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arthritis through bioinformatics
analysis and machine learning
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Background: Increasing evidence has proven that rheumatoid arthritis (RA) can

aggravate atherosclerosis (AS), and we aimed to explore potential diagnostic

genes for patients with AS and RA.

Methods: We obtained the data from public databases, including Gene

Expression Omnibus (GEO) and STRING, and obtained the differentially

expressed genes (DEGs) and module genes with Limma and weighted gene

co-expression network analysis (WGCNA). Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) enrichment analysis, the protein–

protein interaction (PPI) network, and machine learning algorithms [least

absolute shrinkage and selection operator (LASSO) regression and random

forest] were performed to explore the immune-related hub genes. We used a

nomogram and receiver operating characteristic (ROC) curve to assess the

diagnostic efficacy, which has been validated with GSE55235 and GSE57691.

Finally, immune infiltration was developed in AS.

Results: The AS dataset included 5,322 DEGs, while there were 1,439 DEGs and

206 module genes in RA. The intersection of DEGs for AS and crucial genes for

RA was 53, which were involved in immunity. After the PPI network and machine

learning construction, six hub genes were used for the construction of a

nomogram and for diagnostic efficacy assessment, which showed great

diagnostic value (area under the curve from 0.723 to 1). Immune infiltration

also revealed the disorder of immunocytes.

Conclusion: Six immune-related hub genes (NFIL3, EED, GRK2, MAP3K11, RMI1,

and TPST1) were recognized, and the nomogram was developed for AS with

RA diagnosis.
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1 Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease

characterized by chronic inflammation that commonly affects

individuals aged 50–60 years (1). Patients with RA experience

symmetrical joint pain and swelling, which may lead to joint

deformity and progressive joint damage (2).

RA patients also have an increased risk of cardiovascular morbidity

andmortality (3). Atherosclerosis (AS), the accumulation of a fibrofatty

lesion in the artery wall with the infiltration of immunocytes such as

macrophages, T cells, and mast cells, is a potential reason for coronary

and carotid artery disease (4, 5). Recent evidence suggests that there are

similar pathological processes and risk factors in both RA and AS, with

chronic inflammation and immune dysfunction being the most

significant (5–9).

While the underlying mechanism linking RA and AS is still

unknown, it is clear that both conditions involve chronic

inflammation and immune infiltration. For example, AS is an

inflammatory process that can lead to plaque rupture,

thrombosis, and vessel occlusion (10, 11). In patients with RA,

immunological processes can occur many years before diagnosis,

during the pre-RA phase (12). Furthermore, many pathological

processes of the artery wall in AS are reflected in RA synovial

inflammation, including the infiltration of macrophages and type 1

T helper cells, which have secondary effects on the artery via

mediators produced in the synovium (7). Therefore, identifying

immune infiltration and associated inflammatory molecules may

have early diagnostic efficacy for RA patients with AS, which is

significant in avoiding severe cardiovascular consequences.

In this study, we downloaded RA and AS datasets from the

Gene Expression Omnibus (GEO) database and screened for

differentially expressed genes (DEGs) using Limma. We identified

significant module genes via weighted co-expression network

analysis (WGCNA) and performed functional enrichment

analysis. We constructed a protein–protein interaction (PPI)

network for the intersection genes and identified candidate genes

using machine learning algorithms, including the least absolute

shrinkage and selection operator (LASSO) and random forest (RF),

and immune cell infiltration analysis. We evaluated the key

immune-associated diagnostic genes for AS with RA using

nomogram and receiver operating characteristic (ROC) curve

assessments. This study is useful in screening immune-related

diagnostic biomarkers for AS in RA patients.
2 Materials and methods

2.1 Data collection and data processing

We retrieved four gene expression datasets from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/), namely, GSE55457,

GSE55235, GSE100927, and GSE57691 (13). The GSE55457 dataset

included 11 control samples and 12 RA samples, while GSE55235

included 10 control samples and 10 RA samples. The GSE100927

dataset contained 35 control samples and 69 AS samples, and

GSE57691 contained 10 control samples and 9 AS samples. We
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normalized the gene expression data using the R package

“optparse.” The study procedures are summarized in Figure 1.
2.2 Differentially expressed gene screening

We obtained DEGs between RA and the control group with padj
< 0.05 and |log2Fold change (FC)| > 1.2 in GSE55457, and between

AS and the control group with padj < 0.05 and |log2FC| > 1.2 in

GSE100927. The R software package Limma was used in this

analysis. The DEGs were visualized via the Sangerbox platform

(http://vip.sangerbox.com/).
2.3 Weighted gene correlation
network analysis

In this study, we utilized the “WGCNA” package in R software

to investigate the association between genes and phenotypes by

constructing a gene co-expression network (14). Firstly, we

removed 50% of genes with the smallest median absolute

deviation (MAD). Secondly, we calculated Pearson’s correlation

matrices for all pairwise genes and constructed a weighted

adjacency matrix using the average linkage method and a

weighted correlation coefficient. The “soft” thresholding power

(b) was then used to calculate the adjacency, which was converted

into a topological overlap matrix (TOM). To group genes with

similar expression profiles into modules, we performed average

linkage hierarchical clustering based on the TOM-based

dissimilarity measure with a minimum gene group size of 50.

Finally, we calculated the dissimilarity of module eigengenes,

selected a cut line for the module dendrogram, and merged

several modules. WGCNA was employed to identify significant

modules in AS, and a visualized eigengene network was created.
2.4 Function enrichment analysis

To explore the biological functions of genes, we utilized the

“clusterProfile” package in R software (15). First, we conducted

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses, using a p-value < 0.05 (16, 17). The

results were visualized using the Sangerbox platform (http://

vip.sangerbox.com/). We then identified the intersection of DEGs

in both AS and the critical module genes of RA, as well as the

intersection of DEGs in RA and the critical module genes of RA. We

performed GO and KEGG analyses based on these intersections.
2.5 Protein–protein intersection
network construction

To investigate the interaction among proteins, pathways, and co-

expression, we utilized the STRING database (https://cn.string-db.org/)

to construct the protein–protein intersection (PPI) network of the

DEGs for AS and the critical module genes (18). Cytoscape software
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was used to identify the significant interacted genes (19). Only the

genes that interacted with each other were chosen for further analysis.
2.6 Machine learning

To further investigate the potential candidate genes for the

diagnosis of AS with RA, we performed LASSO and RF analyses.

LASSO, a machine learning technique that combines variable selection

and regularization, can enhance predictive accuracy (20). On the other

hand, RF is a predictive algorithm that does not impose restrictions on

variable conditions, making it capable of providing predictions without

apparent variations (21). We employed the R software’s “glmnet” and

“randomforest” packages to conduct LASSO and RF analyses,

respectively. The intersection of the two results can serve as the

candidate hub genes for diagnosis (22, 23).
2.7 Nomogram construction and receiver
operating characteristic evaluation

In order to determine the importance of the candidate genes for the

diagnosis of AS with RA, we constructed a nomogram using the “rms”

R package. The nomogram consisted of “Points,” which indicated the

score of the candidate genes, and “Total Points,” which showed the
Frontiers in Immunology 03
total sum of all gene scores. The nomogram was an important tool for

predicting the diagnosis of AS with RA. We further evaluated the

prognostic value of the candidate genes and the nomogram by

performing ROC analysis. The ROC analysis generated the area

under the curve (AUC) and 95% confidence interval (CI), and an

AUC value > 0.7 was considered to have great diagnostic efficacy.
2.8 Immune infiltration analysis

To estimate the infiltration of immune cells based on gene

expression profiles, we utilized CIBERSORT, an analytical tool. We

evaluated the proportion of immune cells in AS and control groups

using this platform (24). The bar plot was used to visualize the

proportion of various immune cells, while the vioplot was used to

compare the proportions of these cells between the AS and control

groups. The heatmap with Sangerbox platform was used to depict

the association of immunocytes (25).
2.9 Statistical analysis

Statistical analysis was conducted to analyze the data obtained in

this study. The ROC curve and AUC were constructed using SPSS
FIGURE 1

Workflow of the analysis.
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Version 26.0 (IBM Corporation, Armonk, NY, USA), and the 95% CI

was calculated. The proportion of various immunocytes between the

RA and control groups was compared using theMann–WhitneyU-test

via GraphPad Prism Version 8.3.0 (GraphPad Software, San Diego,

CA, USA). A p-value<;0.05 was considered statistically significant.
3 Results

3.1 Identification of differentially
expressed genes

A total of 2,705 DEGs were identified from the RA combined

dataset with a p-value < 0.05 and |log2FC| > 1.2. The volcano plot

and heatmap presented in Figures 2A, B, respectively, illustrate the

differential expression pattern of these DEGs. Similarly, for AS, a

total of 5,322 DEGs were identified using the same cutoff criteria of

p-value < 0.05 and |log2FC| > 1.2. Figures 3A, B depict the

differential expression pattern of these DEGs for AS.
Frontiers in Immunology 04
3.2 Weighted gene co-expression network
analysis and critical module identification

We constructed a scale-free co-expression network using the

weighted gene co-expression network analysis (WGCNA) to

identify the most associated module in RA. A “soft” threshold b
of 7 was chosen based on the scale independence and average

connectivity (Figures 3C, D). The clustering dendrogram of RA and

control was generated, and 26 gene co-expression modules in

different colors were obtained with a module merge threshold of

0.25 and a minimum size of 50, as shown in Figures 3E–G. Clinical

correlation analysis results showed that the pink module had the

highest association (r = 0.73, p-value < 0.001) with RA Figure 3H.

Thus, we selected the pink module, which consisted of 206 genes,

for further analysis. We conducted a correlation analysis between

module membership and gene significance, and found a significant

positive correlation between them (correlation coefficient = 0.64, p-

value < 0.001) Figure 3I. These results indicated that the genes in the

pink module were most closely related to RA.
A

B

FIGURE 2

Different expression genes between AS and control groups. (A) Red and green represent DEGs with significantly higher and lower expression level in
AS groups, respectively. (B) The heatmap showed the top 20 genes that were significantly expressed in the RA and control groups.
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3.3 Functional enrichment analysis of RA

To validate the reliable extent of GSE55457, we implemented

enrichment analysis for the intersection of genes from Limma and

module genes. A total of 164 common genes were obtained, as

shown in Figure 4A.

KEGG analysis elucidated that common genes were involved in

“p53 signaling pathway” and “Apoptosis”, as shown in Figure 4B.

The results of GO analysis revealed that common genes were

enriched in biological process (BP) terms, including “immune

system process”, “immune response”, and “regulation of immune

response”, as shown in Figure 4C. For cellular component (CC)

ontology, the common genes are involved in “cytosol”, “nuclear
Frontiers in Immunology 05
part”, and “nuclear lumen”, as shown in Figure 4D. For molecular

function (MF), the results showed that “drug binding” was the most

significant term in common genes, as shown in Figure 4E.

The results showed that the common genes for RA were associated

with immune response, which were highly related to the pathogenesis

of RA.
3.4 Enrichment analysis of AS with RA and
screening node genes via the protein–
protein interaction network

The intersection of the DEGs for AS and the module genes for

RA included 53 genes, as seen in Figure 5A. To explore the
A B

D E

F G

IH

C

FIGURE 3

Identification of DEGs via Limma and WGCNA module genes in RA. (A) The volcano plot represents DEGs, of which the red and green triangles refer
to significant genes. (B) The heatmap shows the top 20 upregulated and downregulated DEGs from the RA dataset, which are shown in red and blue
colors. (C, D) b = 7 is chosen as the soft threshold based on the scale independence and average connectivity. (E) Clustering dendrogram of the RA
and control samples. (F) Gene co-expression modules with different colors under the gene tree. (G) Heatmap of eigengene adjacency. (H) Heatmap
of correlation between module genes and RA shows that the pink module has the highest association with RA. For each pair, the top left triangle is
colored to represent the correlation coefficient; the bottom right one is colored to indicate the p-value. (I) Correlation plot between module
membership and gene significance of magenta module genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126647
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1126647
relationship between RA-related genes with the pathogenesis of AS,

enrichment analysis was performed based on these genes. The

KEGG analysis showed that 53 genes mainly enriched in “NF-

kappaB signaling pathway” and “Neurotrophin signaling pathway”,

which were all closely associated with the immune system, as shown

in Figure 5B. GO analysis revealed that genes were involved in “NF-

kappaB signaling pathway”, “I-kappaB phosphorylation” (BP),

“cytosol”, “cytoskeleton” (CC), and “transferase activity” (MF), as

shown in Figures 5C–E.

A PPI network was constructed, in which 22 genes can interact

with each other, as shown in Figure 5F. The node genes were ranked

by node numbers in Figure 5G.
3.5 Identification of candidate hub genes
via machine learning

LASSO regression and RF machine learning algorithms were

utilized to identify potential candidate genes associated with the

diagnosis of AS with RA. LASSO regression analysis identified 22

genes that were closely associated with the disease (Figures 6A, B).

In the RF algorithm, we evaluated the importance of genes based on

indicators such as mean decrease accuracy (MDA) and mean

decrease gini (MDG) (Figures 6C, D). The AUC and 95% CI of

these genes in LASSO regression and the intersection of MDA and

MDG in RF machine learning algorithms were calculated, and the

ROC curves were plotted. The results showed high accuracy for the

LASSO regression (AUC 0.999, CI 0.971–1) and RF machine
Frontiers in Immunology 06
learning algorithms (AUC 0.995, CI 0.971–0.986) (Figures 6E, F).

The intersection of the top 15 most important genes from RF and 22

genes from LASSO were visualized in Figure 6E, which identified six

genes (NFIL3, EED, GRK2, MAP3K11, RMI1, and TPST1) as key

diagnosis genes for the final validation.
3.6 Diagnosis value evaluation

We constructed the nomogram with six key diagnosis genes, as

shown in Figure 7B. The AUC and 95% CI of these genes were

calculated with the construction of ROC curves to evaluate the

diagnostic efficacy as shown in Figure 7A. The results were as

follows: NFIL3 (AUC 0.907, CI 0.8515–0.9622), EED (AUC 0.915,

CI 0.8582–0.9712), GRK2 (AUC 0.986, CI 0.9669–1), MAP3K11

(AUC 0.954, CI 0.9089–0.9984), RMI1 (AUC 0.953, CI 0.9157–

0.9903), TPST1 (AUC 0.815, CI 0.723–0.9076), and nomogram

(AUC 0.996, CI 0.9839–1). We validated the model with GSE55235

and GSE57691, as shown in Figure 7A. All genes and nomogram

showed a high value of diagnosis for AS with RA.
3.7 Immune infiltration analysis

Because the key diagnosis genes that were correlated with RA

can regulate the pathogenesis of AS and be mainly enriched in

immunity, the immune infiltration analysis can better explore the

effect of immunity in AS. For AS and the control groups, the
A B

D EC

FIGURE 4

Function enrichment analysis of the intersection of genes for RA. (A) The intersection of DEGs via Limma and WGCNA module genes includes 164
genes, which were shown in the Venn diagram. (B) KEGG analysis of the intersection of genes. Various significant pathways and associated genes are
represented with different colors. (C–E) The GO analysis includes biological process, cellular component, and molecular function. The y-axis
represents GO terms, and the x-axis represents gene ratio involved in corresponding GO terms. The size of circles represents gene numbers, and
their color refers to p-value.
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proportion of 22 kinds of immunocytes are shown in Figure 8A.

The box plot presented that compared with the control group, naïve

B cells, plasma cells, CD4+ naïve T cells, CD4+ memory-activated T

cells, follicular helper T cells, activated NK cells, monocytes, M0

macrophage, M1 macrophage, M2 macrophage, resting mast cells,

and activated dendritic cells had a lower level in the AS group, while

memory B cells, regulatory T cells, gamma delta T cells, and

activated mast cells had a high level, as shown in Figure 8B. The

correlation of 22 types of immunocytes demonstrates that CD4+

memory resting T cells were positively related to monocytes (r =

0.55), monocytes were negatively related to M0 macrophage (r =

−.64), CD4+ memory resting T cells were negatively related to M0

macrophage, (r = −0.72), and all the associations are shown in

Figure 8C. In summary, the different level of infiltration of

immunocytes in RA patients may serve as a potential

treatment target.
4 Discussion

Accumulation of plaque in the artery wall, known as, is a

primary cause of cardiovascular diseases and is closely associated
Frontiers in Immunology 07
with complications of the heart, brain, and kidney (26–28). Due to

the difficulty in diagnosing and treating AS, finding an appropriate

diagnostic biomarker is crucial to improve the prognosis (29). AS

and RA share similar pathological processes, and the mortality rate

of AS in RA patients is significantly increasing (30). Therefore, we

performed bioinformatics analysis and machine learning methods

to construct a nomogram to evaluate the diagnostic efficacy of AS in

RA patients. We identified six key immune-related candidate

genes (NFIL3, EED, GRK2, MAP3K11, RMI1, and TPST1) and

constructed a nomogram.

Nuclear-factor interleukin 3 (NFIL3), also known as E4BP4, is a

new biomarker for diagnosing AS in RA patients. NFIL3 exerts a

transcriptional repressing function by binding to an activation

transcription factor (ATF) DNA consensus sequence site (31). As

a crucial transcription factor in the immune system, the expression

level of NFIL3 is regulated by cytokines and mainly found in natural

killer cells, B lymphocytes, T lymphocytes, and other immune cells

(31–33). As a crucial transcription factor in the immune system, the

expression level of NFIL3 is regulated by cytokines and mainly

found in natural killer cells, B lymphocytes, T lymphocytes, and

other immune cells (34–36). Inhibition of NFIL3 expression in CD4

+ T cells decreases the level of IL10, worsening autoimmune
A B

D E

F G

C

FIGURE 5

Functional enrichment analysis of common genes from RA with AS and the recognition of node genes with the PPI network. (A) Venn diagram
shows 53 genes are recognized from the intersection of genes in RA with Limma and SLE with WGCNA. (B) KEGG analysis of 53 common genes.
(C–E) GO analysis (biological process, cellular component, and molecular function) of 53 common genes. (F) The PPI network demonstrates that 23
genes interact with each other. (G) The column shows the gene nodes of 23 genes in the PPI network.
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encephalomyelitis (37). NFIL3 promotes the Th2 lineage while

inhibiting the Th17 lineage and suppresses the production of IL-

12 p40 in macrophages, which is associated with the progression of

colitis (37, 38). Additionally, the anti-inflammatory effect of NFIL3

in immunity plays a crucial role in autoimmune diseases. NFIL3 has

a high expression level in CD4+ T cells of patients with systemic

lupus erythematosus (SLE) and suppresses the activation and self-

reactivity of T cells and subsequent autoimmune response by

downregulating CD40L (39). T follicular helper cells in patients

with SLE also show a high level of NFIL3 but a low level of

phosphorylation (40). Furthermore, the deficiency of NFIL3 is

associated with juvenile idiopathic arthritis and induces more

severe arthritis (41). The significant increase in NFIL3 in patients

with RA may be associated with the production of multiple pro-

inflammatory cytokines and RA progression (42). However, the

association of NFIL3 with AS is still unclear. Due to the pro-

inflammatory effect of NFIL3 in patients with RA, and the

inflammation being a crucial factor in plaque rupture and

stability, we suggest that NFIL3 could be a candidate diagnostic

gene for AS in RA patients.
Frontiers in Immunology 08
Embryonic ectoderm development (EED) is a nuclear factor and

a transcriptional repressor. It is a member of the polycomb repressive

complex and is involved in the proliferation and differentiation of

lymphocytes as well as embryonic development (43–45). WAIT-1, a

protein cloned from EED, interacts with integrins at the plasma

membrane and plays a crucial role in immunity (46, 47). The

activation of the integrin receptor can recruit EED to the plasma

membrane, where it participates in the antigen receptor transduction

in T cells (44, 48). EED also interacts with the neutral

sphingomyelinase 2, which is involved in inflammation, heart

failure, AS, and other biological processes (45, 49, 50). The

production of ceramide via sphingomyelin hydrolysis is involved in

the formation of atherogenic plaques, making the sphingomyelinase

an important target in the treatment of AS (50). The production of

ceramide via sphingomyelin hydrolysis is involved in the formation

of atherogenic plaques, making the sphingomyelinase an important

target in the treatment of AS.

G protein-coupled receptor (GPCR) kinase 2 (GRK2) is a key

node in multiple signaling networks and interacts with various

cellular proteins associated with signal transduction. This
frontiersin.or
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FIGURE 6

Machine learning in identifying key diagnosis genes for RA with AS. (A, B) Key genes identified in the LASSO model. Twenty-two genes are the most
suitable for diagnosis. (C) The random forest algorithm ranks the top 15 most important genes based on MDA and MDP. (D) The intersection of genes of
the above two algorithms is shown in the Venn diagram. (E) The ROC curve of the LASSO model. (F) The ROC curve of random forest algorithm.
g
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interaction further promotes signal propagation after GPCR

activation (51). The signal transduction involves various cells’

activation, including endothelial cells. Excessive angiogenesis is an

important factor in the development of inflammatory diseases, such
Frontiers in Immunology 09
as RA (52, 53). A high expression level of GRK2 has been detected

in the synovial tissues of RA patients (51). It has been proven that

GRK2 participates in the progression of AS. The mouse with a

GRK2 deficiency demonstrates defective angiogenesis and
A B

FIGURE 7

Construction of the nomogram and the diagnosis value assessment. (A) The ROC curve of each candidate gene (NFIL3, EED, GRK2, MAP3K11, RMI1,
and TPST1), nomogram, and the validation in GSE55235 and GSE57691. (B) Nomogram for diagnosis RA with AS.
A B

C

FIGURE 8

Immune infiltration analysis between AS and control. (A) The proportion of 22 immunocytes in all samples visualized from the bar plot.
(B) Comparison of the proportion of 22 kinds of immunocytes between AS and control groups shown in the vioplot. (C) Association of 22
immunocyte-type compositions. *p < 0.05; **p < 0.01; ***p < 0.001.
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increasing chemokine and adhesion molecules as AS progresses

(54). Moreover, GRK2 is a potential upstream kinase for vinculin

via mediating phosphorylation of vinculin, which further induces

the disruption of the VE-cadherin/catenin complex, promoting the

generation of atherogenesis (55). In this study, GRK2 is identified as

one of the candidate diagnosis biomarkers for AS with RA.

Mitogen-activated protein kinase 11 (MAP3K11) is a potential

target for immune treatment due to its expression in T cells and its

regulatory role in T-cell activation and cytotoxicity (56). In

addition, MAP3K11 is upregulated by mechanical stress and is

associated with the differentiation of bone marrow stromal cells (57,

58). MAP3K11 has also been identified as a target for AS, as its

inhibition can reduce the expression of key genes in coronary artery

disease and the migration of vascular smooth muscle cells (59–61).

It can also be used as a diagnosis marker.

RecQ-Medoayed Genome Instability 1 (RMI1) is crucial for

maintaining genomic stability and regulates adipocyte hyperplasia

to maintain energy stability (62). RMI1 is upregulated by obesity

and high-glucose conditions and plays a role in maintaining

genome integrity during replicative stress (63, 64).

Protein-tyrosine sulfotransferase 1 (TPST1) catalyzes the

sulfuration of tyrosine residues within the acidic motif of

polypeptides (65). It has been proven that TPST1 can regulate

immune and inflammatory response through catalyzing sulfation

(66) involved in regulating immune and inflammatory responses

through tyrosine sulfation (67). Additionally, tyrosine sulfation

contributes to monocyte recruitment, a major factor in AS

development, making drugs inhibiting TPST1 favorable in AS

treatment (68, 69). In this study, TPST1 is selected as a candidate

diagnosis biomarker.

It has been identified that immune cells and inflammation play a

crucial role in the pathogenesis of AS (70). The interactions between

immunocytes and the production of pro-inflammatory and anti-

inflammatory chemokines have an important influence in the plaque

rupture (5, 71, 72). In AS patients and the animal models of AS, it has

been observed that circulating monocytes are associated with the size

and stage of plaque (73, 74). Monocytes can further differentiate into

macrophages, the key component of plaque, and become foam cells

after the accumulation (70). Dendritic cells also participate in the

adaptive immune response to AS-associated antigens and the

formation of foam cells, further promoting the development of AS

(75, 76). Furthermore, Th1 cells are the main type of CD4+ T cells in

AS, which produce a large number of pro-inflammatory cytokines,

while Th2 cells can produce IL-13 and IL-5 to antagonize

atherosclerosis (77–79). The expression level of Tregs has decreased

with the progression of AS (80, 81). Moreover, B2 cells, which

participate in antibody production, dependent on T cells, promote

the progression of AS. In our study, naïve B cells, plasma cells, CD4+

naïve T cells, CD4+ memory-activated T cells, follicular helper T cells,

activated NK cells, monocytes, M0 macrophage, M1 macrophage, M2

macrophage, restingmast cells, and activated dendritic cells had a lower

level in AS patients, while memory B cells, regulatory T cells, gamma

delta T cells, and activated mast cells had a high level in AS patients,

consistent with previous studies. In summary, the study on immune

manifestation and inflammatory cytokines can favor the diagnosis and

treatment for AS.
Frontiers in Immunology 10
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In this study, we have successfully identified six immune-related

hub genes (NFIL3, EED, GRK2, MAP3K11, RMI1, and TPST1) using

bioinformatics analysis and machine learning algorithms. These genes

have shown a potential to serve as diagnostic candidate genes for AS in

RA patients. Furthermore, our study has also highlighted the immune

dysfunction in AS with RA. We have also constructed a nomogram for

diagnosing AS with RA, which can aid in clinical decision-making.

Overall, our findings may provide new insights into the pathogenesis

and diagnosis of AS with RA. Further validation studies are warranted

to confirm the clinical relevance of these genes in AS with RA.
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