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Cardiovascular diseases (CVDs) are the leading cause of death and disability

worldwide. The CVDs are accompanied by inflammatory progression, resulting in

innate and adaptive immune responses. Regulatory T cells (Tregs) have an

immunosuppressive function and are one of the subsets of CD4+T cells that

play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker

for CVDs or targeting Tregs to exert cardioprotective functions by regulating

immune balance, suppressing inflammation, suppressing cardiac and vascular

remodeling, mediating immune tolerance, and promoting cardiac regeneration

in the treatment of CVDs has become an emerging research focus. However,

Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and

produce toxic effects on target organs in some diseases. This review aims to

provide an overview of Tregs’ role and related mechanisms in CVDs, and reports

on the research of plasticity Tregs in CVDs, to lay a foundation for further studies

targeting Tregs in the prevention and treatment of CVDs.
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1 Introduction

Regulatory T cells (Tregs), CD4+CD25+Foxp3+Tregs, secrete anti-inflammatory factors

such as interleukin (IL)-10 and transforming growth factor-b (TGF-b), which have

immunosuppressive effects (1). Tregs account for 5 ~ 10% of all CD4+ T cells. There are

two sources of Tregs: derived from the normal thymus (natural Tregs, nTregs); Or derived

from peripheral naive CD4+ T cells induced to differentiate into Tregs (inducible Tregs,

iTregs). Foxp3 is a specific marker of Tregs, and an essential regulator of Tregs

development and function (2). In comparison, the absence of Foxp3 will lead to the loss

of Treg function, which is closely associated with severe autoimmune diseases in humans

(3) and rodents (4). Tregs play a key role in immune dynamic balance (5) and regulate
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immunity in Corona Virus Disease 2019 (COVID-19) (6), tumors

(7), infectious diseases (8), and transplant rejection (9, 10).

Cardiovascular diseases (CVDs) are the leading cause of death

and disability worldwide, with the number of people affected by

CVDs increasing from 271 million in 1990 to 523 million in 2019

(11). Inflammation plays a vital role in many CVDs, disrupting the

immune balance of the body and causing innate and adaptive

immune responses. Tregs can prevent the progression of CVDs

by regulating immunity (12). In this review, we summarized the role

and related mechanisms of Tregs in the prevention and treatment of

CVDs, mainly reflected in the regulation of immune balance,

inflammation, cardiac and vascular remodeling, immune

tolerance, and cardiac regeneration. CVDs cover heart failure

(HF), myocardial infarction (MI), myocarditis, atherosclerosis,

hypertension, and atrial fibrillation. The research progress and

clinical potential of targeted Tregs therapy for CVDs are

further elaborated.
2 Common CVDs and
their epidemiology

2.1 Heart failure

2022 AHA/ACC/HFSA defines HF as a complex clinical

syndrome with symptoms and signs that result from any

structural or functional impairment of ventricular filling or

ejection of blood (13). The latest data for 2021 show that the

number of HF patients worldwide has increased from 33.5 million

in 1990 to 64.3 million in 2017 (14). Up to 25% ~ 40% of patients

die of Chronic HF one year after being diagnosed with HF (15, 16).

HF is a leading cause of death, affecting more than 24 million people

worldwide (17). HF is a significant public health problem in the

world with high incidence, re-hospitalization, disability, and

mortality (18). The occurrence and development of HF are

accompanied by activation and inflammation of the immune

system (19), and the immune system regulates inflammation by

secreting related factors.
2.2 Myocardial infarction

MI is ischemic necrosis of the myocardium caused by transient

or persistent occlusion of the distal coronary artery, associated with

high morbidity and mortality, resulting in more than 15 million

deaths worldwide every year (20, 21). Due to different medical

conditions, MI prevalence varies widely among regions, ranging

from 3 to 20% (22–24). Although coronary revascularization

treatment strategies can reduce MI mortality (25), MI is

associated with inflammation, cardiac remodeling, myocardial

fibrosis, and other pathological processes (21, 26), which

aggravate clinical cardiovascular malignant events. The immune

system plays a critical role in the occurrence and development of

post-MI inflammation (27).
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2.3 Myocarditis

Myocarditis is an inflammatory disease of myocardium cells with a

broad range of clinical and histological manifestations of cardiac

pathological immune processes that can lead to acute HF, sudden

death, and chronic dilated cardiomyopathy (28, 29). Myocarditis can be

attributed to immune responses, viral infections, and bacterial

infections. Myocarditis includes periods of acute inflammation,

subacute inflammation, and myopathy, resulting in cardiac

remodeling, myocardial fibrosis, and cardiac dysfunction (30, 31).

Cardiac magnetic resonance imaging (MRI) and molecular detection

of viruses by endomyocardial biopsy are effective methods for the

clinical diagnosis of myocarditis. However, it is difficult to sample

human heart tissue, and it is necessary to explore the

pathophysiological mechanisms in experimental animal models (32,

33). Experimental autoimmune myocarditis (EAM) induced by

myocardial myosin is a classic model of autoimmune myocarditis

(34). Viral myocarditis (VMC) caused by Coxsackievirus B3 (CVB3)

infection is the main cause of sudden cardiac death in the young

population (30). VMC is characterized by immune-mediated

inflammation of the myocardium caused by viral infection (35).

Chronic Chagas disease cardiomyopathy (CCC), progressive

inflammation of the heart caused by Trypanosoma cruzi (T.cruzi)

infection, manifesting as diffuse myocardial fibrosis, cardiac

hypertrophy, myocardial injury, progression to HF, and death, has

become a major public health disease in Latin America (36). Chagas’

etiology of HF has become the third most common indication for heart

transplantation in South America (37). Parasite-dependent myocardial

aggression and immune-mediated tissue damage are key pathological

mechanisms of CCC (38, 39). Therefore, targeted modulation of

immunity has become a strategy for the treatment of CCC (40).
2.4 Hypertension

The number of hypertensive patients worldwide has grown from

128 million in 1990 to 650 million in 2019, and more than 700 million

were unaware of their hypertension status (41). Hypertension is an

important risk factor for CVDs, which significantly increases the

incidence of coronary heart disease and HF complications.

Hypertension is an inflammatory disease, and the inflammatory

markers C-reactive protein (CRP), various cytokines, and pathway

complement pathway products are increased in patients with

hypertension (42).
2.5 Atherosclerosis

In 2020, nearly 2 billion people worldwide suffer from carotid

atherosclerosis, which increases the risk of coronary heart disease

events (43). In the general middle-aged population, 42.5% had silent

coronary atherosclerosis and 5.2% had severe atherosclerosis (coronary

significant stenosis ≥50%) (44). Atherosclerosis is a chronic

inflammatory disease of the vascular wall which involves cellular
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immune responses (45). Acute and chronic myocardial ischemia

caused by coronary atherosclerosis is the most common cause of HF,

and studies have shown that Tregs have atherosclerotic protective

effects (46, 47).
3 Tregs-related membrane molecules

3.1 CD4/CD25

T cells specifically recognize antigens presented by antigen-

presenting cells (APCs) through T cell receptors (TCRs), and

recognize antigens through CD3 molecular transduction, forming

TCR-CD3 complexes, generating activation signals, and

transmitting them to cells. CD4 recognizes and binds MHC-II

molecules, and CD4+T cells specifically recognize exogenous

antigens presented by MHC-II molecules. Tregs highly express

IL-2 receptor a (IL-2Ra, CD25), It promotes the binding of IL-2

and CD25 without binding with other receptors. It is called CD25-

biased IL-2 antibody complexes, which promote the activation and

proliferation of Tregs (48). Tregs highly express the high-affinity

receptor for IL-2 and competitively prey on IL-2 that is required for

the survival of neighboring activated T cells, resulting in suppressed

proliferation, followed by apoptosis, of activated T cells.
3.2 CD28

CD28 is a homodimer composed of two identical peptide chains,

which is expressed in 90% of CD4+T cells. The costimulatory signal

produced by CD28 plays an important role in the activation of T cells.

Gain of Tregs function was accomplished by therapeutic

administration of superagonistic CD28-specific monoclonal

antibodies (CD28-SA) that preferentially activate Tregs over

conventional CD4+ T cells in vivo due to a vigorous co-stimulatory

signal induced by cross-linking of CD28 molecules (49, 50). CD28

super-agonists, which effectively target Tregs, hold great promise for

the treatment of human autoimmune diseases (51).
3.3 CTLA4

Tregs constitutively express the inhibitory receptor cytotoxic T-

lymphocyte associated protein 4 (CTLA4, CD152). The cytoplasmic

region of CTLA4 has immunoreceptor tyrosine-based inhibitorymotifs

(ITIMs), which transmit inhibitory signals. Human CTLA-4

haploinsufficiency caused dysregulation of Foxp3+ Tregs,

hyperactivation of effector T cells, and lymphocytic infiltration of

target organs (52). Deletion of CTLA-4 in mice impairs Tregs’

suppressive function, causing severe autoimmune disease and early

lethality, despite normal Foxp3 levels (53, 54).
3.4 PD-1

Programmed cell death protein 1(PD-1, CD279) is a Treg

surface costimulatory marker molecule with ligands programmed
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cell death ligand 1 (PD-L1) and PD-L2. PD-1, when bound to its

ligands, can inhibit the proliferation of effector T cells and activated

B cells. Furthermore, PD-L1-Ig induced Naïve CD4+ T cells to

differentiate, proliferate into CD4+Foxp3+Tregs, and enhanced the

immunosuppressive function of Tregs (55, 56).
3.5 CD39/CD73

Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1,

CD39) and ecto-5 ′-nucleotidase (e5NT, CD73) are expressed on

the surface of Tregs. CD39 degrades adenosine triphosphate (ATP)

into adenosine diphosphate (ADP)/adenosine monophosphate

(AMP), CD73 degrades ADP/AMP into adenosine, and the

CD39/CD73 pathway converts pro-inflammatory ATP into

adenosine with anti-inflammatory properties, which further exerts

immunosuppressive functions and inhibits the activation of T cells

and the production of inflammatory mediators (57, 58). CD73

deficiency reduces cardiac chemotaxis of Tregs, impairing the

immunosuppressive and protective functions of Tregs during

cardiac healing (59). Increased Foxp3 nuclear levels and enhanced

CD39 and CD73 transcription in NADPH oxidase 2 (NOX2) KO

Tregs effectively inhibit effector T cell proliferation and reverse

angiotensin (Ang) II-induced cardiac remodeling (60).
4 Tregs regulate immune
balance in CVDs

4.1 Th17/Treg

Naive CD4+ T cells differentiate into different subsets of cells

according to different cytokine environments, including 1 helper T

(Th1)cells, Th2 cells, Th17 cells (61), and Tregs, which share the

exact origin but exhibit opposite effects (62). Th17 cells express the

transcription factor retinoid-related orphan receptor-gt (RORgt).
Th17 cells, characterized by the production of IL-17, contribute to

fibrosis and fibrotic diseases (63), induce autoimmunity, and

promote inflammation (64). IL-17 activates the protein kinase C

(PKC)b/extracellular signal-regulated kinase 1/2 (ERK1/2)/nuclear

factor-kB (NF-kB)-dependent signaling pathway to aggravate the

degree of myocardial fibrosis (65). IL-17 activates the MAPK

pathway and increases the expression of downstream target genes

IL-6, tumor necrosis factor (TNF), C-C Motif Chemokine Ligand

(CCL) 20, and C-X-C Motif Chemokine Ligand (CXCL) 1 to

worsen cardiac remodeling (66). The microRNA mmu-miR-721,

synthesized by Th17 cells, was present in the plasma of mice with

acute autoimmune or viral myocarditis, but not in those with AMI.

And the human homolog (hsa-miR-Chr8:96) is a novel microRNA

that distinguishes myocarditis patients fromMI patients (67). Tregs

inhibit inflammation and regulate immune balance by secreting IL-

10 and TGF-b (1, 68). IL-10 is a key anti-inflammatory mediator.

IL-10 treatment significantly improves the left ventricular dilation

and ejection fraction of MI mice, promotes the polarization of M2

macrophages to reduce cardiac inflammation, activates fibroblasts

to reduce extracellular matrix collagen deposits, and promotes
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cardiac healing and improves cardiac remodeling (69). However,

IL-10 gene deletion enhanced neutrophil infiltration, increased

inflammation, enlarged myocardial infarction area, and

myocardial necrosis in ischemia-reperfusion mice (70). TGF-b is

a crucial enforcer of immune homeostasis and tolerance, and plays

an important role in cell development, differentiation,

inflammation, and tissue repair (71). However, TGF-b1 gene

deletion results in nearly 50% mouse embryonic lethality, with

mice born with uncontrolled inflammation and dying at 3-4 weeks

(72, 73). Th17/Treg maintains immune dynamic equilibrium when

the number and function of Th17 cells and Tregs are balanced.

Clinically, increased Th17 cells ratio and decreased Tregs ratio

lead to pathological manifestations of Th17/Treg immune

imbalance, which are widely found in patients with cardiac

inflammatory diseases such as acute coronary syndrome (74),

congestive HF (75), and rheumatic heart disease (76). Serum IL-

17 levels of Th17 characteristic cytokine were significantly increased

in HF patients, and IL-10 levels of Tregs characteristic cytokine

were significantly decreased (75, 77). The Th17/Treg ratio is an

independent predictor for 1-year mortality in patients with MI-

related cardiogenic shock (78). Th17/Treg ratio combined with

CRP level in serum predicts atrial fibrillation after off-pump

coronary artery bypass transplantation (79). Moreover, intensive

statin therapy improves Th17/Treg functional imbalance in patients

with non-ST elevation acute coronary syndromes undergoing

percutaneous coronary intervention, reduces cytokines IL-17, IL-

6, and IL-23 secreted by Th17 cells, and increases cytokines IL-10

and TGF-b1 secreted by Tregs (80). The pathological phenomenon

of Th17/Treg imbalance is widely found in obese children with

systolic hypertension (81), patients with resistant hypertension (82),

carotid atherosclerotic hypertension (83), and pulmonary

hypertension (84). The Th17/Treg imbalance is a vital contributor

to the high incidence of atherosclerosis in systemic lupus

erythematosus patients (85). In addition, The Th1/Treg ratio and

Th17/Treg ratio were significantly increased in patients with

rheumatoid arthritis combined with atrial fibrillation, and the

increased Th1/Treg ratio was a risk factor for rheumatoid

arthritis combined with atrial fibrillation (86).

Mechanistically, in the studies of the ischemic HF model induced

by coronary artery ligation in mice (87), and the HF model induced

by abdominal aortic ligation in rats (77), it was found that Th17/Treg

ratio was increased in failing myocardium. Th17/Tregs imbalance

regulates cardiac fibrosis and heart failure in rats by regulating lysyl

oxidase (LOX) expression, Th17 cells aggravate fibrosis-related

indicators (matrix metalloproteinase-2/matrix metalloproteinase-9

(MMP-2/9) and collagen I/III) and LOX expression by activating

the IL-17/ERK1/2-activating protein-1 (AP-1) pathway, while Tregs

inhibit fibrosis-related indicators and LOX expression by activating

the IL-10/Janus kinase (JAK) 1-signal transducer and activator of

transcription (STAT)3 pathway (77). allogeneic skeletal myoblasts

transplantation (allo-SMT) is a potential strategy to treat MI.

However, the host immune response to donor skeletal myoblasts is

intensified, as evidenced by further Th17/Treg imbalance, which

reduces the therapeutic effect of allo-SMT. It was confirmed that

transfected vascular endothelial-derived growth factor (VEGF) 165

allo-SMT decreased the expression of RORgt, increased the
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expression of Foxp3, and promoted the Th17/Treg balance in MI

(88). Furthermore, aerobic exercise (89), and catechin (90)

interventions can significantly reduce the cardiac Th17/Treg ratio

in HF model animals, and improve the cardiac function and immune

environment. Targeted inhibition of microRNA-155 significantly

reduced cardiac Th17 cell infiltration, and Th17 cells related factor

(RORgT, IL-17A, IL-6) expression levels decreased in EAM mice.

Targeted inhibition of microRNA-155 resulted in increased

expression of Th17 cells related proinflammatory factors (RORgT,
IL-17A, IL-21, IL-22) in splenic CD4+ T cells of EAMmice and Treg

associated anti-inflammatory factors (Foxp3, TGF-b, IL-10, IL-35)
were downregulated without affecting Treg function. Therefore,

Targeted inhibition of microRNA-155 attenuated myocardial

inflammation, mainly inhibiting Th17 cell immune responses, and

then adjusted the immune balance of Th17/Treg (91). Fenofibrate

intervention (92) can reduce the severity of EAM disease and cardiac

injury by regulating Th17/Treg immune response.

Long-term exposure of parents to particulate matter (PM) 2.5 air

pollution may induce increased blood pressure in offspring by

media t ing an imba lance of the Th17/Treg immune

microenvironment (93). Interventions with Lactobacillus

fermentum CECT5716 (94), fecal microbiota transplantation (95),

and Dieckol (96) attenuate Th17/Treg imbalance in the mesenteric

lymph nodes and aorta of spontaneously hypertensive rats (SHR),

attenuate endothelial cell dysfunction, and control blood pressure.

Electroacupuncture effectively reduces systolic blood pressure by

promoting SHR Th17/Treg immune balance (97). Inhibition of

serum/glucocorticoid regulated kinase 1 (SGK1) can reduce the

translocation of factor forkhead box O1 (FoxO1) from the

cytoplasm to the nucleus, ameliorate the Th17/Treg imbalance,

and target organ damage to the heart and kidney in Ang II-induced

hypertension mice (98).

Th17 cells mediate pro-inflammatory responses to exacerbate

atherosclerosis, whereas Tregs exert atheroprotective effects by

suppressing inflammation and stabilizing plaques (99). Targeting

the Th17/Treg balance has emerged as a strategy for the treatment

of atherosclerosis (100). Th17/Treg function is imbalanced during

high-fat diet-induced atherosclerosis in age and apolipoprotein E

(ApoE)-/- mice (101), and Porphyromonas gingivalis oral infection

further exacerbated Th17/Treg imbalance and atherosclerosis

plaque deterioration (102). However, pharmacologic interventions

by pioglitazone (103), traditional Chinese medicine AnGong

Niuhuang Pill (104), and Yangyin Qingre Huoxue Prescription

(105) exert anti-atherosclerotic effects by regulating Th17/Treg

balance, inhibiting chronic inflammation, reducing plaque

collagen fibers, and stabilizing plaques.
4.2 CD4+ T cell subsets and Tregs

The earliest CD4+ T cell subsets to be discovered are Th1 cells and

Th2 cells; Secretion of INF- g, IL-2, and TNF by Th1 cells, and the key

transcription factor is T-bet; Th2 cells secrete IL-4, IL-5, and IL-13, and

the key transcription factor is GATA-3. Patients with acute coronary

syndrome have a decreased proportion of circulating Tregs and an

increased proportion of Th1 and Th17 cells. IL-37-treated human
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dendritic cells acquire a tolerogenic dendritic cells (tDCs) phenotype,

with tDCs promoting the expansion of CD4+ T cells into Tregs and

reducing Th1 and Th17 populations (106). Blocking angiotensin II

(AII) production with angiotensin-converting enzyme (ACE),

inhibitors or inhibiting AII signal transduction with angiotensin type

1 receptor (AT1R) blockers inhibited self-reactive Th1 and Th17 cells

and promoted CD4+FoxP3+Tregs (107). Cardiac biopsy in patients

with dilated cardiomyopathy showed that cardiac T cell infiltration was

characterized by differential expression of functional T cell markers,

including Th1 markers (IFN-g, T-bet, Eomesodermin), Tregs (Treg;

Foxp3, TGF-b) and cytotoxic T-cells (CTL: Perforin, Granulysin,

Granzyme A) increased significantly, while Th17 had no major effect

(108). Th1 cells promote inflammation and increase the volume of MI

(109). Seven days after MI, the CD4+ T cells in the heart of hyaluronan

synthase 3 (HAS3) KO mice were significantly reduced, with

CD4+CXCR3+Th1 cells and CD4+CD25+Tregs (110). Progranulin

down-regulates the response of Th1 and Th17 cells and the

production of inflammatory cytokines by inhibiting the JAK/STAT

pathway, and improving CVB3-induced VMC (111). Nicotine activates

the cholinergic anti-inflammatory pathway to reduce the inflammatory

response of VMC. Nicotine treatment increases the proportion of Th2

cells and Tregs, reduces the proportion of Th1 and Th17 cells in the

spleen, and reduces the myocardial injury and inflammatory cell

infiltration of VMC (112). VMC mice vagotomy inhibited the

activation of JAK2/STAT3 and enhanced NF-kB in spleen CD4+T

cells, resulting in an increase in the proportion of Th1 and Th17 cells

and a decrease in the proportion of Th2 cells and Tregs in the spleen

(113). In atherosclerotic diseases, Th1 plays a pro-inflammatory role

while Tregs play an anti-inflammatory role. LCK inhibitor inhibits
Frontiers in Immunology 05
PP2, inhibits the infiltration of CD4+ T cells in plaque, increases Tregs,

and reduces the synthesis of TNF-g And TNF-a by Th1 cells,

Inhibition of PI3K/AKT/mTOR signal activation reduces Th1/Treg

ratio and plays an anti-atherosclerotic role (114). Ang II treatment of

ApoE-/- mice resulted in plaque enlargement andmodulation of CD4 T

cell subset activity: increased Th1 and Th17 cells; Decreased Th2 cells

and Tregs. Valsartan can reduce the systolic pressure of Ang II treated

ApoE-/- mice, promote the differentiation of CD4+T cells into Th2 cells

and Tregs, improve the immune balance, and stabilize the

atherosclerosis plaque (115). Allergic asthma accelerated

atherosclerosis and was accompanied by increased splenic Th2 and

Th17 cells and decreased Tregs. Curcumin treatment for 8 weeks

attenuates the aggravation of atherosclerotic lesions and stabilizes

plaques by decreasing Th2 and Th17 cells and increasing Tregs,

which regulate the balance of Th2/Tregs in asthmatic ApoE-/- mice

(116). The immune balance involved by Tregs and the differentiation of

Naïve CD4+ T cells are shown in Figure 1.
5 Tregs regulate inflammation
in CVDs

5.1 Myocardial infarction

MI is a sterile inflammatory response disease with exacerbated

inflammation in the heart. MI leads to the death of cardiomyocytes

exposed to endogenous damage-associated molecular patterns

(DAMPs) of the innate immune system, and damps are recognized

by pattern recognition receptors (PRRs), which promote the release of
FIGURE 1

The immune balance involved by Tregs and the differentiation of Naïve CD4+ T cells.
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chemokines and proinflammatory cytokines that recruit and activate

neutrophils, monocytes, and macrophages to the infarct zone,

exacerbating cardiac inflammation. Importantly, the monocytes

recruited from the circulation are differentiated into macrophages in

the infarct zone, which are monocytes/macrophages (Mos/Mps). Mos/

Mps are critical immune cells that determine the progression and

repair of inflammation after MI. Macrophages have two phenotypes:

M1 Macrophages with pro-inflammatory properties, and M2

Macrophages with anti-inflammatory and repair properties (117–

119). Treg promoted the polarization of Mos/Mps to M2 type and

improved immune homeostasis and cardiac repair after MI. However,

in Treg-depleted mice (Foxp3DTR) MI model mice with Treg ablation

andMImodel mice with Treg depletion, Mos/Mps polarized to theM1

type and intensified the inflammatory response (120). DCs-derived

exosomes activated Tregs-mediated M2 type polarization of

macrophages, and significantly increased border zone infiltration of

Tregs and M2 macrophages in MI model mice, thereby improving

cardiac function (121). As a pro-inflammatory mediator of C-C motif

chemokine receptor (CCR) 2+ macrophages and DCs, CCL17 inhibits

Tregs recruitment by biased activation of CCR4. However, deletion of

the CCL17 gene enhanced Tregs recruitment, weakened gene

expression of inflammatory macrophages, and improved heart

function and cardiac remodeling in MI mice (122). After MI,

CXCL12/C-X-C motif chemokine receptor (CXCR) 4 chemotaxis

inflammatory cells to the infarct area. CXCR4 antagonist specifically

enhanced the recruitment of splenic Treg to the infarct zone by

initiating DCs, inhibited the gene expression of pro-inflammatory

Mos/Mps, improved cardiac function, and promoted cardiac repair

in AMI reperfusion mice (123). Nuclear paraspeckle assembly

transcript 1 (NEAT1) is a novel long noncoding RNA (IncRNA)

immunomodulator that affects the process of Mos/Mps and T cell

differentiation. LncRNA NEAT1 expression is decreased in peripheral

blood monocytes of MI patients. Maldifferentiation of Mos/Mps in the

bone marrow and blood of NEAT1-/- mice, abnormal differentiation of

Tregs in the spleen, increased infiltration of CD68+ macrophages in the

aortic wall, and imbalance of the immune system (124). In addition,

CD73 derived from CD4+Foxp3+Tregs can bind to CD4+Foxp3-Teffs

and reduce IL-1b, TNF-a, IFN-gand IL-17 levels, suppressing

inflammatory responses and protecting against MI (59).
5.2 Hypertension

Treg deficiency exacerbates hypertension progression by

enhancing innate and adaptive immune responses (125, 126).

Depletion of Tregs significantly increased systolic blood pressure

(127). Adoptive transfer of Tregs improved hypertension,

vasodilatory injury, and immune cell infiltration (128), and inhibited

autophagy, oxidative stress, and inflammation to improve hypertensive

microvascular function (129). Complement C3a receptor (C3aR) and

complement C5a receptor (C5aR) double knockout mediates Tregs

function and attenuates Ang II-induced inflammatory cytokine

expression, target organ injury, and elevated blood pressure (130).

Cystathionine g lyase-derived hydrogen activates liver kinase B1

(LKB1) and promotes differentiation and proliferation of Tregs,

reducing immune inflammation in blood vessels and kidneys,
Frontiers in Immunology 06
thereby preventing hypertension (128). Doxycycline improves

intestinal barrier integrity by reducing Lactobacillus and high plasma

L-lactate levels, reducing aortic oxidative stress, increasing Tregs

infiltration and IL-10, and improving vascular dysfunction and blood

pressure in deoxycorticosterone acetate (DOCA)-salt-induced

hypertension model rats (131). Activation of the PD-1/PD-L1

pathway significantly increased Tregs ratio and Foxp3 mRNA

expression, and increased the levels of anti-inflammatory factors

TGF-b, IL-10, and IL-35 in peripheral blood monocytes (PBMC),

improving gestational hypertension (132).
5.3 Atherosclerosis

Atherosclerosis is a vascular inflammatory disease (133). In CVDs,

atherosclerotic lesions can cause cardiac ischemia and lead to

infarction. Significantly, the adoptive transfer of Tregs dampens

inflammatory responses and protects against atherosclerosis (134,

135). Tregs inhibit effector T cells, induce M2-type polarization of

macrophages, and accumulate them in plaques, enhancing

inflammation dissipating and plaque regression. During lipid-

lowering therapy, Tregs in regressing plaques are peripherally

induced and characterized by the lack of Neuropilin 1 (Nrp1) and

Helios expression (136). Activation of the Tregs/Indoleamine 2,3-

dioxygenase axis forms a tolerant immune environment

characterized by reducing vascular inflammation and atherosclerotic

lesions (137), which has a protective effect on atherosclerotic CVDs.

Overexpression of autophagy related 14 (ATG14) can reverse the

autophagy dysfunction of macrophages in ApoE-/- mice plaques,

inhibit the accumulation of sequestosome 1 (SQSTM1)/P62, promote

the differentiation of Tregs and up-regulate the number of Tregs, and

reduce the inflammation and lesions of atherosclerosis (138).

Recombinant human IL-37 (139) and traditional Chinese medicine

Si-Miao-Yong-An decoction (140) can regulate the immune

environment and improve atherosclerotic lesions by reducing

inflammatory macrophage infiltration and increasing Tregs.

Activation of Tregs/Indoleamine 2,3-dioxygenase axis forms a

tolerant immune environment characterized by reducing vascular

inflammation and atherosclerotic lesions (137), which has a

protective effect on atherosclerotic CVDs. However, Inducible T cell

costimulatory (ICOS)-/- (141), CD80-/-CD86-/- (135), and

hyperhomocysteinaemia (134) can reduce the number of Tregs,

suppress the immunosuppressive function, and aggravate the

development of atherosclerosis. Tregs depletion exacerbates

a the rosc l e ro t i c l e s i ons , wh ich a r e a s soc i a t ed wi th

hypercholesterolemia caused by abnormal lipoprotein metabolism

(142), and exacerbates inflammatory responses by preventing plaque

contraction (136).
5.4 Experimental autoimmune myocarditis

Single-cell RNA sequencing analysis of CD45+ cells extracted

from the hearts of EAM model mice revealed that Tregs were the

predominant T-cell population detected during the subacute

inflammatory phase (143). Extracellular vesicles secreted by
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human-derived heart stromal/Progenitor cells (144), adenovirus

vector-mediated gene transfer of CTLA4 Ig fusion protein (145),

CD28 superagonists (146), and Oleanolic Acid (147) interventions

can protect the heart function and alleviate inflammation of EAM

model rodents by increasing the number of Tregs and enhancing

the immunosuppressive function of Tregs. Overexpression of Mir-

223-3p (148) and Protosappanin A intervention (149) can promote

the phenotypic transformation from DCs to tDCs, induce Tregs

generation, and inhibit cardiac inflammation and cardiac

remodeling in EAM model mice. Of concern, EAM susceptibility

differs between strains of mice. Compared to B10.S mice, A.SW

mice have a lower ratio of Tregs in vivo, enhanced Th17 cell

responses, greater sensitivity to autoimmunity, and more severe

disease development in EAM (150).
5.5 Viral myocarditis

Intervention methods such as IL-37 (151) and Valproic acid

(152) promote Th17/Treg immune balance and play an anti-

inflammatory role, ameliorating CVB3-induced VMC. Cardiac

Myosin peptide treatment and OX40 blockade (153), Fasudil (154),

and nicotine (112) interventions improved cardiac inflammation and

reduced mortality in CVB3-induced VMC mice by enhancing Tregs

function. Adoptive transfer of Tregs can regulate TGF-b-Coxsackie-
Adenovirus Receptor Pathway (155), promote monocyte

differentiation into Ly6ClowCCR2lowCX3CR1high subgroup with

anti-inflammatory properties (156), enhance IL-10 secretion (157),

and ameliorate cardiac function, inflammatory injury, and

myocardial fibrosis in CVB3-induced VMC mice. B-cell deficiency

can significantly reduce Tregs, damage Tregs’ immunosuppressive

function, and damage myocardial Tregs homeostasis in CVB3-

induced VMC mice, whereas adoptive transfer of B cells reverses

this phenomenon (158). Latency associated peptide (LAP) is a

membrane protein of Tregs. Compared with total Tregs,

LAP+Tregs have greater immunomodulatory effects and may serve

as a better VMC biomarker (159). In addition, Astragalus

Mongholicus (Fisch.) Bge intervention improved cardiac function

and peripheral Tregs immune imbalance in children with VMC by

reducing miRNA-146b and miRNA-155 levels (160). The release of

sex hormones and/or other mediators from the testis inhibits the

population of anti-inflammatory cells in the heart, including Tregs,

leading to more severe acute myocarditis with CVB3 infection in

male mice (161). However, the adoptive transfer of M2 macrophages

promoted peripheral Tregs differentiation and reduced cardiac

inflammation in CVB3-induced VMC model male mice (162).
5.6 Chronic Chagas disease
cardiomyopathy

Tregs are subsets of anti-inflammatory T cells with

immunosuppressive functions that help limit tissue damage

associated with an immune response triggered by the parasite

(163). The mechanism by which immunotherapy with tDCs

inhibits the progression of cardiac inflammation and myocardial
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fibrosis in a mouse model of CCC involves the secretion of IL-10 by

tDCs to induce Tregs differentiation and enhance Tregs

immunosuppressive function (164). IL-10 is a cytokine that can

independently induce Foxp3 expression and Treg differentiation

(165), and secretion of IL-10 by tDCS induces Foxp3+Tregs

differentiation to regulate immunity (166, 167). Intervention with

human recombinant granulocyte colony-stimulating factor (G-

CSF) enhances cardiac Tregs recruitment and reduces cardiac

inflammation, fibrosis, and parasite load in mice with CCC

induced by chronic T.cruzi infection (168). Moreover, during the

acute phase of T.cruzi infection, depleting Tregs exacerbated

myocardial inflammation and tissue parasite levels, leading to

increased mortality in experimental mice (169). In comparison,

formyl peptide receptor 2 (FPR2) KO mice had increased Tregs

during the acute T.cruzi infection phase, which controlled the

protective effect of Th1 cells against T.cruzi infection. However,

FPR2-KO mice have reduced Tregs and exacerbated cardiac

inflammation and cardiac dysfunction during prolonged chronic

T.cruzi infection (170).
5.7 COVID-19-associated myocarditis

A retrospective cohort study of 56963 hospitalized patients with

COVID-19 showed that the incidence of acute myocarditis in

hospitalized patients with COVID-19 ranged from 0.24 to 0.41%;

Chest pain and dyspnea symptoms were the most frequent,

accounting for 55.5% and 53.7%, respectively; 38.9% presented

with fulminant manifestations; The combined incidence of in-

hospital mortality or temporary mechanical circulatory support

was 20.4%; At 120 days, the mortality rate was approximately 6.6%

(171). Another retrospective cohort study involving 718365

COVID-19 patients showed that the incidence of COVID-19 with

myocarditis and 6-month all-cause mortality were 5.0% and 3.9%

respectively (172). Although COVID-19-associated myocarditis is

very severe, the role of Tregs in it remain understudied.
6 Tregs regulate cardiac remodeling
in CVDs

Cardiac remodeling is defined as changes in the size, shape, and

function of the heart resulting from pathological conditions (173).

Myocardial fibrosis is a qualitative and quantitative change in the

myocardial interstitial collagen network characterized by excessive

deposition of collagen and other extracellular matrix components. In

ischemic heart disease, myocardial fibrosis exacerbates cardiac

remodeling, promoting cardiac insufficiency, arrhythmias, and

ultimately HF (174, 175). Targeted regulation of myocardial fibrosis

and improvement of cardiac remodeling are effective therapeutic

strategies for ischemic CVDs (176). T lymphocytes play an essential

role in regulating extracellular matrix components and myocardial

fibrosis by regulating the expression of myocardial collagen and matrix

metalloproteinases, and the role of Tregs in myocardial fibrosis has also

received attention (177, 178).
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6.1 Myocardial infarction

Studies have shown that the adoptive transfer of Tregs inhibits

myocardial fibrosis and cardiac remodeling in MI model animals

(179, 180). Tregs can inhibit myocardial fibrosis and improve

cardiac remodeling by regulating cardiac fibroblast phenotypes,

reducing a-smooth muscle actin (a-SMA) expression, and

extracellular matrix collagen deposition (181). Overexpression of

Sparc enabled Treg to have a tissue repair phenotype, which helped

to improve collagen content and maturity in scars after MI, prevent

heart rupture, and improve MI survival rate (182). MI model mice

CCR5+ monocytes promote the secretion of anti-inflammatory

factor IL-10, mediate Tregs recruitment, inhibit inflammation,

and inhibit myocardial fibrosis and cardiac remodeling. However,

the expression of cardiac proinflammatory factors in CCR5-/- MI

model mice was significantly up-regulated, Tregs recruitment was

impaired, and cardiac remodeling continued to worsen (183). IL-2/

JES6-1 mAb (JES6-1) complex can improve cardiac function and

remodeling by increasing the ratio of Tregs in MI model mouse

heart infarct zone, inhibiting inflammation, inducing macrophages

to transform from M1 to M2 type (184). Transferred myosin heavy

chain a (MYHCA)614–629-specific CD4+T cells selectively

accumulated in the myocardium and mediastinal lymph nodes of

infarcted mice, acquired Tregs phenotype with a distinct pro-

healing gene expression profile, and accelerated the regression of

inflammation, promoted proper extracellular matrix deposition in

the myocardial scar, and mediated cardioprotection (185).
6.2 Hypertension

Single-cell sequencing analysis of cardiac CD45+ immune cells

in transverse aortic constriction-induced non-ischemic, pressure-

overload HF model mice revealed that Tregs were activated, and the

Tregs-specific molecule PD-1 was upregulated (186). Adoptive

transfer of Tregs significantly ameliorated ventricular remodeling

and myocardial fibrosis in rats with abdominal aortic constriction-

induced HF by suppressing LOX expression via activation of the IL-

10/Jak1/STAT3 signaling pathway (77). b-hydroxybutyrate can

down-regulate NOX2/glycogen synthase kinase-3b (GSK3b)
pathway, increase the number of cardiac Tregs, inhibit

inflammation, and improve cardiac function, myocardial fibrosis,

and cardiac remodeling in heart failure with preserved ejection

fraction (HFpEF) mice (187).

Adoptive transfer of Tregs significantly reduced the infiltration

of cardiac macrophages in Ang II-infused hypertension mice,

improved cardiac inflammation, myocardial hypertrophy, and

fibrosis, and inhibited electrical remodeling. The mechanism

involved Tregs fixation of connexin 43 (CX43) gap junction

protein in intercalated disk regions rather than lateral borders of

cardiomyocytes, and reduced the risk of ventricular arrhythmias

(188). Tregs with Nox2 deficiency by adoptive transfer significantly

inhibited Ang II-induced hypertension and cardiac remodeling, and

the effect was better than Tregs (60). In galectin-3 (Gal-3) KO

hypertensive model mice, spleen Tregs significantly increased, and
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cardiac inflammation and myocardial fibrosis were improved (189).

Overexpression of developmental endothelial locus-1 (DEL-1) in

endothelial cells, combined with recombinant DEL-1 intervention,

stabilized the number of avb3 integrin-dependent Tregs and Il-10

levels, and improved cardiovascular remodeling and blood pressure

levels in Ang II and DOCA-salt-induced hypertension mice (190).

Tregs-derived IL-35 had a protective effect on right ventricular

systolic pressure and right ventricular dilation in mice with

pulmonary hypertension (191). IL-2/JES6-1 complex intervention

effectively induced splenic Tregs amplification five times and

inhibited Ang II mediated aortic collagen remodeling and

atherosclerosis (192).
6.3 Atrial fibrillation

The abundance of Bacteroides Fragilis decreased in elderly patients

with atrial fibrillation. Bacteroides Fragilis intervention can reduce the

inflammatory response of aging rats by increasing the number of Tregs,

inhibiting atrial remodeling, and preventing the occurrence of atrial

fibrillation (193). Foxp3 is the direct target gene of miRNA-210. IL-6

promotes the expression of miRNA-210 by regulating HIF-1a, and
inhibits Tregs function by targeting Foxp3, promoting myocardial

fibrosis and exacerbating atrial fibrillation (194).
7 Tregs regulate plaque regression
in atherosclerosis

Traditionally, atherosclerosis is considered to be a cholesterol

storage disease caused by the retention of lipoproteins (including

low-density lipoprotein, LDL) in the intimal space of arteries. The

residual LDL is modified and absorbed by scavenger receptor-mediated

phagocytosis, resulting in the continuous growth of fatty infiltration

rich in inflammatory white blood cells and the formation of plaque.

Plaque regression is an important clinical goal in the treatment of

atherosclerosis. The increase of Tregs in plaque is one of the

characteristics of plaque regression. The CD45+ cells isolated from

aortic arch plaques of atherosclerotic mice were sequenced by single-

cell RNA-sequencing, and the expression profiles of Tregs in

progressing and regressing plaque were compared. The results

showed that the Tregs in progressing plaques had high mRNA levels

of thymus-derived or natural Tregs (nTregs) markers Nrp1 and

nTregs-activated genes (Itgb1, CTLA4). In contrast, the level of Tregs

Nrp1 mRNA in regressing plaque is lower, and the level of mRNA

related to the differentiation or maintenance of Tregs is higher (Mif,

lgals9, Ly6a), suggesting that Tregs in regressing plaque may come

from the peripheral differentiation of naïve T cells (136). Under

atherosclerotic pathological conditions, CX3CL1 was selectively

recruited to the aortic wall, while CCL4, CXCL11 and CXCL9

mainly increased in lymph nodes. Although CX3CR1 was not

significantly expressed in CD4+ T cells, overexpression of CX3CR1

in Tregs showed that the CX3CL1/CX3CR1 axis selectively

chemotactic Tregs to the aortic plaque of atherosclerotic mice,

reducing lipid deposition, increasing the content of collagen and
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126761
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1126761
smooth muscle cells to improve plaque stability, reducing the number

of proinflammatory macrophages, and inhibiting the progression of

atherosclerosis (195). Anti-CD3 antibody (CD3-Ab) significantly

induced the rapid regression of plaque in the treatment of

atherosclerosis. The mechanism is that CD3-Ab significantly reduced

the infiltration of macrophages and CD4+ T cells in plaque and

increased the proportion of Tregs in plaque. However, when the

anti-CD25 antibody eliminates the function of Tregs, CD3-Ab

cannot induce the regression of atherosclerotic plaque (196).
8 Tregs regulate immune tolerance

Heart transplantation is the only solution for end-stage HF, but

it is limited by allogeneic heart rejection. One of the important

pathophysiological processes of rejection after transplantation is

inflammatory cell infiltration. Tregs mediate immune tolerance and

regulate the immune microenvironment after heart transplantation.

Tregs-targeted Nox2 gene deletion (Nox2fl/flFoxp3Cre) mice

received allogeneic heart transplantation. Nox2-deficient Treg

expressed higher levels of CCR4 and CCR8, driving Tregs to migrate

to the transplanted heart and enhancing immunosuppressive function.

Reduce the degree of cardiomyocyte necrosis and fibrosis in cardiac

grafts (197). IL-34 is an inhibitory Tregs-specific cytokine as well as a

tolerance cytokine, which can effectively inhibit allogenic reactive

immune response and mediate transplant tolerance (198). The

orthogonal IL-2/IL-2R system was used to target Tregs and selectively

amplify Tregs to improve cardiac allotransplantation and enhance

immune tolerance (199). Low-dose IL-2 can prolong the survival

period of chronic cardiac allograft rejection model mice, increase the

infiltration of CD4+CD25+Foxp3 Tregs in spleen and graft, increase the

percentage of circulat ing FoxP3+PD-L1+exocrine and

FoxP3+CD73+exocrine, and delay the rejection (200). Simvastatin

combined with aspirin can activate Tregs to enhance immune

tolerance, enhance the protective effect of vascular endothelial cells,

and prolong the survival time of cardiac allograft (201). Sirtinol

combined with FK506 has a synergistic effect on prolonging cardiac

allograft survival, which regulates Th17/Treg balance by down-

regulating IL-17A and up-regulating Foxp3 (10). In addition, a

clinical study of 91 heart transplant patients showed that a low

peripheral Treg/endothelial progenitor cell ratio after heart

transplantation was an independent predictor of acute immune

rejection (202).

Knockdown of circFSCN1 induced DC transformation into

tDC phenotype, which contributed to Tregs amplification,

prevented immune rejection of heart transplantation, prolonged

allograft survival time, and reduced allograft fibrosis (203).

Overexpression of growth differentiation factor 15 (GDF15) in

DC enhances effector T cells depletion and promotes Tregs

generation through the IDO signaling pathway, thus inhibiting

immune rejection in cardiac allograft (204). The combination of

marine and tacrolimus inhibited DC maturation through the

reactive oxygen species (ROS)/ERK/NF-kB pathway, increased

the rate of Tregs, reduced oxidative damage and apoptosis, and

alleviated acute rejection of mouse heart allograft (205).
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9 Targeted Tregs in the treatment of
the neonatal cardiac injury

The neonatal mouse heart was injured from postnatal day (P) 0-

7, and Tregs were recruited to directly promote myocardial cell

proliferation and cardiac regeneration through paracrine CCL24,

growth arrest specific 6 (GAS6), or amphiregulin (AREG). Depleted

Tregs aggravate cardiac fibrosis, while adoptive transfer of Tregs

reduces fibrosis and enhances the proliferation of injury

cardiomyocytes. Single-cell sequencing analysis showed that there

was no difference in Tregs transcriptomes whether neonatal hearts

were regenerated or not, suggesting that adult Tregs had the same

regenerative capacity as long as they were abundant (206). There

were significantly more Tregs in the P8 hearts of newborn mice than

in the first week after injury (207).
10 Discussion

This review summarized that targeted Tregs effectively treat CVDs

and have cardiac protective effects on MI, HF, myocarditis,

hypertension, atherosclerosis, atrial fibrillation, heart transplantation,

and neonatal heart injury. The specific mechanism involved Tregs

regulating immune balance, anti-inflammatory, inhibiting cardiac

remodeling and vascular remodeling, mediating immune tolerance,

and promoting tissue regeneration and repair (Figure 2). Tregs inhibit

the inflammatory response mediated by effector T cells, Th17 being the

most significant, and regulate Th17/Treg to promote immune balance.

Tregs regulate fibroblast phenotype and inhibit myocardial fibrosis and

cardiac remodeling. Tregs promote the M2-type polarization of

macrophages, which has anti-inflammatory and repair effects, and

inhibit the M1-type polarization of macrophages, which has pro-

inflammatory effects, thus enabling the recovery of damaged

myocardium. Related intervention methods can promote Tregs

amplification, enhance the immunosuppressive function of Tregs and

further strengthen immune tolerance by regulating the transformation

of DCs into tDCs phenotype. Tregs promote the regeneration of heart

muscle cells and the repair of damaged hearts.

Conventional CD4+CD25+Foxp3+Tregs have a wide range of

benefits in the treatment of CVDs. However, studies have shown the

plasticity of Tregs (208), and this plasticity of Tregs has cardiotoxic

effects on CVDs. Atherosclerosis can shift Tregs from a protective

CXCR3+Treg response to dysfunctional interferon (IFN) g+Th1/Treg
response, driving inflammation and worsening disease progression

(209). Tregs in the MI-post HF model mice showed pro-inflammatory

Th1 cell characteristics, losing immunomodulatory function,

enhancing anti-angiogenesis, and promoting fibrosis. Tregs

reconstructed after selective dysfunctional proinflammatory Tregs

ablation showed a recovery of immunosuppressive ability (210). The

discovery of Tregs’ protean function and phenotypic plasticity in

chronic ischemic HF has caused a considerable dispute in the

cardiovascular field due to its novelty, challenging the conventional

view of the phenotypic stability of Tregs after myocardial injury (211,

212), and generated extensive academic reports (213). HF disease can

be divided into ischemic HF and non-ischemic HF. The
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cardioprotective effect of Tregs in non-ischemic HF and ischemic

disease MI has been reviewed previously. While in MI-induced

ischemic HF mice model experiments, a dysfunctional pro-

inflammatory Tregs phenotype emerged. So, does it mean that Tregs

play a typical functional role in a specific animal model? In addition, in

the mice model of right lower extremity ischemia induced by right

femoral artery ligation, although Tregs had immunosuppressive

functions to suppress ongoing inflammation, Tregs had anti-

neoangiogenic effects, resulting in foot inadequate perfusion and

reduced capillary density (214). Human peripheral blood Tregs have

IL-17+/Foxp3+Tregs phenotype and retain immunosuppressive

function, while inhibition of Tregs Foxp3 expression in vitro and

driven by inflammatory microenvironment show plasticity of IL-17

secretion (215). IL-17+/Foxp3+Tregs exist in the inflammatory

intestinal mucosa of patients with Crohn’s disease and exhibit the

phenotype of secreting IL-17 (216). The levels of the Th17 plasticity of

Tregs are elevated in patients with rheumatoid arthritis (217). In

autoimmune arthritis disease, the inflammatory microenvironment

induces Foxp3 instability, leading to the trans-differentiation of Tregs

into pro-inflammatory Th17 cells phenotypes, accelerating synovial

membrane damage (218). So, do IL-17+/Foxp3+Tregs phenotype exist

in heart tissue? Or does Foxp3 instability have a similar toxic effect on

cardiovascular disease? It is worthy of further exploration. Moreover,

Tregs are controversial in the context of myocardial fibrosis. Although

much literature has reported that Tregs ameliorate cardiac fibrosis,

TGF-b is secreted by Tregs, TGF-b/Smads are key pathways in the

induction of fibrosis (219). Of course, the specific mechanism awaits

further exploration.

The global burden of CVDs is still increasing. Although Tregs

are a crucial target for the treatment of CVDs, there is still a lack of

evidence from a large number of clinical randomized controlled

trials. A few clinical trials in patients with CVDs have focused on
Frontiers in Immunology 10
measuring Tregs’ number, ratio, and function as a biomarker of

disease severity. However, in terms of improving CVDs, whether

endogenous Tregs are added, or exogenous Tregs are injected to

enhance Tregs function, many basic experimental studies and

rigorous efficacy and safety assessments are still needed before

they can be used in clinical trials. This review summarized the

clinical trials and basic experimental studies of targeted Tregs for

CVDs, laying a foundation for further research on Tregs.
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Protective effects of Conventional CD4+CD25+Foxp3+Tregs in cardiovascular diseases.
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