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Generating enhanced mucosal
immunity against Bordetella
pertussis: current challenges
and new directions

Amanda D. Caulfield*, Maiya Callender and Eric T. Harvill

Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens,
GA, United States
Bordetella pertussis (Bp) is the highly transmissible etiologic agent of pertussis, a

severe respiratory disease that causes particularly high morbidity and mortality in

infants and young children. Commonly known as “whooping cough,” pertussis is

one of the least controlled vaccine-preventable diseases worldwide with

several countries experiencing recent periods of resurgence despite broad

immunization coverage. While current acellular vaccines prevent severe

disease in most cases, the immunity they confer wanes rapidly and does not

prevent sub clinical infection or transmission of the bacterium to new and

vulnerable hosts. The recent resurgence has prompted new efforts to generate

robust immunity to Bp in the upper respiratory mucosa, from which colonization

and transmission originate. Problematically, these initiatives have been partially

hindered by research limitations in both human and animal models as well as

potent immunomodulation by Bp. Here, we consider our incomplete

understanding of the complex host-pathogen dynamics occurring in the upper

airway to propose new directions and methods that may address critical gaps in

research. We also consider recent evidence that supports the development of

novel vaccines specifically designed to generate robust mucosal immune

responses capable of limiting upper respiratory colonization to finally halt the

ongoing circulation of Bordetella pertussis.

KEYWORDS

pertussis, whooping cough, mucosal immunity, sterilizing immunity, animal models,
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Introduction

Bordetella pertussis (Bp) is the highly transmissible etiologic agent of pertussis, a severe

respiratory disease that causes particularly high morbidity and mortality in infants and

young children (1–3). Patients with pertussis disease classically exhibit bouts of

intense paroxysmal coughing which may be accompanied by post-tussive vomiting,

bronchopneumonia, pulmonary hypertension, hypoxia, and in severe cases, brain

damage or death (4). Problematically, whooping cough remains one of the least
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controlled vaccine-preventable diseases worldwide with several

countries experiencing recent periods of resurgence (5). Increased

incidence has been correlated with a transition from whole cell

pertussis (wP) vaccines to acellular pertussis (aP) vaccines

composed of 1-5 detoxified antigens including pertussis toxin,

pertactin, filamentous hemagglutinin, and fimbriae 2&3 (6–9).

While aP vaccines are highly successful in preventing severe

lower respiratory (LR) disease in most cases, the Th-2 skewed

immunity they confer wanes rapidly and fails to prevent sub-clinical

upper respiratory (UR) mucosal infection and transmission to new

hosts (9, 10).

These observations are compounded by the rapid emergence

and expansion of “vaccine escape mutant” strains deficient in

pertactin, the only antigen included in aP vaccines capable of

generating bactericidal antibodies against Bp (7, 8, 11–14). It is

speculated that targeted loss of this surface-bound antigen, but not

other aP components, may grant a fitness advantage as it evades

anti-PRN bactericidal antibodies to facilitate persistence within the

UR tract of aP vaccinated hosts (8). This is further supported by the

observation that pertactin-deficient mutants are emerging from a

diversity of Bp lineages, which have now risen to dominance in

many countries with broad aP vaccine coverage. Together these

observations have prompted new research initiatives aimed at

generating sterilizing mucosal immunity in the nasal cavity to

prevent initial colonization and limit the ongoing circulation of

Bp within vaccinated populations.

Of note, the issue of sub-clinical infection and transmission

amongst vaccinated individuals is not limited to Bp. Generating

sterilizing immunity in the nasopharynx is a common challenge

against many respiratory pathogens including pandemic SARS-

CoV-2, Mycobacterium tuberculosis, influenza, respiratory

syncytial virus, and others (15–18). Each of these pathogens can

infect, persist, and often transmit from the nasopharynx; a mucosal

site that continuously encounters foreign antigen. To do this, these

pathogens must bypass specialized nasopharyngeal tissue equipped

with mucus layers saturated with antimicrobial peptides, beating

cilia, a sea of competitive microflora, innate responders such as

neutrophils & macrophages, as well as inductor and effector sites

replete with dendritic cells, T cells, B cells, and secretory IgA

(19–22).

In humans, these complex defensive networks are largely

evaded or modulated by Bp long enough to facilitate growth and

transmission to new hosts (19, 23–30). Increased reports of

asymptomatic or sub-clinical cases of Bp infection provides

clinical evidence of this ability in populations with broad

vaccine coverage which warrants new research initiatives and the

development of targeted mucosal vaccine strategies. To develop

vaccines capable of generating sustained protective immunity in the

UR mucosa, it is critical that we first understand how these

pathogens modulate or evade the host immune response in the

nasopharynx and similarly determine which mucosal immune

factors are involved in eventually controlling and clearing infection.

Much of our understanding of host-pathogen interactions in Bp

infections has been derived from conventional animal models

aimed at characterizing (and preventing) the most severe forms of

pertussis disease (19). These efforts have been instrumental in
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understanding the systemic and pulmonary immune responses to

Bp, enabling the development of vaccines capable of preventing

severe life-threatening pertussis. However, despite Bp primarily

residing within the upper respiratory mucosa, there is

comparatively little published work that investigates the specific

local mucosal immune response to Bp relative to pulmonary or

systemic responses (31). Excitingly, the recent development of

several novel murine and baboon models has begun to allow us

to study the critical mechanistic distinctions between UR and LR

responses, and elucidate factors involved in colonization,

persistence, transmission, and immunity in Bp infections.

Although much more arduous and expensive, controlled human

infection models have the potential to verify results observed in

precursory animal models and expand our understanding of the

human-specific response to Bp.

Here we consider our incomplete understanding of the complex

host-pathogen dynamics occurring in the upper airway to highlight

and propose new directions that may address these critical gaps in

research. We also consider recent evidence that supports the

development of intranasal vaccines specifically designed to

generate sustained mucosal immune responses capable of limiting

upper respiratory colonization and the ongoing circulation of

Bordetella pertussis.
Intramuscular vaccine-induced serum
IgG protects against severe pulmonary
disease but does not control Bp in the
nasal cavity

While the cause of pertussis resurgence is multifactorial, it is

well-appreciated that waning immunity and flawed aP vaccine-

induced immunity are involved. Problematically, vaccine-induced

protection and antibody titers roughly correlate, but neither is

sustained indefinitely. Prior data from several human studies have

demonstrated that peripheral blood anti-pertussis immunoglobulin

G (IgG) titers decay rapidly within the first-year post-vaccination

and continue to decline at slower rates thereafter (32–37). However,

it remains unclear at what threshold antibody-titer decay results in

increased susceptibility to pertussis disease. Although it is currently

believed that high anti-pertussis IgG titers contribute to prevention

of severe pulmonary disease, the mechanisms of protection remain

poorly understood, and appear to vary in different regions of the

respiratory tract (10, 19, 22, 38–41).

In contrast to protection observed in the LR tract, vaccine-

induced IgG responses are less effective in controlling UR mucosal

Bp infection. This has been repeatedly observed from conventional

murine models, as high antibody titers were detected in aP

vaccinated animals with no reduction in CFU in the nasal cavity,

resulting in prolonged carriage (19, 21). This was similarly reported

in the aP-primed baboon model, which demonstrated persistent

colonization beyond 35-days post-challenge despite high serum IgG

titers against all five aP antigens. Interestingly, the lack of IgG-

mediated protection is not unique to aP vaccine-induced immunity

and was also reported from wP primed baboons with modest
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improvement in clearance to 19/21 days post-challenge (10).

Together these observations suggest aP- and wP-primed IgG

responses fail to rapidly control Bp from the nasopharynx,

resulting in extended periods of colonization and transmissibility.

Historically, anti-pertussis IgG titers have been the most

accessible indicator for immunity in both clinical and research

settings. However, the dual observation that both wP and aP

vaccine-induced IgG titers correlate with reduced incidence of

severe pulmonary disease but fail to prevent sub-clinical infection

complicates our ability to use anti-pertussis IgG as a reliable indicator

for UR protection. The disconnect between high IgG titers and

persistent nasopharyngeal infection may be partially attributed to

pertussis toxin-specific mechanisms that block serum-mediated

clearance by delaying the recruitment of neutrophils, among other

immunomodulatory abilities detailed in sections below (26). These

data collectively suggest that serum IgG titers alone are not a

sufficient indicator for protective immunity against Bp, and that

other, localized mechanisms of protection should be evaluated.

It is well appreciated that convalescent immunity following a

course of primary infection with Bp generates humoral and cellular

immune responses that are critical in generating more effective

protection against secondary infection in both the UR and LR tracts

(31). It is probable that a portion of this protective immune response

in the LR is mediated by IgG, and evidence supporting its role in

reducing morbidity and mortality associated with clinical disease

warrants continued research into anti-pertussis IgG responses.

However, when evaluating IgG responses to new candidate

antigens for improved vaccines, it is critical that we differentiate

between bactericidal antibodies directed against surface-bound

factors which facilitate clearance, and neutralizing antibodies

which protect against toxin-induced severe disease (11).
The controversial role of secretory IgA
against Bp

Immunoglobulin A (IgA) is produced in response to natural

infection, but not from current intramuscular aP or wP vaccines.

However, conflicting reports regarding the role of IgA in infection

with Bp have confounded our ability to correlate protection with

this critical component of mucosal immunity. Anti-pertussis IgA

appears to reduce adherence of Bp to ciliated epithelium in vitro,

which could provide some level of protection against initial

colonization and/or spread through the respiratory tract (39). In

addition, human anti-pertussis IgA has been shown to effectively

bind FcaRI on polymorphonuclear leukocytes to stimulate

phagocytosis in vitro, indicating that IgA can be effective in

facilitating bacterial clearance, despite IgA being traditionally

considered a poor complement activator relative to IgM and IgG

(22, 42). However, IgA-deficient mice were previously reported to

be indistinguishable from wild type mice in controlling primary or

secondary Bp infection, suggesting IgA plays at most a modest and/

or redundant role in immunity to Bp (41).

The strongest data to argue a protective role for IgA against Bp

was reported from experiments investigating a recent live-
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attenuated vaccine candidate, BPZE1. Designed to be

administered intranasally, BPZE1 is reported to generate a robust

secretory IgA response which appears to correlate with protection

against challenge with Bp. Importantly, BPZE1-vaccinated IgA-/-

mice had significantly higher colonization on days 7 and 21 post-

challenge relative to vaccinated wildtype mice (43). These data

indicate that removal of IgA resulted in significantly impaired

protection generated by a candidate intranasal vaccine.

Importantly, baboons vaccinated with BPZE1 also generated

protective immunity with detectable Bp-specific serum IgA,

however UR mucosal sIgA was not directly evaluated (44).

The observation of sIgA production following intranasal

delivery of commercial pertussis vaccines has prompted new

investigations into the merits of intranasal vs. intramuscular

vaccination approaches. In a recent study, mice intranasally

vaccinated with aP vaccines generated similar levels of protection

and serum IgG levels relative to intramuscular vaccination and

significantly higher IgA titers in the nasal cavity by day 9 post Bp

challenge (45, 46). A small human study also observed strong

mucosal and systemic immune responses following intranasal wP

vaccination (over 4 doses), which is a positive indicator for

applicability of this concept in human immunization (47).

These examples suggest that intranasal vaccination and/or

infection are able to generate protective sIgA against Bp via a

site-specific mechanism. It is likely that intranasal but not

intramuscular delivery facilitates uptake by nasal microfold (M)

cells required for translocation into nasopharynx-associate

lymphoid tissue (NALT) (48). This inductive tissue is critical for

the generation of mucosal immunity against other pathogens, and

NALT-targeted immunization has been shown to induce both

mucosal and systemic immunity. Importantly, sIgA production is

specifically stimulated in mucosal effector sites, where dendritic cell-

activated T-cells specifically induce clonal expansion of IgA+ B cells

(Figure 1). The resulting IgA+ B cells and plasmablasts induced by

nasal immunization express CCR10 and a4b1-integrin, which
together facilitate migration to respiratory tissues that express the

corresponding receptors CCL28 and VCAM1, respectively (48–50).

In sum, conflicting reports of IgA-mediated protection against

Bp warrant additional investigations into sIgA and intranasal

vaccination strategies that deliver antigen directly to the site of

infection (50). However, linking sIgA responses with sustained

protection may present an additional challenge for future vaccine

applications aimed at eliciting this response given the faster decline

of IgA relative to IgG titers following diagnosis of clinical

(symptomatic) pertussis (42, 51).
New vaccines must generate robust
Th1/Th17 responses to enable
clearance of Bordetella pertussis from
the nasopharynx

The inability of aP vaccines to generate robust immunity in the

nasal mucosa has sparked a critical need to better understand the

immune response to Bp at this initial site of infection, in contrast to
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1126107
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Caulfield et al. 10.3389/fimmu.2023.1126107
pneumonic responses which are relatively well-characterized. To

date, cellular responses specific to Bp in the nasal mucosa have

received the most attention, however, research initiatives

investigating this topic are relatively recent, and much

remains unknown.

T cell-mediated immunity has long been reported to play a

central role in the control and clearance of Bp from the respiratory

tract. Specifically, proinflammatory Th1 and Th17 responses have

been shown to be critical for protection against colonization with Bp

(50, 52). Problematically, aP vaccines primarily induce a Th2-

skewed response, which is not sufficient to protect the UR tract

from subsequent infection (31, 50, 52). Additionally, aP vaccines fail

to generate tissue-resident memory T cells (TRM), which are

typically maintained in respiratory tissue and respond rapidly to

secondary encounter with Bp (53).

Natural infection and intranasal vaccination generate TRM that

are protective in the upper respiratory tract (Figure 1). Specifically,

IL-17 secreting CD4+ TRM induce rapid neutrophilic recruitment to

the nasopharynx in response to secondary challenge, which has

been shown to greatly contribute to the opsonization and control of

Bp (52–54). Following secondary infection, a cascade of pro-

inflammatory cytokines including IL-1b, TNFa, IL-17A (from

TRM), IL-17C (from epithelial cells), IL-6, and IFNg recruit

additional phagocytes to the site of infection including dendritic

cells and macrophages which ultimately clear the infection via

opsonization-enhanced phagocytosis (Figure 2). Interestingly, IL-

17+ TRM have been shown to recruit a unique subset of Siglec F+
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neutrophils, which have been recently described to primarily reside

within the nasal mucosa and exhibit an activated phenotype with

increased NETosis (55, 56).

Decades of immunology research has demonstrated that the

absence or removal of a single component of the immune system

can result in deleterious effects to protective immunity. Notably,

intramuscular aP vaccines fail to stimulate or generate multiple

components of both humoral (IgA) and cellular (IL-17+ TRM, Siglec

F+ neutrophils) immunity that are critical in the mucosal response

to respiratory pathogens. However, the observation that intranasal

administration of aP vaccines and candidate vaccines like BPZE1

are able to generate these responses suggest we have much to learn

from continued investigations in this area (31).
Disrupting immunomodulation to
inform vaccine-development

An additional barrier to our understanding of the response to Bp

in the nasopharynx is immunomodulation. Like many well-adapted

pathogens, Bp has evolved complex mechanisms to modulate the host

immune system to its advantage in active infection and can reinfect

convalescent hosts after immunity wanes. These abilities are well-

accepted to be multifactorial, with several known virulence factors

having unique impacts on diverse aspects of the host immune

response to include the suppression of neutrophilic inflammation,

decreased cytokine signaling from multiple cell types, complement

evasion, and suppression of serum antibody responses (23–30).

To highlight a few examples: pertactin has been reported to

modulate the secretion of pro-inflammatory cytokines (TNFa, IL-6,
IL-8, G-CSF) and may downregulate host genes associated with cell

death (30). Adenylate cyclase toxin targets Cd11b-positive

professional phagocytes, including dendritic cells, macrophages,

and neutrophils by forming cation-selective pores to permeabilize

the cell membrane, while also impairing dendritic cell maturation and

cytokine secretion (25). Pertussis toxin disrupts G protein-coupled

receptor signaling and inhibits the early recruitment of macrophages

and neutrophils (24, 26). B. pertussis also evades phagocyte-mediated

killing by surviving within macrophages, an ability that is shared by

many other bacteria with immunomodulatory abilities (57).

Future vaccine candidates, particularly live-attenuated, may benefit

from removal of these immunomodulatory factors to boost immunity.

Their formulations could be supplemented with detoxified versions of

these proteins if their antigens are critical in Bp immunity, such as

pertussis toxin. It is likely that immunomodulation is particularly

important in mucosal immunity to Bp, as the tightly controlled

inflammatory responses in the nasopharynx may be further reduced to

enable persistence and extend the window of transmissibility (19, 58–61).

Disrupting immunomodulation in animal models may be

informative as a tool to evaluate which aspects of the host response

are actively suppressed by Bp (62). This idea is supported by recent

work published in animal models of Bordetella bronchiseptica (Bb)

infection, where deletion of a regulator of immunomodulators (btrS)

generated robust sterilizing immunity and identified eosinophils as

unexpected contributors in pulmonary responses to Bb (63).
FIGURE 1

Summary of mucosal responses to Bordetella pertussis in
nasopharynx-associated lymphoid tissue (NALT). Bp antigens are
transported via microfold (M) cells into the NALT, where dendritic
cells capture antigen, migrate to the lymph nodes and stimulate
naïve CD4+ T cells. (A) Activated effector CD4+ T cells may then
migrate to nasal tissue, where they are maintained as TRM. Upon
secondary infection IL-17+ TRM expand and recruit Siglec F+

neutrophils to the nasopharynx, facilitating rapid clearance (B)
Effector CD4+ T cells also induce maturation of IgA-committed B
cells, which migrate to the cervical lymph nodes, and to their
effector site (nasal cavity). IgA+ B cells and plasmablasts mature into
plasma cells in response to cytokines IL-5 and IL-6. Dimeric IgA,
secreted by differentiated plasma cells, bind polymeric Ig receptors,
and are released into infected respiratory tissue as secretory IgA.
Anti-Bp sIgA, along with macrophages (Mj) and Siglec F+
neutrophils contribute to the clearance of Bp in the upper
respiratory tract.
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Concluding remarks

In an era of widespread resurgence, imperfect waning

immunity, and rapid expansion of vaccine-escape mutants,

research initiatives have ambitiously shifted toward generating

complete protection in the nasal mucosa. Accomplishing this goal

will require an improved understanding of the complex

immunobiology of upper respiratory infection with Bp, and the

development of vaccines that prime IgG, IgA, and Th1/Th-17

responses in the respiratory mucosa. Excitingly, recent

investigations into intranasal vaccination support our ability to

develop next-generation vaccines to generate robust sterilizing

mucosal and systemic immunity sufficient to reduce carriage and

the ongoing circulation of Bp in vaccinated populations.
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