliminate abnormal

and dysfunctional cells, thereby maintaining the organism’s

homeostasis. It has long been deemed as a key barrier against

malignant transformation. Cellular senescence is also beneficially

implicated in diverse physiological processes, including wound

healing, embryogenesis, and inflammation (16). Although senescent

cells are present throughout life, their number gradually increases

with age.

However, there is increasing evidence that cellular senescence can

also be regarded as a component of the tumor phenotype (17). Their

excessive accumulation can lead to the commencement and

development of age-related chronic illnesses, such as Alzheimer’s

disease and tumor formation (18). There remain numerous reports of

its adverse effects on the phenotype of the cell or organism. Senescent

cells are usually flattened and form giant multinucleated cells

(GMCs), where metabolic deregulation, chromatin rearrangement,

and resistance to apoptotic stimuli occur (19). Currently, more

evidence has linked the tumor progression with the senescent

microenvironment, which is mainly attributed to the SASP

expression. The SASP refers to a broad spectrum of pro-

inflammatory mediators released by senescent cells, including

chemokines, MMPs, and angiogenic factors, which remodel the
Frontiers in Immunology 10
cellular and surrounding environment and affect nearby cells in

autocrine and paracrine patterns. SASP has been demonstrated to

regulate epithelial-mesenchymal transition (EMT) of tumor cells,

thereby increasing their invasiveness (20). In PCa, senescent tumors

with PTEN-deficiency evade immune surveillance by intensively

triggering immunosuppressive SASP related with recruitment of

myeloid-derived suppressor cells (MDSCs) in tumor niche. Previous

studies indicated that PCa cells underwent a transient growth arrest

upon exposure to either charcoal-stripped serum (CSS) or

antiandrogen bicalutamide. Intriguingly, senescent cell populations

eventually escaped the growth cessation and turned into castrated-

resistant tumors in castrated syngeneic mice. Mechanically, the

emergence of CRPC was associated with the generation of

androgen receptor splice variants (AR-Vs) mediated by senescence,

which further identified senescence as a robust driver of PCa

progression (21).

Quantifying the cellular senescence levels for better stratification

is still a vital suspending question because of the lack of specific

senescence-associated markers (16). In general, current detection

means depend on IHC co-staining for several known biomarkers,

for example, senescence-associated b-galactosidase activity (SA-b-
Gal), p21, and p16INKA, to reduce the false positives (22). However,
B

C D
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A

FIGURE 5

Immune Microenvironment Analysis. (A) Correlation of SASP with 8 SRGs as well as risk score As. (B) Relationship between risk score and immune subtype.
(C) Association between immune checkpoints and 8 SRGs. (D) The expression levels of immune checkpoints in high- and low-risk patients. (E) The distribution
alteration of immune-related cells between the two risk groups. (F) Correlation of risk scores and immune cell infiltration. (G) Comparison of TIDE between high-
and low-risk groups. **p < 0.01; ***p < 0.001.
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this experimental approach hardly guarantees simultaneous dyeing in

certain situations. Additionally, capturing universal senescence

features by analyzing transcriptional profiles of senescent cells is

gaining increasing attention. However, a suitable tool of senescence

quantification in PCa patients remain poorly characterized. Thus, it is

urgently needed to develop a computational method of risk

stratification for better management.

Nowadays, the revolutionary evolution of bioinformatics vastly

facilitates the development of biomedicine, providing great

advantages for studying the diagnosis, pathogenesis, and prognosis

of diseases. Herein, we first acquired a group of senescence-related

genes based on the CellAge database and sifted DEGs between PCa

tissues and adjacent normal tissues from the TCGA database. Here,

we identified 16 vital SRGs in PCa, eight of which were finally

screened out to establish a risk senescence-regulator-gene

prognostic model after employing univariate Cox and LASSO

regression analyses. The accuracy of the predictive model was

further validated using GSE70770 and GSE46602 databases. ROC

curve results indicated that the risk model had strong predictive

power with respect to BCR. Of note, tracing the clinical features of

patients revealed that the high senescence-risk score closely correlated

with TNM staging and an adverse outcome. AR signaling pathway

was seemingly able to regulate senescence. Surprisingly,

supraphysiological androgen levels (SALs) suppressed PCa growth

in an AR-dependent manner by inducing cellular senescence, though

physiologic levels of androgens boost growth (23). Mechanistically,

SAL treatment resulted in an increased level of p16INK4A and

p15INK4K, pRb hyperphosphorylation, and inhibition of E2F

transcriptional activity (24). Non-genomic AR-AKT- p15INK4K

signaling was also involved in androgen-mediated cellular
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senescence (25). Noteworthily, cellular senescence can be triggered

by non-steroidal AR antagonists, such as enzalutamide and

bicalutamide (26).

Additionally, we demonstrated the risk model as an independent

prognosis-predictive indicator in PCa through performing multivariate

Cox regression analysis. Based on the clinicopathological and risk score,

we obtained a calibrated nomogram model that achieved a satisfactory

validation of the predicted 1-, 3- and 5-year BCR times for PCa. The

clinical benefit of immunotherapy varies dramatically among patients,

and the response to immunotherapy largely hinges on

immunomodulatory factors, such as immune checkpoints, immune cell

infiltration, and TMB, which result in tumor heterogeneity (27). The

TIDE score was integrated to evaluate the efficiency of immune

checkpoint inhibitors (ICIs), and a higher TIDE score correlated with

worse ICI response (28). However, high-risk patients exhibited a lower

level of TIDE score and may be more sensitive to ICIs. In our signature,

the risk score has a significantly positive correlation with TMB defined as

the total number of mutations detected per million bases (29). TMB

reflects the neoantigen number on the cell surface; therefore, these

patients with high TMB levels were likely to respond to

immunotherapy. To further determine the relationship between the

senescence score and immune status in PCa, we compared

the difference in filtration of tumor-associated immune cells among the

two risk groups. Patients usually present with increased M2-like

macrophage infiltration and decreased T lymphocytes in the high-risk

group. The risk score negatively affected the C3 immune subtype that

represented the best prognosis. The signature had the tremendous

potential to predict drug response for PCa patients. Our study

suggested that high-risk patients were more likely to show sensitivity to

several conventional anti-PCa agents.
B C

D E F

A

FIGURE 6

Drug susceptibility analysis. The differences in the response to (A) docetaxel, (B) cyclophosphamide, (C) 5-Fluorouracil, (D) cisplatin, (E) paclitaxel, and (F)
vincristine between high- and low-risk score patients.
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Among the eight essential genes from the signature, the following

hub genes deserve to be discussed in depth. The mitogen-activated

protein kinase (MAPK) pathway is one of the most extensively

studied signaling pathways, and its hype-activation is generally

involved in the pathogenesis of human diseases, particularly

tumorigenesis (30). Over the past period, the mutations of various

genes in this MAPK pathway have been identified, including Raf, Ras,

and MEK. These mutational molecules constitutively activate the

MAPK signaling to promote the progression of various malignancies.

Consistent with other tumors, the MAPK signaling pathway is highly

activated in PCa, and its activity is especially associated with androgen

independence, therapeutic resistance, and poor prognosis (31).

MAPK stabilized the GATA2 protein through suppressing GATA2

ubiquitination/degradation and enhanced its transcriptional

expression for AR activation, which resulted in castration resistance
Frontiers in Immunology 12
(32). As such, MAPK-associated molecules have been regarded as

therapeutic targets, and a few attempts have been made to explore the

regulatory network of MAPK activation in PCa.

Reactive oxygen species (ROS), critical regulators of redox

signaling, are implicated in diverse physiological and pathological

processes (e.g., proliferation, metastasis, and differentiation). ROS are

both by-products of intracellular metabolism and enzymatic products

(33). The NADPH oxidase (NOX) family, a primary source of

detectable ROS, contains seven members (Nox1-5 and Duox1-2),

catalyze the electron transfer from the cytosolic donor NADPH

across biological membranes to generate isoform-specific superoxide

and hydrogen peroxide (H2O2). NOX4-ROS-mediated NF-kB

stimulation and subsequent AR expression induced the survival of

AR-positive PCa cells (34). Nox4 is unique in the NOX enzymatic

family as it is constitutively active. It can mediate oxidative stress/DNA
B
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A

FIGURE 7

GSEA and GSVA. (A, B) KEGG pathway enrichment analysis for high- and low risk groups. (C, D) GO functional enrichment analysis for high- and low risk
groups. (E) GSVA in cell aging related pathways.
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damage, resulting in cellular senescence in a subgroup of prostatic

epithelial cells and secondary senescence-associated secretory response

(35, 36). Notably, Nox4 induced the biological process of cellular

senescence when highly expressed in mouse NIH3T3 fibroblasts in

vitro (18/33). Recently, several studies showed a significant

upregulation of Nox4 expression in PCa patients that experienced

BCR following radical prostatectomy and in patients with decreased

PCa-specific survival (37, 37).

FOXM1, as a crucial transcription factor, contributes to the

phenotype of tumor cells by regulating downstream target genes.

After inhibition of FOXM1 expression in PC-3 cells, the

downregulated genes were mainly enriched in the DNA repair

pathway, specifically in homologous recombination (HR).

Additionally, we observed that FOXM1 was aberrantly

overexpressed in various human malignancies according to TCGA

databases and confirmed prognostic values of its regulatory network

(20/44). FOXM1 levels are highly associated with the Gleason score

(GS) and acquired resistance in advantage stage of PCa. siRNA-

mediated FOXM1 suppression could re-sensitize resistant PCa cells to

docetaxel-mediated apoptosis (38). A previous study indicated that

FOXM1 could directly bind to PSA promoter/enhancer regions,

regardless of the presence of androgen. Hence, FOXM1 may be
Frontiers in Immunology 13
considered as a novel androgen-independent molecule in CRPC.

FOXM1 was also reported to drive the progression of prostate

cancer subtype 1 (PCS1), the most aggressive and lethal PCa (39).

CENPA is a histone H3-like protein that participates in centromeric

nucleosome formation and is recognized as the shared gene between

the FOXM1 pathway and PCS (40). Also, CENPA appears positively

enriched in the WNT/b-Catenin signaling pathway and acts as the

main regulon of Ki-67, a ubiquitous prognostic and proliferative

marker widely employed in tumor histopathology (41)(22/22).

Herein, we reported that CENPA was up-regulated in PCa tissues,

and its overexpression correlated with adverse clinicopathological

outcomes in a large cohort (42).

Previous studies revealed that TFAP4 acted as a rate-limiting

regulator of adenoma initiation and promoted tumorigenic capability

(43). TFAP4 presumably maintains tumor hallmarks by repressing or

activating genes that contain CAGCTG elements in their promoter

regions, thereby regulating biological processes such as proliferation,

epithelial-mesenchymal transition (EMT), and metabolism (44). In

prostate carcinoma, TFAP4 was strongly elevated and associated with

lymph node metastasis and GS. MiR-22-3p is characterized as a

senescence-related microRNA that exerts functions by directly

targeting and suppressing SIRT1, CDK6, MDC1, and Sp1 (45, 46).
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FIGURE 8

IHC staining of (A) BAG3, (B) LGALS3, (C) CENPA, (D) ADCK5, (E) FOXM1, (F) TFAP4, and (G) MAPK12 in normal tissues (left) and PCa tissues (right).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126902
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2023.1126902
However, TFAP4-deficient tumor cells displayed increased

spontaneous DNA damage, chromosomal instability (CIN), and

cellular senescence mediated by direct or indirect MiR-22-3p

repression by AP4.

There were some limitations and deficiencies in this present

study. First, eight hub genes were selected to construct the

prognosis-predictive model, which may increase healthcare costs

for each patient. Hence, our signature needs further improvement

and simplification. Second, the treatment modalities (surgery,

radiotherapy, and ADT) in patients were not taken into

consideration, which may cause certain inaccuracy problems.

Third, experiments in vivo and in vitro should be performed to

understand the biological functions of the eight SRGs; meanwhile,

the prognostic value of the signature needed to be further

validated clinically.

In conclusion, we constructed and validated a practical

senescence-risk algorithm based on eight SRGs, and the signature

hopefully acted as a potential risk model for PCa-prognostic

prediction. Additionally, the research discovered new information

on the correlation relationship between the SRG-score with

TMB, immune microenvironment, and drug sensitivity, which

can provide vital insight for tailoring therapeutic choices for

PCa patients.
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SUPPLEMENTARY FIGURE 1

(A) Correlation among the 8 genes. (B) Risk scores of each patient in the TCGA

cohort. (C, D) PCA based on 8 selected SRGs and all SRGs in high- and low-risk
patients. (E) Relationship of clinical characteristics with the expression of genes

enrolled in this signature.

SUPPLEMENTARY FIGURE 2

(A, B) Distribution of risk score in the GSE70770 and GSE46602 test database.
(C, D) BCR status of each patient in the two cohort.
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