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Immune system detects foreign pathogens, distinguishes them from self-antigens

and responds to defend human body. When this self-tolerance is disrupted, the

overactive immune system attacks healthy tissues or organs and the autoimmune

diseases develop. B cells and plasma cells contribute a lot to pathogenesis and

persistence of autoimmune diseases in both autoantibody-dependent and

autoantibody-independent ways. Accumulating data indicates that treatments

aiming to eliminate antibody-secreting cells (B cells or plasma cells) are effective

in a wide spectrum of autoimmune diseases. Monoclonal antibodies (mAbs)

deplete B cell lineage or plasma cells by signaling disruption, complement-

dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity

(ADCC). Engineered-T cells armed with chimeric antigen receptors (CARs) have

been adopted from field of hematological malignancies as a method to eliminate B

cells or plasma cells. In this review, we update our understanding of B cell depletion

therapies in autoimmune diseases, review the mechanism, efficacy, safety and

application of monoclonal antibodies and CAR-based immunotherapies, and

discuss the strengths and weaknesses of these treatment options for patients.

KEYWORDS

autoimmune disease, B cell depletion, monoclonal antibody, chimeric antigen
receptor, immunotherapy
1 Introduction

The immune system defends human body by a tightly controlled network that detects

foreign pathogens, distinguishes them from self-antigens and responds (1). When this self-

tolerance is disrupted, the immune system accidentally attacks our bodies instead of

protecting them that results in development of autoimmune diseases (2). There are over

100 known autoimmune diseases, among which lupus, rheumatoid arthritis (RA) and
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multiple sclerosis (MS) are common ones. Multiple populations of

immune cells are involved in the pathogenesis of autoimmune

diseases. Adaptive immune cells, especially B cells and T cells are

confirmed to be primary contributors to the overactive immune

response (3). In recent decades, evidence accumulated that B cells

contribute to pathogenesis and persistence of autoimmune diseases in

both autoantibody-dependent and autoantibody-independent ways.

Activated B cells differentiate into antibody secreting cells (ASCs)

in lymph nodes and spleen, and then transiently circulate in the blood

or migrate to the bone marrow. The autoantibodies secreted by ASCs

contribute to autoimmune diseases through modulating important

pathways, initiating immune-complex-mediated inflammation and

depleting specific types of cells (4–8). Besides antibody secretion, B

cells involved in multiple biologic processes, including antigen

presentation, cytokine production, regulatory B cells (Bregs)

dysfunction, T cell activation and polarization and organization of

other inflammatory cells. They can internalize immune complexes

and present selected peptides to CD4+ T cells in the context of major

histocompatibility complexes II (MHCII) (9). Bregs were found

functionally deficient in patients with SLE which had a defective

CD40 response and impaired IL-10 production (10). Moreover, B

cells can produce numbers of cytokines influencing autoimmune

pathology including IL-6, TNF, IL-10, IFN-g, etc. (11) and

contributing to the cytokine environment leading to primary T cell

polarization. This T cell and B cell cognate interaction is important

for the pathogenesis of autoimmune diseases.

Therefore, depletion of B cells has been considered as treatment

for autoimmune diseases since 1990’s and many therapies aiming to

eliminate B cells were exploited and applied. Monoclonal antibodies

(mAbs) and chimeric antigen receptor T (CART) cell therapies have

shown encouraging results in a wide range of B cell malignancies.

Rituximab was the first mAb approved in 1997 by U.S. Food and Drug

Administration (FDA) for the treatment of relapsed or refractory

CD20-positive, B-cell, low-grade or follicular non-Hodgkin’s

lymphoma (NHL) (12). For its satisfying efficacy and safety,

rituximab containing immunochemotherapies are widely used in B-

cell NHL and becoming the standard of care. CART cells, one of the

most successful immunotherapies have been approved by FDA in

2017 as a treatment of refractory pre-B cell acute lymphoblastic

leukemia and diffuse large B cell lymphoma (13). The high efficacy

of CART cell therapy solidified adoptive cell therapies as the “third

pillar” of medicine along with small-molecule drugs and biologics

(14). Many research teams aim to extend the applications of these two

types of immunotherapies to as many autoimmune disease types as

possible. This paper will review the mechanism, efficacy, safety, and

application of mAbs and CART immunotherapy in use and discuss

the strengths and weaknesses of these treatment options for patients.
2 Mechanism of monoclonal antibody
therapy in autoimmune diseases

Antibody binds to the antigen, ligand or receptor that are

expressed on the surface of B cells, and disrupts the downstream

signaling pathways associated with cellular growth, proliferation or

apoptotic mechanisms (15). Depending on different antigens, the
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corresponding mAbs induce the apoptosis of target cells by different

mechanisms. For example, CD20 is a part of a cell-surface complex

responsible for adjusting calcium transport. When antibodies bind to

CD20, changes in Ca2+ concentration are induced and capable of

controlling cell growth and apoptosis in B cells (16). In addition to

signaling inhibition to induce apoptosis of target cells directly, mAbs

also can eliminate them indirectly via antibody-dependent cell-

mediated cytotoxicity (ADCC), by which the mAbs recruit immune

effector cells with cytotoxic properties like natural killer (NK) cells,

monocytes, macrophages, and polymorphonuclear leukocytes to kill

the antigen-expressing cells (17, 18). Some mAbs such as rituximab

and ofatumumab, induce complement-dependent cytotoxicity (CDC)

as well (19, 20). Cascade of complement proteins are activated and

form a complex to attack the membrane of target cells when C1

complex binds the antigen-antibody complex. mAbs applied in

autoimmune diseases usually utilize more than one mechanism in

their pharmacological actions.
3 Targets of monoclonal antibodies in
autoimmune diseases

The mAbs used in field of autoimmune diseases mainly target

CD20, CD19, CD22, CD38 and B-cell activating factor (BAFF). They

are expressed differently during the development of B cell lineage

(Figure 1). Some mAbs were approved by FDA for the treatment of

autoimmune diseases (Table 1).
3.1 CD20

Antibodies targeting CD20 which is expressed by B cells at almost

all stages of development except for pro-B cells, plasmablasts and

plasma cells are currently the most widely used mAbs. Although these

antibodies have the same target, their structures and indications are

very different. The first generation of anti-CD20 mAbs includes

murine and chimeric mAbs represented by rituximab. Rituximab is

chimeric mAb with 34% mouse protein in the variable region,

resulting in lower incidence of human anti-mouse antibody

(HAMA) reaction than murine mAbs. They have shown high

efficiency in pemphigus, RA, granulomatosis with polyangiitis and

microscopic polyangiitis (21–23). The patients with good clinical

responses had sustained decrease in anti-dsDNA antibodies and anti-

CCP autoantibodies (24–27). High frequency of memory B cells was

related to poor clinical response to rituximab (28). However, two

randomized controlled trials testing rituximab in lupus nephritis and

extra-renal lupus failed to achieve their primary endpoints. There was

no significant difference of the proportion of patients achieving

complete or partial response between the placebo and the treatment

arms. The reason of the failure may be associated with the usage of

high doses of glucocorticoids and immunosuppressive therapy,

patient heterogeneity, the study size, etc. (29, 30). Meanwhile,

rituximab treatment decreases patients’ humoral immune response

to recall antigens that will increase the risk of infection and long-term

expansion of uncontrolled tumor cells (31, 32).
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Recently, 2nd generation of anti-CD20 agents including

humanized mAbs and fully human mAbs were developed to reduce

immunogenicity and prolong the half-life after infusion into patients.

Ocrelizumab, ofatumumab and veltuzumab belonged to this

generation were put into use one after another. They were

confirmed to bind to the Fc receptor on B cells tighter (33).

Ocrelizumab, the humanized mAb, was proved to be efficient and

approved by FDA in relapsing MS and primary progressive MS (34,

35) since patients with progressive MS have few treatment options.

Compared with rituximab, it induces greater extent of ADCC and

lesser extent CDC (36, 37). Relapsing-remitting MS (RRMS) patients

treated with ocrelizumab got 46-47% lower annualized relapse rate

and 94-95% reduction of active lesions (38). Moreover, ocrelizumab

begun to show better efficacy in younger patients with progressive

form of MS (39). Ofatumumab is fully human mAb with completely

removal of murine components. It was approved by FDA for the

treatment of relapsing forms of MS in 2020. In the trials compared to

teriflunomide, patients with ofatumumab treatment showed lower

annualized relapse rate (40). In addition, it is the first self-

administered B cell depletion option in MS which can be delivered

via autoinjector pen and avoid patients’ visit to infusion center (41).

3rd generation of anti-CD20 mAbs contains glycoengineered Fc

portion which increases affinity to Fc receptor III on innate immune

effector cells such as NK cells, macrophages, and neutrophils which

could remove the antibody-coated cells. This category is represented

by obinutuzumab, a humanized anti-CD20 mAb which is more

efficient at eliminating organ resident B cells by inducing signaling-

dependent B cell death (42). Obinutuzumab binds to different epitope
Frontiers in Immunology 03
from rituximab and does not induce CD20 clustering or antibody

internalization. Therefore, greater efficacy and less resistance are

observed (43).
3.2 CD22

CD22 is expressed on developing B cells except for plasmablasts

and plasma cells (44). The phase III data of epratuzumab which is a

humanized mAb targeting CD22 indicated no differences compared

with standard therapy in patients with SLE (45, 46). Epratuzumab

decreased activation of B cell receptor and depleted only part of B

cells. Low CD22 expression and low binding with epratuzumab of

CD27+ memory B cells resulted in the failure of the therapy.
3.3 BAFF

BAFF is a B cell survival factor, resulting in expanded B cell

compartment and relaxed negative selection within the GC (47–49).

Autoimmune diseases can be induced by overexpression of BAFF in

mouse model and elevated serum BAFF levels are found in patients

with systemic sclerosis (47, 50). Dysregulated expression of BAFF

contributes to autoimmune diseases through its effects on activation,

proliferation, survival and immunoglobulin secretion of B cells (51).

Belimumab, the only one approved biologic targeting B cells for SLE,

is a fully human anti-BAFF mAb. Belimumab prevents BAFF from

signaling through receptors (BAFF receptor, TACI, and BCMA) on B
FIGURE 1

Schematic representation of CD19, CD20, CD38, CD22, BAFF-R, BCMA and TACI expression according to B cell maturation steps.
TABLE 1 FDA approved mAbs in autoimmune diseases.

Target and technology Drug FDA-approved diseases

Chimeric anti-CD20 mAb Rituximab Rheumatoid arthritis; Granulomatosis with polyangiitis; Microscopic polyangiitis; Pemphigus

Humanized anti-CD20 mAb Ocrelizumab Relapsing and progressive multiple sclerosis

Fully human anti-CD20 mAb Ofatumumab Relapsing multiple sclerosis

Humanized anti-CD19 mAb Inebilizumab Neuromyelitis optica spectrum disorder

Fully human anti-BAFF mAb Belimumab SLE; Lupus nephritis
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cells by binding to it. BAFF receptor (BAFF-R) is expressed on the

surface of human peripheral B cell subsets except PCs and

centroblasts in the dark zone of GCs (52). BCMA is expressed on

long-lived plasma cells while TACI is expressed by plasma cells,

activated B cells, marginal zone B cells and switched memory B cells

(53). Since BAFF-R is the major receptor for BAFF-dependent

response in peripheral blood, belimumab reduces naïve B cells and

B cells at early developmental stages rapidly while B cells of later

stages such as PCs and memory B cells exhibit resistance due to the

lack of BAFF-R (54).
3.4 CD19

Antibodies are produced by both short-lived plasma cells and

long-lived plasma cells. Unlike short-lived plasma cells, nondividing

long-lived plasma cells are always preserved after the treatment of

conventional immunosuppressive drugs or mAbs for B cells’

depletion (55).

Since CD19 is expressed on whole B cell development stages as

well as one subpopulation of last differentiation stage, plasma cells

(56), using CD19 as target to eliminate B cells is theoretically more

effective than CD20. Inebilizumab is a humanized anti-CD19 mAb

approved by FDA for neuromyelitis optica spectrum disorder

(NMOSD), a rare relapsing autoimmune disease of the CNS that

causes paralysis and blindness (57). Inebilizumab is still effective in

patients previously been treated with rituximab (58). However,

treatment with Obexelimab which is a fully human anti-CD19

antibody in SLE patients didn’t reach defined endpoints and the

clinical trials was stopped at phase II. Thus, anti-CD19 mAbs didn’t

obtain comparable effect in autoimmune diseases as CART cells

targeting CD19.
3.5 CD38

CD38 is a glycoprotein with ectoenzymatic functions which is

expressed on plasmablasts, short-lived and long-lived plasma cells and

weakly expressed on other lymphoid cells. The expression of CD38 on

long-lived plasma cells makes it a favorable target for depletion of

antibody-producing plasma cells. However, its expression on other

immune cells such as macrophages, T cells and NK cells may result in

side effects in the immune system. The functions of CD38 include

cellular adhesion and migration as well as enzymatic activity. As an

ADP-ribosyl-cyclase, it can convert cellular NAD to cyclic ADP

ribosyl (cADPR) and nicotinamide (NAM) and convert cADPR to

ADP-ribose as a hydrolase (59, 60). There is no anti-CD38 mAb

approved by FDA in autoimmune diseases at present. Daratumumab,

a fully human anti-CD38 mAb approved for treatment in multiple

myeloma was used to treat patients with refractory SLE (61, 62).

Significant depletion of long-lived plasma cells was observed, and the

level of autoantibody reduction was comparable with that observed

after the treatment of bortezomib, without toxic effects. Even so, these

findings still need to be confirmed in more patients. Interestingly,
Frontiers in Immunology 04
reduced expression of CD38 was found on the remaining plasma cells

after the daratumumab-treatment (63). This transient and general

phenomenon is also observed in patients with multiple myeloma

which are restored to baseline levels months after the last infusion of

daratumumab (64).

However, therapies depleting all long-lived plasma cells are unsafe

since they will deplete plasma cells that secrete protective antibodies

as well as plasma cells secreting pathogenic antibodies. Qingyu et al.

labeled plasma cells with a conjugate of an antibody recognizing

plasma cells with the antigen, OVA in murine model. This proof-of-

principle study can isolate and deplete OVA-specific plasma cells

according to their secreted molecules with drop in the related serum

antibody levels (65). It gives a possible solution for depleting specific

plasma cells in the future.
4 CAR-based therapies in
autoimmune diseases

CAR is generated by connecting intracellular signaling endo-

domain with extracellular antigen-recognition domain which can be

derived from mAb in the form of a single-chain Ab fragment (scFv)

including variable heavy (VH) and light (VL) chains. The antigen-

specific recognition domain fused to T cell signaling machinery can

be changed according to specific cell-types we want to target and

allows T cells to engage the antigen expressed by target cells in an

MHC-independent manner. Upon engagement, CART cells and

target cells form non-classical immune synapses which are

required for their effector functions. After that, the CAR molecules

activate the endo-domain signaling and induce the lysis of the

engaged target cells through perforin and granzyme axis, the Fas

and Fas ligand axis and the release of cytokines (66). As engineered-T

cells armed with CARs have shown significant efficacy in the field of

hematological malignancies, they have been adopted to eliminate B

cells or plasma cells producing autoantibodies in autoimmune

diseases. In addition to CART cells, treatments modified based on

the theory of CAR such as, chimeric auto-antibody receptor (CAAR)

T cells and CAR-Tregs are also introduced into field of autoimmune

diseases (Table 2).
4.1 CART cells

In NZB/W and MRL-lpr lupus-like mouse models, CART cells

targeting CD19 successfully eliminated aberrant CD19+ B cells and

induced remission with decline in total IgM and IgG antibodies as

well as anti-DNA IgG and IgM. Additionally, the mice showed

improvement in lupus nephritis and prolonged life span. Anti-

CD19 CART cells could actively eliminate CD19+ B cells up to 11

months and CD19+ B cell aplasia existed during the treatment (67).

Moreover, this technique has already shown promising effect and

tolerable in patients with autoimmune diseases. Five patients with

refractory SLE were enrolled in a compassionate-use CART program.

Drug-free remission of diseases was achieved in all patients three
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months after anti-CD19 CART cells administration and even after the

reappearance of B cells. The treatment was well tolerated with only

mild cytokine release syndrome (CRS) in patients (68). However,

CD19 targeting CART cells can not eliminate long-lived plasma cells

completely as not all of them express CD19, resulting in inadequate

treatment for antibody-mediated autoimmune disease (69).

The Center for Drug Evaluation (CDE) of China’s National

Medical Products Administration (NMPA) has approved its

investigational new drug (IND) application for the new extended

indication of NMOSD for a fully human BCMA CART cell injection

(Equecabtagene Autoleucel, CT103A). Twelve relapsed/refractory

NMOSD patients with AQP4-IgG who had at least one year of

treatment with at least one immunosuppressant were included in

the investigator-initiated clinical study. The data showed that the

Equecabtagene Autoleucel injection was safe as no immune effector

cell-associated neurotoxicity syndrome (ICANS) events. It can reduce

the disability score and improve the functions of sensory, nervous,

and motor systems, providing a proof-of-concept for CART cells
Frontiers in Immunology 05
therapy to treat NMOSD caused by AQP4 produced by plasma

cells (70).
4.2 CAAR T cells

To identify cells secreting antibodies such as autoreactive B cells,

the researchers generated CAAR T cells by replacing the extracellular

antigen-recognition domain with a specific antigen which could

recognize and bind to the target autoantibodies expressed on

autoreactive cells. This modification of CART cells eliminates

surface immunoglobulin memory B cells directly and short-lived

plasma cells that produce autoantibodies indirectly. The pathogenic

B cells in a mouse model of pemphigus vulgaris (PV) produce

antibodies against desmoglein (Dsg) 3. Ellebrecht et al. engineered

T cells to express Dsg3 which can be recognized by pathogenic B cells

with anti-Dsg3 B cell receptors on surface and then, destroy

pathogenic B cells specifically even in the presence of soluble serum
TABLE 2 Currently employed CAR-based therapies in autoimmune diseases.

Interventions Locations Clinical Trials.
Gov identifier

Therapeutic indications Phase

4SCAR T cells
(targeting CD19,
BCMA, CD138
and BAFF-R)

China, Guangdong; China, Guangxi NCT05459870 Autoimmune diseases Phase 2

CD7 CAR T cells China, Zhejiang NCT05239702 Crohn diseases; Ulcerative colitis; Dermatomyositis; Still
disease; Autoimmune diseases

Early
Phase 1

CD19/BCMA
CAR T cells

China, Zhejiang NCT05030779 Systemic lupus erythematosus; Autoimmune diseases Early
Phase 1

CD19/BCMA
CAR T cells

China, Zhejiang NCT05085418 Immune nephritis; Autoimmune diseases; Lupus nephritis Early
Phase 1

CD19/BCMA
CAR T cells

China, Zhejiang NCT05263817 POEMS syndrome; Amyloidosis; Autoimmune hemolytic
anemia; Vasculitis

Early
Phase 1

CT103A cells
(targeting
BCMA)

China, Hubei NCT04561557 Autoimmune diseases; Autoimmune diseases of the nervous
system; Neuromyelitis optica spectrum disorder; Myasthenia
gravis; Chronic inflammatory demyelinating
polyradiculoneuropathy; Immune-mediated necrotizing
myopathy

Early
Phase 1

CD19 CAR T
cells

China, Shanghai NCT03030976 Systemic lupus erythematosus Phase 1

tanCART19/20
(targeting CD19
and CD20)

China, Beijing NCT03605238 Neuromyelitis optica spectrum disorder Phase 1

BCMA-CD19
cCAR T cells

China, Guangdong NCT05474885 Relapsed/Refractory systemic lupus erythematosus Phase 1

Descartes-08
CAR T cells
(targeting
BCMA)

United States, California; United States, Florida;
United States, Georgia; United States, North
Carolina; United States, Oregon;

NCT04146051 Generalized myasthenia gravis Phase 2

DSG3-CAART
cells

United States, California; United States, Illinois;
United States, lowa; United States, New York; United
States, North Carolina; United States, Pennsylvania;
United States, Texas; United States, Washington

NCT04422912 Mucosal-dominant pemphigus vulgaris Phase 1

MuSK-CAART
cells

United States, California; NCT05451212 MuSK myasthenia gravis Phase 1
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anti-Dsg3 IgG (71). Limited PV growth and decreased Dsg3 serum

antibody levels were observed in patients without any toxic off-target

activity. Conclusively, this study indicated that CAAR T cells can be

applied in antibody-mediated autoimmune diseases as a promising

therapeutic option.
4.3 CAR Treg cells

Since the autoimmune diseases are caused by the loss of immune

tolerance, Tregs with immunosuppressive characteristics were

transformed to CAR-Tregs to provide a promising option to restore

the immune system (72, 73) and fight against autoimmune diseases.

In addition to production of granzymes and perforin to destroy target

cells, they secret inhibitory cytokines, such as IL-10 and TGFb. They
can also consume IL-2 using CD25 receptor and prevent the

activation of effector T cells (74–76). However, the low rate of

Tregs in peripheral blood limits their application. To increase the

number of Tregs for CAR transduction, Tenspolde et al. introduced

Foxp3 gene into CD4+ effector T cells which prevented Tregs from

being transformed or differentiated into other cells (77). Nevertheless,

the insulin-specific CAR-Tregs didn’t prevent NOD/Ltj female mice

from diabetes even though these CAR-Tregs can still be detected four

months after the infusion. The ineffectiveness may be attributed to the

diversity of insulin structure. Another study converted CD4+ T cells

into myelin oligodendrocyte glycoprotein (MOG) CAR-Tregs by

transducing MOG CAR gene and Foxp3 gene in the mouse model

to treat MS. The connection of CAR-MOG receptor brought Tregs to

MOG+ oligodendrocytes closely to prevent immune attacks against

them. Ten days upon the infusion, the results revealed that the MOG

CAR-Tregs could suppress the proliferation of effector T cells,

decrease IL-12 and IFN levels and protect mice against EAE

inflammation (78). However, it should be noted that the instability
Frontiers in Immunology 06
of Tregs might convert their immunosuppressive manner into effector

function when they enter different inflammation zones.
5 Discussion

5.1 The advantages and disadvantages of
both approaches

The above two types of immunotherapies both have advantages

and disadvantages from the process of production to the clinical

application (Figure 2).

In terms of production, CART cells which are personalized

medicines need to be manufactured for each single patient while

mAbs are off-shelf reagents. Individual production of CART cells

leads to higher costs and the stability and persistence of T cells vary

from person to person. CART cells of several patients perform

insufficient ex vivo proliferation, expansion and persistence that

result in unstable clinical efficacy.

As for administration frequency, mAbs need multiple

administrations to achieve the desired effect due to their short half-

life. In contrast, CART cells, as a “living drug”, can proliferate and

expand in vivo after infusion and persist for a long time. But CART

cells need lymphodepletion with fludarabine and cyclophosphamide

before the administration while mAbs don’t need. Moreover, the

‘armored CART’ concept enables the cells to express various proteins

(cytokines, antibody-like protein…) that makes it easy to combine

therapies. An example of this engineering is that Marcela et al.

combined CAR and antibodies in one cell by introducing CART-

Blinatumomab (BiTE) cells which efficiently killed both EGFRvIII+

and EGFRvIII- glioma cells (79). BiTE, the bispecific antibodies which

can redirect T cells to CD19+ target cells have been proved efficient in

ALL patients (80). Secretion of BiTE continuously and activation of
FIGURE 2

Advantages and disadvantages of mAbs and CAR-based therapies.
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bystander T cells make CART.BiTE cells a dual-targeted platform to

prevent antigen escape. Take inspiration from this, CART.BiTE

targeting B cells’ antigen provides a new solution for autoimmune

diseases in the future.

When applied in clinic, depletion of B cells by mAbs has limited

therapeutic efficacy as they can’t access autoreactive B cells within

lymphatic organs and inflamed tissues (81, 82). Then, mAbs can

hardly deplete B cell completely. Even CART cells are better in this

regard, immunosuppressive cells or molecules in vivo including Bregs

secreting IL-10 or PD-1 etc. might affect the killing efficiency of CART

cells as well (83). When antigen loss appear, CART cells are superior to

mAbs as target cells with low antigen expression will escape recognition

by mAbs. mAbs need high numbers of antigen molecule to efficiently

activate either ADCC or CDC (84, 85). However, this merit of CART

cells has its caveats that greater efficacy usually comes with toxicities

which can’t be necessarily anticipated from previous and safe use of

mAbs specific for the same target, due to the intrinsic functional activity

of T cells to which the CARmolecules are engaged. To balance the safety

and effectiveness of CART cells at the same time, dosing strategy is

another concern. If this balance is not well controlled, CART cells will

lead to lethal toxicities that result fromCRS and neurotoxicity in patients.

In recent years, B cell depletion therapies occupy an increasingly

important position in the treatment for autoimmune diseases. The

clinical applications of the mAbs targeting B cells and plasma cells are

effective in a broad range of diseases, emphasizing the importance of

B lineage cells in the pathogenesis of autoimmune diseases. The

adoption of CAR-based therapies from hematological malignancies

brings the treatment of autoimmune diseases into a new era.

However, larger cohorts are needed for evaluation of CAR-based

therapies before broadly application in patients, even some clinical

trials and cases have already proven its effectiveness in a subset of

diseases. Current treatments all have their own advantages and

disadvantages. New therapeutic approaches are emerging as we
Frontiers in Immunology 07
understand the mechanisms deeper and exploit more targets, giving

clinicians more options tailored to each patient’s wishes and status.
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