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Atherosclerosis is an early pathological basis of numerous cardiovascular events

that result in death or disability. Recent studies have described PCSK9 as a novel

target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on

the surface of hepatocytes through the regulation of lipid metabolism, and it can

function as a novel inflammatory modulator in atherosclerosis. Inflammasomes

are important intracellular multiprotein complexes that promote the inflammatory

response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is

particularly notable because of its important role in the development of

atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and

pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may

trigger the release of IL-1b and IL-18 and contribute to the inflammatory response.

Several recent studies have indicated that there may be interactions between

PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory

response that drives atherosclerosis development and progression. On the one

hand, the NLRP3 inflammasome plays an important role via IL-1b in regulating

PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent

pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome

signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3

inflammasome activation in the context of atherosclerosis. Furthermore, we

describe the current understanding of the specific molecular mechanism

underlying the interactions between PCSK9 and NLRP3 inflammasome signaling

as well as the drug repositioning events that influence vascular cells and exert

beneficial antiatherosclerotic effects. This review may provide a new therapeutic

direction for the effective prevention and treatment of atherosclerosis in the clinic.
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Introduction

Inflammation is an important driver of atherosclerosis, which is

an early pathological basis of cardiovascular disease (1).

Atherosclerosis is characterized by the excessive accumulation of

lipids, extracellular matrix, and cholesterol-laden macrophages

under the arterial endothelium, resulting in the formation of

atherosclerotic plaques (2, 3). LDL-cholesterol (C) is considered

to be a major risk factor for the development of atherosclerotic

diseases (4). The mechanism by which proprotein convertase

subtilisin/kexin type 9 (PCSK9) regulates LDLR degradation

involves both extracellular and intracellular pathways. On the one

hand, extracellular PCSK9 can act as a companion protein and bind

to LDL-receptor (R) on the cell surface, thus causing the formation

of a complex and directing LDLR to lysosomes where the PCSK9/

LDLR complex is degraded, thereby promoting further LDL-C

accumulation (5). On the other hand, intracellular PCSK9 can

also directly bind with LDLR in the Golgi network to induce the

lysosomal degradation of LDLR (6). PCSK9 is closely associated

with the indirect regulation of lipid metabolism (5) and participates

in the direct regulation of atherosclerosis via the accumulation of

foam cells and inflammatory mediators as well as apoptosis in

vascular walls (7). If PCSK9 inhibition is reduced, there is more

PCSK9, more degraded LDLRs and therefore an increase in LDL

levels (8). Persistent accumulation of LDL results in not only the

formation of foam cells but also the chronic amplification of

inflammatory responses, which are major causes of plaque

rupture and vascular thrombosis (9). NOD-like receptor

thermal protein domain associated protein 3 (NLRP3)

inflammasomes are classical receptors of intracellular innate

immunity that closely regulate inflammatory responses (10).

NLRP3 inflammasome activation is a powerful mediator

of the inflammatory response via caspase-1 activation (11).

The NLRP3 inflammasome can activate caspase-1 and cleave pro-

IL-1b and IL-18 to generate IL-1b and IL-18, which further

promote inflammatory responses and play crucial roles in

regulating atherosclerotic lesions (12).

Recently, several studies have reported that PCSK9 activates the

NLRP3 inflammasome signaling pathway and the associated

inflammation (13–15). Conversely, the NLRP3 inflammasome

signaling pathway can regulate PCSK9 secretion (16). However,

the regulatory mechanisms are still not fully understood, especially

in the context of atherosclerosis. In this review, we summarize

the current findings related to the interactions between PCSK9 and

the NLRP3 inflammasome in atherosclerosis. Furthermore, we

describe the specific molecular mechanism underlying the

PCSK9 and NLRP3 inflammasome signaling pathway in

atherosclerosis and cells related to inflammation, including

vascular smooth muscle cells (VSMCs), endothelial cells (ECs)

and macrophages (MФ). These findings may provide a novel

theoretical basis and important targets for clinical application in

the treatment of atherosclerosis.
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PCSK9 biology and its role
in atherothrombosis

PCSK9 biology

In 2003, Abifadel M et al. first reported that PCSK9 is highly

expressed in the liver and contributes to cholesterol homeostasis

(17). Similar to other proprotein convertases, PCSK9 is synthesized

as a soluble proenzyme and undergoes autocatalytic cleavage in the

endoplasmic reticulum (ER) at residue 152 between its prodomain

and catalytic domains (18). Then, a stable heterodimer consisting of

a prodomain of approximately 14 kDa and a mature fragment of

approximately 57 kDa is formed, as shown in Figure 1. After

transportation to the Golgi apparatus, the protein is modified by

acetylation and subsequently secreted (18). PCSK9 is mainly

secreted by the liver, small intestine, kidney, skin, and

cerebrospinal fluid, while PCSK9 in blood is almost exclusively

secreted from the liver (19). PCSK9 and LDLR form a tight complex

and are targeted to lysosomes for degradation, thereby reducing the

level of LDLR on the surface of hepatocytes and decreasing hepatic

clearance of LDL-C (20).

Through its function of degrading the LDLR, PCSK9 is a key

player in lipid metabolism by regulating the LDL level in blood

responsible for hypercholesterolemia, which is associated with the

risk of atherosclerosis (21). Overexpression of PCSK9 was found to

inversely downregulate the expression of LDLR and reduce the

clearance of cholesterol from plasma, so inhibiting PCSK9

overexpression is significant in the prevention and treatment of

atherosclerosis. Moreover, Tavori et al. found that PCSK9

expression is involved in regulating the size and composition of

atherosclerotic plaques and significantly enlarges atherosclerotic

lesion areas (8). Giunzioni et al. further showed that PCSK9

directly increases the inflammation of atherosclerotic lesion in an

LDLR-dependent but cholesterol-independent manner, suggesting

that therapeutic PCSK9 inhibition may have vascular benefits that

are secondary to reductions in the LDL levels (22). Overall, PCSK9

is expressed at high levels at the sites of atherosclerotic lesions,

particularly in intimal plaques (23). PCSK9 inhibition

has emerged as a potential novel therapeutic approach to

treat hypercholesterolemia and associated diseases, such

as atherosclerosis.
PCSK9 is a key modulator
of atherosclerosis

It has been clearly established that PCSK9 plays a crucial role in

the development of atherosclerosis. While the liver is the major

source of circulating PCSK9, PCSK9 is also expressed in various

cellular components of atherosclerotic plaques, including

monocytes/MФs, VSMCs, and ECs, that directly participate in the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126823
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1126823
progression of atherosclerotic lesions by exacerbating vascular

inflammation (Figure 2 and Table S1) (24–31). Moreover, the

secretion of PCSK9 in ECs, SMCs and MФs were strongly

induced by LPS treatment with or without ATP compared with

the control (23, 32). PCSK9 secreted by VSMCs, which express

more PCSK9 than ECs in a paracrine manner, downregulating

LDLR expression on the cell surface of MФs and preventing the

formation of foam cells, thus reducing atherosclerosis progression.

However, native LDL molecules are not the major source of

cholesterol accumulation in macrophages and LDLR is not the
Frontiers in Immunology 03
main receptor for lipoprotein uptake in cells within the

atherosclerotic plaque (5). Scavenger receptors expressed by MФ

in vessel walls take up LDL-cholesterol, resulting in the

transformation of MФs into foam cells that secrete a large

amount of proinflammatory cytokines and mature into activated

MФ, contributing to the acceleration of arterial inflammation and

atherosclerosis (33, 34). Cluster of differentiation 36(CD36) is a

scavenger receptor that is highly expressed in macrophages and

macrophage-derived foam cells in atherosclerotic plaques. Levy

et al. found that gain-of-function PCSK9 mutants could
A

B

FIGURE 1

Structure diagram of PCSK9. (A) PCSK9 is the ninth member of the subtilisin serine protease family, and its gene is located on human chromosome
1p32.3, is 22 kb in length, includes 12 exons, and encodes 692 amino acids. (B) PCSK9 consists of a signal peptide (residues 1–30), a prodomain
(residues 31–152), a catalytic domain (residues 153–451), and a C-terminal domain (residues 452–692). Similar to other proprotein convertases,
PCSK9 is synthesized as a soluble proenzyme and undergoes autocatalytic cleavage in the ER at residue 152 between its prodomain and catalytic
domains. Then, a stable heterodimer consisting of a prodomain of approximately 14 kDa and a mature fragment of approximately 57 kDa is formed,
and after transportation to the Golgi apparatus, the protein is modified by acetylation and subsequently secreted.
FIGURE 2

Role of PCSK9 in atherosclerosis. PCSK9 and LDLR form a complex and are targeted to lysosomes for degradation. Secreted PCSK9 by the liver
reduces the level of LDLR not only on hepatocytes surface but also on other cells. PCSK9 promotes platelet activation, leukocyte recruitment and
clot formation both in the plasma and in vascular cells. Proinflammatory stimuli activate ECs and increase adhesion molecules, promoting the
adhesion and migration of monocytes. Migrated monocytes and ox-LDL-C accumulate in the subintimal region. Meanwhile, migrated monocytes
transforms into MФs. In inflammatory milieu, PCSK9 increases scavenger receptors to increase ox-LDL uptake. In addition, PCSK9 mediated
inflammation via activating LRP1, TLR4/NF-kB pathway. PCSK9 increased cholesterol synthesis by activating ACAT-2/ApoB48. Furthermore, migrated
SMCs can absorb lipid and exacerbate the inflammatory responses and myogenic foam cell formation caused by the effects of growth factors and
proinflammatory cytokines. In VSMCs, PCSK9 is enhanced by mtDNA damage via the upregulation of p-mTOR. In turn, PCSK9 increases mtDNA
damage by regulating the apoptotic proteins via MAPK signaling pathway. Besides, low shear stress increases PCSK9, which induces EC dysfunction
and upregulates AP-1 and NF-kB.
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significantly increase CD36 expression (35). In addition, Ding et al.

also showed that PCSK9 can enhance the uptake of ox-LDL in MФs

by targeting lectin-like ox-LDL receptor 1(LOX-1) (23). Moreover,

Giunzioni et al. found that PCSK9 exerts a direct effect on the

monocyte/MФ phenotype during the progression of atherosclerosis

(22). Given that LDL-R-related protein 1(LRP1) deficiency induces

nuclear factor kappa-B (NF-kB) activation and promotes a

proinflammatory phenotype in MФs, some studies have suggested

that PCSK9 induces macrophage inflammation by targeting LRP1

for degradation. Tang et al. found that PCSK9 overexpression

upregulates toll-like receptors 4 (TLR4) expression and promotes

inhibitor kappa B alpha (IkBa) degradation, p-IkBa expression,

and NF-kB nuclear translocation (36). The findings show that

PCSK9 enhances inflammatory cytokine secretion through TLR4/

NF-kB pathway activation in MФs. Another mechanism underlying

the PCSK9-mediated promotion of inflammation might involve the

PCSK9-induced LDLR-independent degradation of apolipoprotein

E receptor 2 (ApoER2) (37), which plays a critical role in

maintaining the anti-inflammatory phenotype of MФs; these

results indicate that PCSK9 can regulate macrophage

inflammation through inflammasome activation.

VSMCs are important for the maintenance of vascular

homeostasis and play a key role in atherosclerosis (38). PCSK9 is

reported to be expressed in VSMCs in atherosclerotic plaques (39),

and its expression is markedly increased by inflammatory stimuli,

indicating that proinflammatory factors that are associated with

atherosclerosis stimulate PCSK9 expression in VSMCs and

suggesting a critical role for PCSK9 in the development of

atherosclerotic lesions (40). For example, migration of SMCs from

the tunica media of the vessel wall can lead to increased lipid

absorption and exacerbate the inflammatory responses and

myogenic foam cell formation caused by the effects of growth

factors and proinflammatory cytokines on the fatty streak (41).

Previous studies have shown that there is a positive feedback

interplay between VSMC-derived PCSK9 and mitochondrial DNA

(mtDNA) damage in the proinflammatory milieu that involves

mitochondrial reactive oxygen species (mtROS); this feedback loop

results in inflammation, oxidative stress, and apoptosis, which

directly contribute to atherosclerosis (42). In VSMCs, PCSK9,

which increases mtDNA damage by upregulating the expression of

the pro-apoptotic proteins Bax, caspase-9, and caspase-3 and

downregulating the expression of Bcl-2, is correlated with the

activation of the MAPK signaling pathway. Moreover, PCSK9

expression is enhanced by mtDNA damage via the upregulation of

p-mTOR expression in a dose-dependent manner, while inhibition

of PCSK9 reduces mammalian target of rapamycin (mTOR)

phosphorylation and decreases VSMC autophagy.

Vascular endothelial dysfunction and the inflammatory response

contribute to the initiation and progression of atherosclerosis (43).

Landlinger et al. found that treatment of mice with AT04A obviously

suppressed the inflammatory response and activated ECs and

stimulated monocyte/macrophage migration, suggesting that

PCSK9 inhibition also suppresses endothelial inflammation (44).

Although PCSK9 expression and secretion by ECsmay be lower than

that by VSMCs, the effects of PCSK9 on EC biology in atherosclerosis
Frontiers in Immunology 04
cannot be ignored. The development of atherosclerosis is caused by a

variety of factors, including biochemical factors and physical factors.

Hemodynamic shear stress regulates EC functions and influences the

pathobiology of atherosclerosis (45). Laminar shear stress is thought

to exert atheroprotective effects (46). Conversely, low shear stress

significantly increases PCSK9 expression, induces EC dysfunction,

and upregulates the expression of transcription factors, including

AP-1 and NF-kB, that promote pro-oxidant and proinflammatory

states (40, 46); these results indicate that PCSK9 may play an

important role in the EC inflammation that is induced by

low shear stress.
NLRP3 inflammasome
signaling pathway

Hosts regulate the release of intracellular inflammatory

mediators and the initiation of inflammatory responses mainly

through two types of pattern recognition receptors (PRRs), namely,

membrane-boundToll-like receptors (TLRs) and nucleotide-binding

oligomerization domain (NOD)-like receptors (NLRs) (47, 48); these

receptors recognize pathogen-associated molecular patterns

(PAMPs) and danger-associated molecular patterns (DAMPs) and

thus promote the maturation and release of tightly regulated, highly

inflammatory cytokines. NLRP3 is a recognized PRR, and it is a

cytoplasmic receptor that responds to danger signals and can be

activated to form the NLRP3 inflammasome (49).

The NLRP3 inflammasome is a multimolecular protein complex

that comprises the NOD-like receptor NLRP3, the adaptor ASC and

the effector pro-caspase-1, which play fundamental roles in

inflammation (50). Among these components, the NOD-like

receptor NLRP3 contains a leucine-rich repeat (LRR) domain,

nucleotide triphosphatase (NACHT) domain, and pyrin domain

(PYD), and it plays fundamental roles in inflammation (51). ASC

is composed of the N-terminal PYD domain and the C-terminal

CARD domain, which promote oligomeric homotypic interactions

(52). Pro-caspase-1 is composed of a CARD and catalytic domain,

including p10 and p20 (53). The sensing of various stimuli by TLRs

on the cell membrane can induce the activation of the TRIF/NF-kB
and TLR4/MyD88 signaling pathways and upregulate the

transcription of NLRP3 receptor proteins and proinflammatory

cytokines (54, 55). Moreover, the LRR domain of NLRP3 senses

stimuli, which leads to NACHT domain oligomerization, most likely

by promoting a PYD-ASC interaction, and these processes result in

the formation of the NLRP3 inflammasome via the binding of pro-

caspase-1, which is another component of the NLRP3

inflammasome, to CARD and ASC (56, 57). Upon activation, the

NLRP3 inflammasome results in the proteolytic activation of caspase-

1, which facilitates the cleavage of pro-IL-1b and pro-IL-18 and the

secretion of the proinflammatory cytokines IL-1b and IL-18

(58) (Figure 3).

Additionally, the caspase-1-dependent cleavage of gasdermin-D

(GSDMD) is thought to be the classic initiator pyroptotic cell death

(59). Pyroptosis is a novel form of cell death that is induced in
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response to cell disruption by the inflammasome-induced GSDMD

protein, which promotes the release of proinflammatory cytokines,

such as IL-1b and IL-18 (60). Previous studies have revealed that

pyroptosis is involved in atherosclerotic plaque formation.

Activated caspase-1 cleaves GSDMD and generates an active N-

terminal cleaving product (GSDMD-NT), which translocates to the

plasma membrane and oligomerizes to form a pore that allows the

release of IL-1b and IL-18, subsequently inducing pyroptotic cell

death and promoting the occurrence and development of

atherosclerosis (61).
The role of the NLRP3 inflammasome
signaling pathway in atherosclerosis

Recently, it has been shown that NLRP3 inflammasome/IL-1b
signaling-mediated inflammation plays an important role in the

development of atherosclerosis (12), as is shown in Table S2 (62–73)

and Figure 4. The inflammatory process starts with inflammasome

activation, which leads to the release of mature IL-1b. Various
PAMPs and DAMPs have been shown to activate macrophages

(74). Upon activation, macrophages exacerbate the vascular

inflammatory response by releasing cytokines, and activated

macrophages are the main source of IL-1b (75). For example,

Orecchioni et al. recently found that macrophages express the

olfactory receptor Olfr2 and all associated trafficking and signaling

molecules, which drive atherosclerosis via NLRP3-dependent IL-1b
secretion (76). In addition, a study by Zhang et al. reported that

desmosterol suppressed inflammasome activation in macrophages

and protected against vascular inflammation and atherosclerosis

(77). Decreased desmosterol accumulation in mitochondria

promotes mtROS product ion and NLRP3-dependent
Frontiers in Immunology 05
inflammasome activation. NLRP3 or ASC deficiency can reverse

the increase in inflammasome activity and atherogenesis that is

observed in desmosterol-depleted macrophages.

Endothelium dysfunction is involved in the development of

atherosclerotic vascular lesions. It has been shown that ECs

synthesize IL-1b in response to inflammatory stimuli; moreover,

the atherosclerotic endothelium exhibits increased expression of IL-

1b (78).Wilson et al. found that HUVECs express P2X (4) R and P2X

(7)R subtypes, and both were significantly upregulated under

inflammatory conditions (79). Activation of P2X(7)Rs results in the

release of low levels of bioactive IL-1b and the simultaneous release of

IL-1Ra (79). Wu et al. demonstrated that cytotoxin-associated gene A

(CagA) promotes aortic endothelial inflammation and accelerates

atherosclerosis through the NLRP3/caspase-1/IL-1b axis (80). In

addition, the activation of the vascular endothelium and the

infiltration of circulating monocytes into the vessel wall are

considered to be key factors in the occurrence and development of

atherosclerosis (81). Hettwer et al. revealed that IL-1b suppression

reduces inflammatory leukocyte production and uptake in

atherosclerosis (82). When the NLRP3 inflammasome is inhibited

in ECs from atherosclerotic aortas, these cells show decreased

expression of leukocyte chemoattractants and adhesion molecules,

indicating that NLRP3 inflammasome- and IL-1b-targeted therapies

may reduce blood leukocyte recruitment to atherosclerotic aortas.

The inflammatory response that is induced by VSMC apoptosis

accounts for approximately 15% of the systemic inflammatory

response in atherosclerosis. Apoptotic VSMCs are phagocytosed by

normal endothelial cells in vivo, which does not require the

involvement of macrophages, leading to the inhibition of

inflammation and slowing the progression of atherosclerosis (83). In

addition, Clarke et al. found that necrotic VSMCs release IL-1a,

whereas apoptotic VSMCs undergoing secondary necrosis release
FIGURE 3

Activation of the NLRP3 inflammasome signaling pathway. The NLRP3 inflammasome is comprised of the NLRP3, ASC and pro-caspase-1. The
sensing of various stimuli by TLRs on the cell membrane can induce the activation of the TRIF/NF-kB, the activation of TLR4/MyD88 signaling, the
transcription of NLRP3 receptor proteins and lead to formation of NLRP3 inflammasome. Upon activation, NLRP3 induces the proteolytic activation
of caspase-1, which facilitates the cleavage of pro-IL-1b and pro-IL-18. Additionally, activated caspase-1 cleaves GSDMD and generates an active
GSDMD-NT, which translocates to the plasma membrane and oligomerizes to form a pore that allows the secretion of IL-1b and IL-18, subsequently
inducing pyroptotic cell death.
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both IL-1a and IL-1b. IL-1 from necrotic VSMCs induces the

surrounding viable VSMCs to produce proinflammatory cytokines.

Thus, the failure to clear apoptotic VSMCs caused by hyperlipidemia

in vivo may promote the increases in serum cytokine levels and

chronic inflammation associated with atherosclerosis (83). In addition,

NLRP3 inflammasome activation and IL-1b signaling play a direct

role in VSMC phenotypic switching (84). Fabienne Burger et al. found

that monocytes can trigger NLRP3 transcription factors expression,

thus promoting NLRP3 inflammasome activation and IL-1b secretion,
and these cells can decrease Oct-4 expression in VSMCs and

upregulate klf4 expression to control the phenotypic transformation

of atherosclerotic VSMCs into macrophage-like cells (85).

Interactions between PCSK9
and the NLRP3 inflammasome
signaling pathway

Effects of PCSK9 on the NLRP3
inflammasome signaling pathway

Several studies have revealed that both PCSK9 expression and

NLRP3 inflammasome-induced pyroptosis occur in atherosclerotic

plaques (13). Some studies have reported that there are interactions

between PCSK9 and the NLRP3 inflammasome in atherosclerosis

(86) (Table S3) (87, 88, Figure 5). PCSK9 is considered to be a key

inflammatory signal, and it is also abundantly expressed in cells that

are exposed to inflammatory stimuli, such as lipopolysaccharide

(LPS) (89). The NLRP3 inflammasome has been considered to be a

link between lipid metabolism and inflammation, and it induces
Frontiers in Immunology 06
pyroptosis and exerts a significant effect on atherogenesis (90). Under

hypoxic conditions, PCSK9 promotes the secretion of

proinflammatory cytokines by macrophages to exacerbate hypoxia/

reoxygenation-induced cardiomyocyte injury by activating the NF-

kB signaling pathway (91). Moreover, PCSK9 knockout significantly

inhibits hypoxia-induced inflammation and cell death, inhibits

macrophage recruitment, and suppresses the migration and

proliferation of VSMCs; these effects are related to the inhibition of

NLRP3 inflammasome activation (15). Using sepsis models in

HUVECs and mice, Huang et al. found that increased PCSK9

expression during sepsis activates the TLR4/MyD88/NF-kB and

NLRP3 pathways to induce inflammation, which results in vascular

endothelial dysfunction and decreased survival (14). In addition,

several studies have also demonstrated that the NLRP3

inflammasome and pyroptosis-related proteins are activated under

hypoxia conditions (92). Ding et al. established a LCA ligationmodel

in mice to model the atherosclerotic state and found that PCSK9

expression could be strongly enhanced in the zone bordering the

infarcted area (93). Moreover, the study reported that pyroptosis is

significantly observed in the zone bordering the myocardial infarcted

area (94). These studies further demonstrated a close correlation

between PCSK9 and the NLRP3 inflammasome signaling pathway,

and both are involved in the process of hypoxia-induced pyroptosis.

Mitochondrial ROS promote macrophage pyroptosis by inducing

GSDMD oxidation. Excess production of mtROS and subsequent

mtDNA damage are common triggers of NLRP3 inflammasome

activation (95), while GSDMD activation and LDH release are key

mediators of the occurrence of pyroptosis. Wang et al. found that

PCSK9 regulates pyroptosis viamtDNAdamage in chronicmyocardial

ischemia (13). PCSK9 initiates mitochondrial DNA (mtDNA) damage,
FIGURE 4

The role of the NLRP3 inflammasome signaling pathway in atherosclerosis. (A) Inflammatory endothelium can improve the recruitment of leucocytes
via increasing ICAM-1 and VCAM-1, thus attracting monocytes to migrate and differentiate into macrophages. Then, macrophages phagocytose the
modified lipoproteins and increase the foam cells formation. Inflammatory stimuli activate the synthesis of pro-IL-1b and increase the caspase-1.
Both of P2X(4)R and P2X(7)R are also significantly upregulated under inflammatory conditions and promote the release of IL-1b and IL-1Ra.
Moreover, CagA promotes endothelial inflammation through the NLRP3/caspase-1/IL-1b axis. (B) Various PAMPs and DAMPs can activate
macrophages. Macrophages express the Olfr2, which drive atherosclerosis via NLRP3-dependent IL-1b secretion. Desmosterol accumulation in
mitochondria suppresses mtROS production and NLRP3 inflammasome activation. (C) VSMC apoptosis can induce the inflammatory response.
Normal VSMCs inhibit the inflammation by phagocytosing apoptotic VSMCs in vivo. Monocytes can trigger NLRP3 inflammasome activation and the
expression of NLRP3, promoting IL-1b secretion, and these cells can decrease Oct-4 in VSMCs and upregulate klf4 to control the phenotypic
transformation of VSMCs into macrophage-like cells.
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activates NLRP3 inflammasome signaling (NLRP3, ASC, Caspase-1,

IL-1b, and IL-18), and subsequently induces Caspase-1-dependent

pyroptosis, with intense expression of PCSK9 and the pyroptosis

marker GSDMD-NT in the zone bordering the infarct area.

Moreover, PCSK9 knockout significantly decreases the NLRP3

inflammasome signaling, GSDMD-NT expression, and LDH release

(13, 15). These results suggest that PCSK9 regulates Caspase-1-

dependent pyroptosis via mtDNA damage and may reveal

proinflammatory processes, including NLRP3 inflammasome

signaling and pyroptosis, as potential targets for the treatment of

PCSK9-related cardiovascular diseases (13). Additionally, PCSK9

binds to the LDLR and enhances its degradation, which leads to the

reduced clearance of LDL-C and a higher risk of atherosclerosis.

Landlinger et al. found that AT04A immunization induced high and

persistent levels of antibodies against PCSK9, significantly reducing the

total cholesterol and LDL-C levels in plasma, decreasing vascular

inflammation, and ultimately reducing ICAM expression in activated

endothelial cells and caspase-1-activating NLRP3 inflammasome-

related protein expression in proinflammatory macrophages (44).
Effects of the NLRP3 inflammasome
signaling pathway on PCSK9

Notably, the expression of NLRP3 inflammasome-related

proteins and secretion of PCSK9 were particularly evident when

mouse peritoneal macrophages were exposed to LPS, ATP or

nigericin, indicating that the NLRP3 inflammasome is connected

to PCSK9 secretion (16, 96). Macrophage-derived PCSK9 may also

play an important role in atherogenesis via its local effects on

atherosclerotic plaques (36). Ding et al. revealed that NLRP3 and its
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downstream signaling proteins ASC, Caspase-1, IL-18, and IL-1b all
regulate PCSK9 secretion by macrophages as well as in a host of

tissues, including the liver, small intestine and kidney; on the other

hand, MAPKs play a key role in regulating IL-1b-mediated PCSK9

secretion, particularly in the context of high-fat diet consumption

(16). The study pointed out that macrophages secrete large amounts

of PCSK9 via NLRP3 inflammasome activation. PCSK9 expression

is downstream of NLRP3 and IL-1b, which are the major regulators

of PCSK9 secretion. Furthermore, HFD-C results in the robust

secretion of PCSK9, and this PCSK9 secretion is dependent on IL-

1b upregulation, providing a strong link between IL-1b and PCSK9

in the proatherosclerotic and proinflammatory milieu (97, 98).
Recent advances in the use of PCSK9 and
NLRP3 inflammasome signaling as
therapeutic targets for atherosclerosis

Inhibiting PCSK9 with inhibitors has been studied as a potential

therapeutic approach in the field of atherosclerotic treatment (99).

Different forms of PCSK9 inhibitors and their targets, including

monoclonal antibodies (mAbs), small interfering RNAs (siRNAs),

and vaccines, have recently been explored (100–102). At present,

two mAbs against human PCSK9, alirocumab and evolocumab, are

approved for listing and are available for use in clinical treatment

(103). Ongoing clinical trials have shown that these PCSK9 mAbs

are well tolerated, enhance the clearance of LDL-C, and decrease

cardiovascular events in patients (104).Therapeutic monoclonal

antibodies target PCSK9 in the plasma, while siRNA selective

silences the translation of messenger RNA (mRNA) molecules,

thus preventing the intracellular translation of PCSK9 mRNA to
FIGURE 5

Interactions between PCSK9 and the NLRP3 inflammasome signaling pathway. ATP and nigericin simultaneously induced the NLRP3 inflammasome
in cells primed with LPS and induced PCSK9 expression. In addition, hypoxia induces PCSK9 expression and NLRP3 inflammasome activation. The
NLRP3 inflammasome and its downstream signals all regulate PCSK9 secretion, while MAPKs play a key role in regulating IL-1b-mediated PCSK9
secretion. PCSK9 can directly activate the NLRP3 inflammasome and promote the secretion of pro-inflammatory cytokines via NF-kB signaling.
PCSK9 knockout inhibits macrophage recruitment, suppresses the migration and proliferation of VSMCs; these effects are related to NLRP3
inflammasome. PCSK9 initiates mtDNA damage, activates NLRP3 inflammasome signaling and subsequently induces pyroptosis. Another mechanism
underlying the effects of PCSK9 on NLRP3 inflammasome activation involves TLR4/MyD88/NF-kB signaling. PCSK9 binds to LDLR, causing an
increase in the total cholesterol and LDL-C levels, inducing inflammation, resulting in ICAM expression and NLRP3 inflammasome activation.
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protein (105). Inclisiran is an siRNA and was discovered several

years ago (106). The positive results of the ORION series provide

strong supporting evidence for the clinical application of inclisiran

in the treatment of atherosclerosis (107, 108). Compared with

therapeutic mAbs, siRNA treatment shows a more sustained

efficacy and requires fewer injections, thus overcoming some

known barriers to treatment compliance compared with mAbs

(109). The basic characteristic of a PCSK9 vaccine is the capacity

to trigger the generation of anti-PCSK9 antibodies by the host

(110). However, research on PCSK9 vaccines, such as PCSK9Qb-
003, AT04A and L-IFPTA+, is still in the animal experimental stage

(44, 111, 112).

In terms of NLRP3 inhibitors, currently available clinical agents

are targeting IL-1b (113). Although targeting IL-1b is an effective

method for treating inflammatory diseases, it seems to have

limitations. First, the activated NLRP3 inflammasome produces

various inflammatory cytokines, including IL-1b, IL-18 secretion.

All of cytokines play crucial roles in the occurrence and development

of related diseases (114, 115). Second, IL-1b is produced not only by

the NLRP3 inflammasome but also by other inflammasomes or in an

inflammasome-independent manner, so inhibition of NLRP3 may

have more immunosuppressive effects than inhibition of IL-1b (116,
117). Additionally, MCC950 can specific inhibit classical and

nonclassical NLRP3 inflammasome activation and pro-

inflammatory cytokines secretion to significantly decrease the

maximum degree of aortic stenosis as well as the mean plaque size

and volume and increase plaque stability (118–120). Several studies

have revealed that MCC950 can directly interact with the Walker B

motif in the NACHT domain to block ATP hydrolysis and inhibit

NLRP3 inflammasome activation and formation (121, 122). In

addition, CY-09, which is an analog of C172, was also found to

directly bind to the ATP-binding site of the NLRP3NACHT domain

and inhibit its ATPase activity, inhibiting NLRP3 inflammasome

oligomerization and activation (123). Besides, Song et al. revealed

that blocking NLRP3 phosphorylation at S194 significantly

decreased NLRP3 inflammasome activation, suggesting that the

inhibition of NLRP3 phosphorylation may be a potential approach

for treating NLRP3-related diseases (124). Melatonin has proven to

be effective in treating atherosclerosis by inhibiting NLRP3

inflammasome signaling pathway (125, 126).

Collectively, the research on novel methods for inhibiting PCSK9

and NLRP3 inflammasome is still in an early stage, and the efficacy,

safety and feasibility of these approaches require further study.
Conclusions and perspective

In summary, PCSK9 can promote the occurrence and

development of atherosclerosis by inhibiting the metabolism of

LDL-C, enhancing the formation of foam cells and thus promoting

the progression of vascular wall inflammation, suggesting that

PCSK9 is an important intervention target in the occurrence and

development of atherosclerosis. NLRP3 inflammasome activation

contributes to the vascular inflammatory response driving

atherosclerosis development and progression. Significantly, the

effect of PCSK9 and the NLRP3 inflammasome on atherosclerosis
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seems to be synergistic. Interactions between PCSK9 and the

NLRP3 inflammasome may form a positive feedback loop, acting

together to drive the inflammatory response and lipid accumulation

and thus promoting atherosclerosis. On the one hand, the NLRP3

inflammasome signaling pathway has been shown to promote

PCSK9 secretion by regulating IL-1b, and this may be mediated

by MAPK signaling. On the other hand, PCSK9 directly induces

inflammatory responses in VSMCs as well as the expression and

secretion of inflammatory factors and cytokines, including NLRP3

and its downstreammolecules ASC, Caspase-1, IL-6, IL-18, and IL-1b,
in macrophages. Collectively, these findings suggest a bidirectional

positive correlation between the NLRP3 inflammasome signaling

pathway and PCSK9. Therapeutic options that target PCSK9 and

NLRP3 inflammasome may play an important role in the future

treatment of atherosclerosis-related diseases. For example, inclisiran

not only decreases LDL-C levels but also reduces Lp(a) concentrations.

Given that Lp(a) is an independent risk factor for atherosclerosis, early

treatment with inclisiran might result in extensive benefits for patients

and decrease the damage caused by atherosclerosis via multiple

mechanisms. Additionally, the inhibitors of NLRP3 inflammasome

signaling that are currently available are agents that target IL-1b and

caspase-1 as well as antagonists of the receptor P2X7.

It is noteworthy that knockout of the PCSK9 gene without

inflammatory activation does not affect the levels of inflammatory

proteins under physiological conditions; only the presence of factors

that induce inflammatory responses, such as a high-fat diet,

significantly decrease the levels of inflammatory cytokines. Besides,

although the deficiency of the PCSK9 gene partially decreased

inflammation in mice with atherosclerosis, it failed to diminish the

inflammatory response completely. First, activation of the NLRP3

inflammasome during apoptosis is closely associated with mtROS-

mediated mtDNA damage. Second, activated NLRP3-mediated IL-1b
secretion in turn serves as a proinflammatory stimulant that can

promote inflammatory responses. In addition, Chen et al. indicated

that NLRP3, NLRP12 and NLRC4 exerted a significant synergistic

effect, suggesting thatNLRP3,NLRP12 andNLRC4 could bemutually

regulated (127). This synergistic effect can promote caspase-1-

dependent GSDMD cleavage-induced pyroptosis during vascular

damage and accelerate the secretion of IL-1b. Finally, the synthesis of
inflammatory factors and cytokines, such as ASC, Caspase-1, and IL-

1b, may not be fully dependent on theNLRP3 inflammasome.NLRP6,

NLRP7,NLRP12,NLRC4 andAIM2have been shown to contribute to

proinflammatory cytokine expression. As shown in the study by Liu

et al., overexpression of NLRP6 enhanced the activation of caspase-1

and gasdermin-D, induced the pyroptosis of human gingival

fibroblasts, and promoted the release of the proinflammatory

mediator IL-1b (128).

In conclusion, the NLRP3 inflammasome signaling pathway and

PCSK9 play critical roles in atherosclerosis and show promise as

essential targets for the prevention and treatment of atherosclerosis.

However, the precise mechanisms by which interactions between the

NLRP3 inflammasome and PCSK9 affect atherosclerosis have largely

remained unclear. Further research is needed to reveal the functions of

PCSK9 and NLRP3 inflammasome signaling in atherosclerosis by

revealing the underlying molecular mechanisms. Moreover, long-term

clinical follow-up with a large sample size will still be necessary for
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studying PCSK9 and NLRP3 inhibitors since these inhibitors may

increase the risk of diabetes and neurological diseases.
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Glossary

PCSK9 proprotein convertase subtilisin/kexin type 9

ER endoplasmic reticulum

LDLR low-density lipoprotein receptor

LDL-C low-density lipoprotein cholesterol

MФ macrophage

ox-LDL oxidative low-density lipoprotein

LRP1 LDL-R-related protein 1

TLR4 toll-like receptors 4

NF-kB nuclear factor kappa-B

IkBa inhibitor kappa B alpha

ApoER2 apolipoprotein E receptor-2

ApoB48 apolipoprotein B-48

ACAT-2 acyl-coA cholesteryl acyl transferases 2

VSMCs vascular smooth muscle cells

Bax BCL2-associated X

Bcl-2 B-cell lymphoma-2

MAPK mitogen-activated protein kinases

mTOR mammalian target of rapamycin

VCAM-1 vascular cell adhesion molecule-1

ICAM-1 intercellular adhesion molecule-1

EC endothelial cells

AP-1 activator protein-1

PRR pattern recognition receptor

NLRP3 NOD-like receptor thermal protein domain associated protein 3

PAMPs pathogen-associated molecular pattern

DAMPs damage associated molecular patterns

LRR leucine-rich repeat domain

NACHT nucleotide triphosphatase domain

PYD pyrin domain

CARD caspase recruitment domain

TRIF TRI domain-containing adaptor inducing interferon.B

MyD88 myeloid differentiation factor 88

IL-1b interleukin-1b

IL-18 interleukin-18

GSDMD gasdermin-D

GSDMD-NT N-terminal cleaving product

Olfr2 olfactory receptor 2

mtROS mitochondrial reactive oxygen species

(Continued)
Continued

HUVECs human umbilical vein endothelial cells

P2X (4) R purinergic receptor P2X4

P2X (7) R purinergic receptor P2X7

IL-1Ra interleukin-1 receptor antagonist

CagA cytotoxin-associated protein

Oct-4 POU class 5 homeobox 1

KLF4 kruppel-like factor 4

ATP adenosine-triphosphate

LPS lipopolysaccharide

mtDNA mitochondrial deoxyribonucleic acid

MAECs mouse aortic endothelial cells

BMDCs bone marrow-derived dendritic cells

HAoSMCs human aortic smooth muscle cells

BMDMs primary bone marrow-derived macrophages

HEK293T human embryonic kidney 293T

ACS acute coronary syndrome

PBMC peripheral blood mononuclear cells

GLP-1R glucagon like peptide 1 receptor

PKC protein kinase C

NOX-4 NADPH oxidase 4

LDH lactate dehydrogenase

CCL-2 chemokine ligand 2

CC cholesterol crystals

UQCRC1 ubiquinol-cytochrome c reductase core protein 1

MI myocardial infarct

HeFH heterozygous familial hypercholesterolemia

SREBP-2 sterol element binding protein 2

CAT a catalytic domain

CHD coronary heart disease

ASCVD atherosclerotic cardiovascular disease

IgG1 immunoglobulin G1

WAT White Adipose Tissue

CVD cardiovascular disease

NAFLD non-alcoholic fatty liver diseases

NASH non-alcoholic steatohepatitis

CD36 cluster of differentiation 36

LOX-1 lectin-like ox-LDL receptor 1

TNF-a tumor necrosis factor-a

T2D Type 2 diabetes

MI myocardial infarction.
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