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with antiphospholipid syndrome
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analysis and machine learning
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1Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University,
Urumqi, China, 2Basic Medical College of Xinjiang Medical University, Urumqi, China, 3State Key
Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia,
Xinjiang Medical University, Urumqi, China
Background: Antiphospholipid syndrome (APS) is a group of clinical syndromes

of thrombosis or adverse pregnancy outcomes caused by antiphospholipid

antibodies, which increase the incidence of in vitro fertilization failure in

patients with infertility. However, the common mechanism of repeated

implantation failure (RIF) with APS is unclear. This study aimed to search for

potential diagnostic genes and potential therapeutic targets for RIF with APS.

Methods: To obtain differentially expressed genes (DEGs), we downloaded the

APS and RIF datasets separately from the public Gene Expression Omnibus

database and performed differential expression analysis. We then identified the

commonDEGs of APS and RIF. GeneOntology and Kyoto Encyclopedia of Genes

and Genomes pathway enrichment analyses were performed, and we then

generated protein-protein interaction. Furthermore, immune infiltration was

investigated by using the CIBERSORT algorithm on the APS and RIF datasets.

LASSO regression analysis was used to screen for candidate diagnostic genes. To

evaluate the diagnostic value, we developed a nomogram and validated it with

receiver operating characteristic curves, then analyzed these genes in the

Comparative Toxicogenomics Database. Finally, the Drug Gene Interaction

Database was searched for potential therapeutic drugs, and the interactions

between drugs, genes, and immune cells were depicted with a Sankey diagram.

Results: There were 11 common DEGs identified: four downregulated and seven

upregulated. The commonDEG analysis suggested that an imbalance of immune

system-related cells and molecules may be a common feature in the

pathophysiology of APS and RIF. Following validation, MARK2, CCDC71,

GATA2, and KLRC3 were identified as candidate diagnostic genes. Finally,

Acetaminophen and Fasudil were predicted as two candidate drugs.
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Conclusion: Four immune-associated candidate diagnostic genes (MARK2,

CCDC71, GATA2, and KLRC3) were identified, and a nomogram for RIF with

APS diagnosis was developed. Our findings may aid in the investigation of

potential biological mechanisms linking APS and RIF, as well as potential

targets for diagnosis and treatment.
KEYWORDS

repeated implantation failure, anti-phospholipid syndrome, bioinformatics analyses,
nomogram, immune infiltration, machine learning
1 Introduction

Repeated implantation failure (RIF), which accounts for 5% to

10% of assisted reproductive technology (ART) failures (1), is a

syndrome where patients with infertility continue to fail to achieve a

clinical pregnancy despite several in vitro fertilization-embryo

transfers (IVF-ET), a process with a cumulative live birth rate

reaching 34.7% (2). Although the diagnostic criteria for RIF have

not yet been standardized, clinical studies have defined RIF as the

inability of women under the age of 40 to achieve clinical pregnancy

following the transfer of at least four high-quality embryos in at

least three fresh or frozen cycles (3). RIF has a complicated etiology

that includes anatomical factors of the reproductive organs,

chromosomal abnormalities of the couple or embryos, endocrine

abnormalities, and infections (4). Although the etiology of some RIF

patients has not yet been identified, it is believed to be connected to

immunological factors (5). It has become evident that RIF is one of

the most important issues in the assisted reproduction field because

of its complicated etiology and the significant psychological burden

it places on patients and their partners.

Antiphospholipid syndrome (APS) is a serious autoimmune

disease that is characterized by persistent positivity for anti-

phospholipid antibodies (APLs), including lupus anticoagulant

(LA), anticardiolipin antibody (ACL), and anti-b2-glycoprotein 1

(b2-GP1) antibody. APS can cause microthrombosis of the

chorionic plate at the maternal-fetal interface, which can lead to

recurrent miscarriage, placental malfunction, preterm pre-

eclampsia, fetal growth restriction, fetal distress, and even stillbirth

(6). According to studies (7), 5% to 20% of women of childbearing

age exhibit clinical symptoms of APS. If patients with positive APLs

are not treated with the proper interventions or therapies, the

pregnancy loss rate can reach 24% to 60%. APL positivity is linked

to IVF-ET failure and correlates strongly with RIF (8). IVF failure

and pregnancy complications were more common in APL-positive

patients than in negative patients (9). Patients with RIF had higher

rates of positive ACL antibodies, anti-b2-GP1 antibodies, and anti-

phosphatidylethanolamine antibodies. The IVF-ET failure rate was

significantly higher in triple-positive or more APL subtype-positive

patients than in normal people (10). These findings imply that

infertility patients with APS are at risk of RIF.
02
Multiple mechanisms can trigger T cell activation and the

accompanying cytokine production in APS patients in vivo, which

affect the immune system’s normal regulation and disturb

immunological homeostasis (11). In addition, APL can inhibit

chorionic villous cells from migrating or invading, decrease the

expression levels of complement regulatory proteins, activate

complement on the surface of trophoblast cells, and trigger

inflammatory responses (12). Furthermore, APS patients can

develop microvascular thrombosis, substantially impairing

endometrial metaplasia and early embryonic implantation, which

ultimately results in female infertility, unsuccessful implantation,

and spontaneous abortion (13, 14). These findings strongly support

a connection between APS and RIF. However, the underlying

mechanisms are still poorly understood, making it necessary to

investigate their shared pathophysiology and genetic details. In this

study, we sought to explore the mechanisms by which APS affects

immune tolerance in pregnancy, leading to embryo implantation

failure, and to further establish and investigate the networks

involved in inflammation and immune regulation in order to

improve the diagnosis and clinical management of such patients.

To examine the common pathogenesis of APS and RIF, we

screened public databases for common differentially expressed

genes (DEGs) between the two diseases and used them to build

diagnostic models and identify potential therapeutic drugs. This is

the first study to investigate common markers between APS and

RIF using a systems biology approach. This work will provide new

insights and direction for understanding the biological mechanisms

of both diseases, which will aid in the design of dual-purpose

treatment methods. Figure 1 depicts the study flow chart for

this investigation.
2 Materials and methods

2.1 Data collection and preprocessing

Microarray datasets were downloaded from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), which

has a significant amount of microarray, second-generation sequencing,

and other high-throughput sequencing data (15). Using the keywords
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“antiphospholipid syndrome” and “implantation failure”, we searched

related gene expression datasets. The male specimens and non-human

samples tested were eliminated. Finally, the GSE102215 (16) (based on

GPL16791), GSE50395 (17) (based on GPL4133), GSE111974 (18)

(based on GPL17077), and GSE26787 (19) (based on GPL570) datasets

were downloaded from the GEO database.
2.2 Identification of common genes

For GSE102215, after excluding the male patients, the DEGs

between healthy and APS samples were identified using the limma

package (version 3.44.3) (20). DEGs were identified as genes that met

the specific cutoff criteria of false discovery rate <0.05 and |log fold

change|>1.0. For GSE111974, genes with false discovery rate <0.05 and

|log fold change |>1.0 were defined as DEGs. DEG expression was

visualized by volcano plots and heatmaps using the ggplot2 package

(version 3.3.2) (21) and pheatmap package (version 1.0.12) (22). To

screen for common DEGs associated with APS and RIF, the online

Venn diagram platform (http://bioinformatics.psb.ugent.be/webtools/

Venn/) was used to collect their overlapping DEGs.
Frontiers in Immunology 03
2.3 Module gene selection of
RIF by weighted gene co-expression
network analysis

WGCNA is an algorithm that analyzes the gene expression

patterns of multiple samples, clusters genes with similar expression

patterns to form different modules, and analyzes the associations

between modules and phenotypes or traits, as well as the hub genes

in the network (23). To retrieve the RIF-related modules, WGCNA

was employed to analyze the GSE111974 dataset. The data were

reviewed to find any outliers in the samples, and all samples from

the RIF dataset were properly clustered. Using the criterion of

R2>0.85, a suitable soft-thresholding power b was calculated to

determine the scale-free topology. Next, co-expression modules

were generated using hierarchical clustering, and the results were

presented in a hierarchical clustering tree. Automatic module

merging was performed for modules with highly related trait

genes (minimum number of module genes set to 30, merge

cutting height = 0.25). Finally, the expression profile of each

module was obtained by calculating the module eigengene and

the correlations between the clinical features and module eigengene.

We selected the modules that had better correlation coefficients
FIGURE 1

Flow chart of our research.
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with clinical characteristics(P-value<0.05), and the genes from those

modules were then chosen for further analysis.
2.4 Gene ontology and kyoto encyclopedia
of genes and genomes enrichment analysis

A dynamically updated set of controlled vocabulary is provided

by GO, an internationally standardized classification system for

gene functions, to comprehensively characterize the features of

genes and gene products in living organisms (24). KEGG is a

database that combines genomic and functional information and

conducts systematic assessments of gene functions (25). The R

package clusterProfiler (26) was used to perform a functional

enrichment study, with a criterion of P-value<0.05. GO and

KEGG analyses were performed twice in this work.
2.5 Construction of a protein-protein
interaction network

Search Tool for the Retrieval of Interacting Genes (STRING; http://

string-db.org) (version 11.5) is a comprehensive database for searching

interactions between proteins, including direct physical interactions

and indirect functional correlations between proteins (27). Using

STRING with an interaction score > 0.4, the PPI networks of

module genes and common DEGs were constructed. The PPI

network was visualized by Cytoscape software (version 3.8.2) (28).
2.6 Co-expression analysis of
common DEGs

To further explore the interrelation between common DEGs, the

co-expression network was constructed using the GeneMANIA online

tool. Using extensive genomic and proteomics data, the GeneMANIA

(http://genemania.org/) (29) database allows for the construction of co-

expression networks of identified common genes to recognize

functionally related genes and weigh them based on expected values.
2.7 Machine learning

Candidate genes for RIF with APS were further filtered using

the least absolute shrinkage and selection operator (LASSO)

regression. While fitting a generalized linear model, LASSO

regression is characterized by variable selection and complexity

regularization, preventing overfitting and improving the predictive

accuracy and comprehensibility of the clinical prediction models

(30). LASSO regression was performed using the glmnet R packages

(31). The genes screened by LASSO regression were considered

candidate hub genes in RIF with APS diagnosis.
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2.8 Nomogram construction
and evaluation

The construction of nomograms is valuable in diagnosing

clinical RIF with APS. Using the candidate hub genes, the

nomogram was developed using the rms R package (32). “Points”

denotes the score of candidate hub genes, and “Total Points”

represents the sum of all the above gene scores. To evaluate the

diagnostic value of candidate hub genes for RIF and APS, receiver

operating characteristic (ROC) curves were subsequently

constructed using the pROC R package, and the area under the

ROC curve (AUC) was calculated separately (33). AUC>0.75 was

considered an ideal diagnostic value. Genes with better diagnostic

performance were screened for drug prediction.
2.9 Immune cell infiltration analysis

The CIBERSORT is a computational method that uses tissue

gene expression profiles to identify the proportions of different

immune cells (34). Immune cell infiltration analysis in controls

versus APS and RIF samples was conducted with the Cibersort R

package. Bar graphs were used to display the proportions of

different immune cell types, and violin plots were used to

compare these proportions between the APS and control groups,

as well as the RIF and control groups. Correlation heatmaps were

plotted with the corrplot R package (35) to show the correlations

between the immune cells and candidate diagnostic genes.
2.10 Hub gene interactions with diseases
and prediction of candidate drugs

The Comparative Toxicogenomics Database (CTD) (http://

ctdbase.org/) (36) integrates data from a variable number of

genes, chemical substances, functional phenotypes, and

interactions between diseases. It greatly facilitates the study of

disease-related environmental exposure factors and potential

mechanisms of drug action. To investigate the relationships

between candidate diagnostic genes and diseases, we analyzed the

inference score and reference count for candidate diagnostic genes

with associated diseases using CTD. Inference scores and reference

counts were visualized by histograms.

Drugs that interact with candidate diagnostic genes were obtained

from the Drug Gene Interaction Database (DGIdb) (https://

dgidb.genome.wustl.edu/) (37) for predicting potential drugs for the

treatment of APS and RIF, and the 3D structures are displayed by the

PubChem website (https://pubchem.ncbi.nlm.nih.gov/) (38). The

Sankey diagram was created using SankeyMATIC (https://

sankeymatic.com/), which was used to characterize the interactions

between potential drugs, candidate diagnostic genes, and immune cells.
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2.11 Statistical analysis

We conducted statistical analyses with R software (version

4.2.1) and GraphPadPrism (version 8.0.1). The Wilcoxon test was

used to measure the differences in expression between the two

groups. Statistics were considered significant at P-value<0.05.
3 Results

3.1 GEO information

Four GEO datasets (GSE102215, GSE11974, GSE50395, and

GSE26787) were selected for analysis. Table 1 summarizes the

specific information of these four datasets, including the GSE

number, platforms, disease, samples, source types, and groups.

GSE102215 and GSE111974 were paired for the DEG analysis, and

GSE50395 and GSE26787 were paired to confirm the hub genes’

diagnostic efficacy.
3.2 Screening of common DEGs

TheDEGs of RIF andAPS were obtained from the GSE102215 and

GSE111974 datasets separately, with 888 upregulated and 1,552

downregulated genes in APS and 206 upregulated and 146

downregulated genes in RIF (Figures 2A, B). Heatmaps of the DEGs

in both datasets are shown in Figures 2C, D. We identified the

common DEGs from the intersection of the Venn diagrams

(Figure 2E). After excluding genes with opposite expression trends,

11 common DEGs (seven common upregulated and four common

downregulated genes) with the same expression trends were found in

GSE102215 and GSE111974 (Table 2).
3.3 PPI Network construction and
enrichment analysis of common DEGs

With 99.92% co-expression and 0.08% genetic interactions, we

created a sophisticated gene interaction network using the

GeneMANIA database to understand the biological functions of

these common DEGs. Twenty genes that were linked to the 10

common genes were identified, and the results revealed that they

were mainly involved in MHC protein complex binding, antigen

binding, endothelial cell apoptotic process, regulation of endothelial
Frontiers in Immunology 05
cell apoptotic process, epithelial cell apoptotic process, regulation of

epithelial cell apoptotic process, and regulation of angiotensin levels in

the blood (Figure 3A). According to the PPI network, AURKA,

CENPH, and MARK2 had high degrees of number of connections

to other points (Figure 3B).

GO and KEGG pathway enrichment analyses were performed to

further explore the biological roles of these common DEGs. For

biological processes, the common DEGs were mainly related to the

regulation of neural precursor cell proliferation, neural precursor cell

proliferation, neuron migration, cell maturation, regulation of protein

binding, and anatomical structurematuration. For cellular components,

the common DEGs were mainly related to specific granule lumen,

specific granule, secretory granule lumen, cytoplasmic vesicle lumen,

and vesicle lumen. Finally, for molecular functions, the common DEGs

weremainly associatedwith folic acid binding,C2H2zincfinger domain

binding, and tau-protein kinase activity (Figure 4A). Furthermore,

KEGG analysis revealed that the common DEGs were mainly

enriched in antifolate resistance, antigen processing and presentation,

and progesterone-mediated oocyte maturation (Figure 4B).
3.4 The co-expression modules in RIF

As an autoimmune disease, the pathophysiology of APS is likely

strongly related to the imbalance of immunological homeostasis in

vivo. To further clarify if RIF is associated with the immune

environment in vivo, we analyzed the key RIF genes.

In the GSE111974 dataset, the gene that was significantly expressed

(P<0.05) was selected as key genes of RIF for WGCNA analysis. All

samples were clustered well and no sample was eliminated (Figure 5A).

In our study, the optimal soft-power value of GSE111974 was b=15
(Figures 5B, C). A total of nine modules were identified. The

correlations between modules and clinical diseases were then

computed. The strongest positive association was seen in the cyan

module (r = 0.89, P = 2e-17), while the light green module had the

strongest negative correlation (r = -0.72, P = 1e-08) (Figures 5D, E).

The list of genes in Co-expression Modules in RIF is given in

Supplementary Table 2.
3.5 Screening and analysis of key
genes in RIF

We selected the 65 overlapping genes in the DEG and module

gene groups and labeled them as key genes Figure 6A,
TABLE 1 Summary of the four Gene Expression Omnibus (GEO) datasets involving antiphospholipid syndrome (APS) and repeated implantation failure
(RIF) patients.

ID GSE number Platform Disease Samples Source types Grope

1 GSE102215 GPL16791 APS 6 patients and 6 controls peripheral venous blood Discovery cohort

2 GSE50395 GPL4133 APS 3 patients and 3 controls peripheral venous blood Validation cohort

3 GSE111974 GPL17077 RIF 24 patients and 24 controls Endometrium Discovery cohort

4 GSE26787 GPL570 RIF 5 patients and 5 controls Endometrium Validation cohort
APS, antiphospholipid syndrome. RIF, repeated implantation failure.
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Supplementary Data Table 1). These genes were highly related to the

pathogenesis of RIF. Moreover, the PPI network uncovered the close

interactions between these common genes (Figure 6B). To

investigate the potential functions of the key genes, we performed

GO and KEGG pathway enrichment analyses. KEGG enrichment

results showed that the mRNA surveillance pathway and longevity

regulating pathway were significantly enriched (Figure 6C). As

shown in the GO annotation results, the RIF key genes were

markedly associated with embryonic development, pattern

specification process, DNA-binding transcription activator activity,

and RNA polymerase II-specific activator activity (Figure 6D).
Frontiers in Immunology 06
3.6 Screening candidate diagnostic
markers and developing a clinical
predictive model

Candidate genes were screened using LASSO regression in

preparation for nomogram construction and diagnostic value

assessment. Five probable candidate biomarkers (CCDC164,

MARK2, CCDC71, GATA2, and KLRC3) were found via

the LASSO regression algorithm (Figures 7A, B). The

nomogram was then developed using these five candidate

biomarkers (Figure 7C).
B

C D

E

A

FIGURE 2

Screening of common differentially expressed genes (DEGs) between antiphospholipid syndrome (APS) and repeated implantation failure (RIF). (A) Volcano
plots of APS DEGs. (B) Volcano plots of RIF DEGs. (C) Heatmap of the APS upregulated and downregulated genes. (D) Heatmap of the RIF upregulated and
downregulated genes. (E) Venn diagram of the common DEGs in APS and RIF.
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3.7 Validation of candidate
diagnostic genes

To verify the reliability of these candidate diagnostic genes, we

selected the GSE102215 and GSE50395 datasets to analyze their

diagnostic efficacy in APS and the GSE11974 and GSE26787

datasets to analyze their diagnostic efficacy in RIF. Unfortunately,

we retrieved only four candidate diagnostic genes in the validation

cohort. Collectively, all four diagnostic genes had good diagnostic

efficacy (Figure 8A). Furthermore, the data suggest that these four
Frontiers in Immunology 07
candidate diagnostic genes were not only associated with poor

pregnancy outcomes in women but also with thrombosis

(Figures 8B, C).
3.8 Immune cell infiltration analysis

Because we found that the common genes appear to regulate

RIF pathogenesis via the immune system, we hypothesized that

these genes may be used as prospective diagnostic biomarkers for
TABLE 2 The gene expression levels of 11 common differentially expressed genes (DEGs) in antiphospholipid syndrome (APS) and repeated
implantation failure (RIF).

Gene samples GSE 102215 GSE 111974 Up/Down

logFC P value logFC P value

CTSZ 1.019004575 3.50E-06 1.0040625 1.07E-11 Up regulated

CCDC164 1.390055757 0.000210669 1.0521 0.001297453 Up regulated

FOLR3 1.259480744 0.042306007 1.412033333 0.000117374 Up regulated

MARK2 0.827205312 0.001059369 1.398616368 1.26E-18 Up regulated

CCDC71 1.001978252 0.000132575 1.2168125 2.48E-10 Up regulated

LOC729799 0.874322301 0.004536766 1.164225 1.49E-06 Up regulated

GATA2 1.51904247 0.00011236 1.150766667 6.79E-06 Up regulated

CDC25B -1.254116899 0.000121245 -1.072204167 1.58E-07 Down regulated

SGK223 -1.119028202 0.000248632 -1.113441667 3.95E-05 Down regulated

CENPH -1.186900689 0.007341801 -1.080745726 0.000316802 Down regulated

KLRC3 -1.937514717 1.60E-05 -1.093495833 0.000608419 Down regulated
B

A

FIGURE 3

Analysis of common differentially expressed genes (DEGs) between antiphospholipid syndrome (APS) and repeated implantation failure (RIF). (A) Common
DEGs and their co-expressed genes were analyzed using GeneMANIA. (B) The protein-protein interaction (PPI) network of the common DEGs.
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RIF with APS using the nomogram and ROC analysis. To better

clarify the immune regulation of RIF with APS, we examined

immune cell infiltration. The bar graphs show that the percentage

of neutrophils and T cell populations varied significantly between

the APS and RIF samples (Figures 9A, B). Compared with the

normal samples, neutrophils and gd T cells were significantly

increased in the APS samples (Figure 9E). However, in RIF

samples, the M0 macrophage population was increased, while gd
T cells, M1 macrophages, and M2 macrophages were decreased

(Figure 9F). Figures 9C, D depict the association between individual

immune cells, demonstrating that neutrophils had a significantly

negative correlation with other immune cell types in APS.

Furthermore, we investigated the correlations between

candidate diagnostic genes and the levels of various immune cells.

In APS samples, MARK2, CCDC71, and GATA2 had strong

negative connections with CD8+ T cells and Treg populations.

However, they had significant positive connections with both

naive CD4+ T cell and neutrophil populations. KLRC3

significantly negatively correlated with T cells and neutrophils,

and significantly positively correlated with CD8+ T cells

(Figure 9G). In RIF samples, MARK2, CCDC71, and GATA2 had

strong negative correlations with gd T cells and M2 macrophages,

but there was a positive correlation between KLRC3 and these two

immune cells (Figure 9H).
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3.9 Candidate drugs prediction

The DGIdb was analyzed to identify small-molecule drugs with

potential therapeutic effects on RIF with APS. The Sankey diagram

was then used to demonstrate the interactions between small-

molecule drugs, genes, and immune cells (Figure 10A). In

contrast to CCDC71 and KLRC3, MARK2 and GATA2 had a

relative abundance of targeted drugs and were associated with a

variety of immune cells, which were important potential therapeutic

targets for APS and RIF. Acetaminophen and Fasudil were

predicted to be potential drugs for the treatment of RIF with

APS. The 3D structure tomography of Acetaminophen

(Figure 10B) and Fasudil (Figure 10C) was found in PubChem.
4 Discussion

This study was conducted to investigate the connection between

APS and RIF using bioinformatics and machine learning

approaches. Three upregulated genes (MARK2, CCDC71,

GATA2) and one downregulated gene (KLRC3) were identified as

candidate diagnostic genes that connect APS and RIF. In addition,

gd T cells were an important cause of APS and RIF. Enrichment

analysis further indicated that multiple immune responses,
B

A

FIGURE 4

Enrichment analysis of common differentially expressed genes (DEGs) between antiphospholipid syndrome (APS) and repeated implantation failure
RIF. (A) Gene Ontology (GO) enrichment analysis of the common targets. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis of the common targets.
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including antifolate resistance, antigen processing, and presentation

and progesterone-mediated oocyte maturation, were closely

correlated with higher expression levels of common genes.

According to CTD, the four candidate diagnostic genes have

strong associations with female fertility, thrombosis, and ovarian

diseases. As a result, we concluded that MARK2, CCDC71, GATA2,

and KLRC3 may be crucial in immunological mechanisms during

the development of APS and RIF.

As two significant disorders impacting the reproductive health

of women, APS and RIF are closely related and intricately
Frontiers in Immunology 09
intertwined. There is accumulating evidence that the two diseases

share multiple common risk factors, and APS may contribute to the

pathogenesis of RIF (39). Recently, the maternal-fetal immune

response has become an important trend in RIF pathogenesis

(40). Immune cells are crucial for embryo implantation, immune

tolerance, and embryonic growth throughout a healthy pregnancy.

Immune disorders in APS patients cause an imbalance of

intercellular and cell-secreted cytokines, which can lead to

maternal rejection of the fetus and ultimately pathological

pregnancy. When Chao et al. (41) treated APS mice with a
B

C D

E

A

FIGURE 5

WGCNA of repeated implantation failure (RIF). (A) Sample clustering of RIF. The samples were classified into three significantly distinct clusters. All
clusters were chosen for further analysis. (B) Selection of optimal thresholds. (C) The threshold was set to 0.25 to merge modules that are
comparable in the cluster tree. (D) Different modules are produced and shown in different colors by aggregating genes with strong correlations into
the same module. (E) Heatmap of the module-trait relationship in RIF. Each cell contains the corresponding correlation and P-value.
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mixture of DNA vaccine and FK506 adjuvant, they observed

reduced Th1 and Th17 cell responsiveness and an increased

frequency of Foxp3+CD4+Treg cells in splenic T cells after

stimulation with b2-GP1. It is hypothesized that excessive Th1

and Th17 responses and reduced Treg levels are associated with the

pathogenesis of APS. Excessive Th17 cell responses induce decidua

natural killer (NK) cell activation and impair vascular reactivity of

uterine arteries, leading to embryonic resorption (42). Wang et al.

also suggested that IL-2 and TNF-a in recurrent miscarriage (RM)

with APS peripheral circulation may be involved in the apoptosis of

trophoblast cells and activation of NK cells, promoting the

development of RPL with APS. Therefore, in RIF with APS, the

imbalance of the maternal-fetal immunological microenvironment

may be significant. These findings aid in illuminating the molecular

mechanisms that connect APS and RIF. However, few researchers

have explored the shared pathogenesis of APS and RIF at the genetic

level. By combining data from multiple public databases, our study

identified candidate diagnostic genes that can serve as biomarkers
Frontiers in Immunology 10
or potential therapeutic targets for APS and RIF, laying the

foundation for determining common mechanisms of APS and

RIF and possible clinical treatment methods.

In our study, we focused on four candidate genes to elucidate

the relationship between APS and RIF. GATA2, a member of the

GATA family of zinc-finger TFs, is classified with GATA1 and

GATA3 as “hematopoietic” GATA factors that regulate the

development of hematopoietic systems (43). GATA2 protein is

crucial for controlling endometrial stromal cell decidualization

(44), endothelial cell function and angiogenesis (45), adipocyte

differentiation (46), and pituitary function (47). Rubel et al. (48)

found that GATA2 is mainly expressed in the uterine luminal and

glandular epithelium before embryo implantation and spatio-

temporally co-localizes with the progesterone receptor. Mice with

uterine-specific ablation of GATA2 displayed inadequate

endometrial decidualization, implantation failure, and infertility.

Furthermore, knockdown of GATA2 markedly decreased the

expression of decidua markers in human endometrial stromal
B

C

D

A

FIGURE 6

Analysis of key genes in repeated implantation failure (RIF). (A) The key genes are the overlapping differentially expressed genes (DEGs) and module
genes. (B) The protein-protein interaction (PPI) network of the key genes. (C) Gene Ontology (GO) terms of biological process, cellular component,
and molecular function were used for functional enrichment clustering analysis on key genes. (D) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed on key genes.
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cells (49). According to these results, normal expression of GATA2

is important for the maintenance of endometrial decidua and

support of normal embryonic development. In our study, we

found that both APS and RIF had increased GATA2 expression

levels. Because endometrial decidualization is a critical step in the

acquisition of endometrial tolerance and successful embryo

implantation, this demonstrates the close association between

GATA2 and female pregnancy and confirms its role in APS and

RIF. In addition, GATA2 serves as a positive regulator of the cell

cycle by inducing the proliferation of macrophages and endothelial

cells (50), which may be a reason for the observed increase in

endometrial macrophages in patients with RIF.

In mammals, the MARK family consists of four members:

MARK1−MARK4. MARK2 is a serine/threonine protein kinase

involved in the phosphorylation of microtubule-associated proteins,

such as Tau proteins, cell cycle-regulated phosphatases, and class IIa

histone deacetylases, such as HDAC7. MARK2 is localized to the

cell membrane and controls microtubule stabil i ty by

phosphorylating microtubule-associated proteins (51), and

engages in the regulation of mammalian immune homeostasis

(52), fertility (53), and growth and metabolism (54). Although B

and T cells developed normally in MARK-null mice, CD4+ T cells

lacking MARK2 were expressed abnormally and produced more
Frontiers in Immunology 11
INF-g and IL-4 upon stimulation through the T cell receptor in vitro

(52). In addition, the response of B cells when attacked by T cell

antigens was altered in vivo. In addition, MARK2 plays a crucial role

in the regulation of prolactin (PRL) secretion in female mice.

Because PRL is essential for maintaining luteal function and

progesterone secretion, PRL deficiency caused by MARK2

dysfunction may lead to infertility in females (53). Our research

revealed that MARK2 expression was elevated in both APS and RIF.

Previous studies that have addressed MARK2 expression have only

focused on its inhibition. According to our research, the

mammalian immune system’s stability depends on the MARK2

protein kinase, so aberrant expression could possibly result in

autoimmune diseases and pregnancy complications.

CCDC71 and KLRC3 are also two important candidate genes

identified in our study. KLRC3 is a member of the natural killer

group (NKG) 2, which can specifically regulate humoral and

cellular immunity. Although the role of KLRC3 in APS and RIF

pathogenesis has not yet been investigated, it is associated with the

development of other autoimmune diseases, metabolic diseases, and

tumors (55–57). Downregulation of KLRC3 may lead to abnormal

expression of the NKG2E receptor, which results in insufficient NK

cell activation and defective NK cell function (56). In the mother,

NK cells are involved in the invasion of trophoblast cells,
B

C

A

FIGURE 7

Establishment of the nomogram model of repeated implantation failure (RIF) with antiphospholipid syndrome (APS) and validation of these potential
candidate biomarkers. (A) Tuning feature selection in the LASSO model. (B) LASSO regression coefficient profiles. (C) The nomogram for diagnosing
RIF with APS.
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remodeling of spiral arteries, secretion of cytokines, and regulation

of the immunological balance of the maternal-fetal interface.

Alterations in the quantity and function of NK cells, as well as

imbalances between NK cells and other immune cells, may result in

pathological pregnancies, including pre-eclampsia, RM, and RIF

(58). Interestingly, a recent study suggests that insufficient rather

than excessive uterine NK activation may contribute to the

occurrence of RM and RIF (59), which further supports the

impact of RIF with APS. CCDC71 protein, which has coiled-coil

domains, is enriched in the nuclear periphery of HeLa and MCF7

cells and generates nuclear foci in U2OS cells (60). Currently, there

are few studies on CCDC71 in APS and RIF. Therefore, the

relationships between CCDC71, APS, and RIF deserve

further exploration.

The results of KEGG analysis suggested that common DEGs

play an important role in antifolate resistance, antigen processing

and presentation, and progesterone-mediated oocyte maturation.

Folic acid, as a one-carbon unit carrier, plays an important role in

the prevention of birth defects and in preventing the development

of adverse pregnancy outcomes (61). Folate deficiency causes an

increase in DNA strand breaks and an increased incidence of errors

during DNA replication (61), which in turn causes DNA

hypomethylation and interferes with DNA synthesis and damage

repair, resulting in DNA strand breaks, altered chromosomal

recombination, and segregation abnormalities (62). Progesterone
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is closely related to the normal development of the embryo and has

an important supportive role in early pregnancy. It has been proved

by studies to be a specific marker of pregnancy and is of great value

in the diagnosis of early pregnancy (63, 64). Our study found that

common DEGs were strongly associated with antifolate resistance

and progesterone-mediated oocyte maturation. However, further

research is needed to determine whether and how much the

common DEGs differ in expression levels among RIF patients.

The KEGG analysis results suggest that the immune disorder is

the primary mechanism of APS and RIF. Immune cell changes are

directly associated with immune homeostasis at the maternal-fetal

interface. Abnormalities in immune cell quantity and function

appear to significantly link APS and RIF. In our research, gd T

cells were lower in endometrial tissues in RIF than in normal

tissues. These findings are consistent with the conclusions reached

by Feng et al. (65) However, the number of gd T cells was increased

in the peripheral blood of APS patients. This may be a result of the

different tissue types used to analyze the research participants (66),

but our results still point to the significance of aberrant gd T cells in

the pathogenesis of APS and RIF. In subsequent work, the

mechanisms by which gd T cells affect endometrial tolerance also

need to be further explored to provide more robust evidence for our

current study.

Common DEGs are crucial and co-varied genes between APS

and RIF, and their impacts on immune cells may be a potential
B

C

A

FIGURE 8

Verification of candidate diagnostic genes. (A) The receiver operating characteristic (ROC) curve of candidate diagnostic genes (MARK2, CCDC71,
GATA2, and KLRC3) in GSE102215, GSE111974, GSE26787, and GSE50359. Inference score (B) and reference counts (C) between candidate
diagnostic genes and fetal growth retardation, ovarian diseases, embryo loss, female infertility, placenta diseases, thrombosis, pre-eclampsia, fetal
resorption, and spontaneous abortion in CTD.
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mechanism for the link between APS and RIF. Our study

demonstrated that MARK2, CCDC71, GATA2, and KLRC3

might affect the quantities of gd T cells and macrophages. This

implies that there are increased expression levels of candidate

diagnostic genes in circulating immune cells in APS patients, with

consequential changes in T cells and macrophages in the

endometrium. This will disrupt maternal-fetal immune

homeostasis and interfere with embryonic implantation (40),

thereby increasing the risk of RIF or worsening RIF symptoms in

patients with APS.

Finally, Acetaminophen and Fasudil were predicted as

candidate drugs for the treatment of RIF with APS after

reviewing the DGIdb database. Evidence suggested that

Acetaminophen has negative immunomodulatory effects that can

significantly increase the Treg cell population (67) and inhibit T
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cell-dependent antibody responses (68). Treg cells can assist with

regulating maternal vascular function during pregnancy and

support normal fetal and placental development, in addition to

suppressing inflammation and preventing maternal over-immunity

in response to the fetus (69). Through modifying the tolerance

balance of T lymphocyte subsets at the maternal-fetal interface,

Acetaminophen appears to contribute to the regulation of these

maternal over-immune responses. Furthermore, Acetaminophen is

less dangerous than other nonsteroidal antiinflammatory drugs

because it does not produce severe gastrointestinal bleeding and

has no impact on platelet function (70). However, the safe use of

Acetaminophen during pregnancy remains a point of contention.

Fasudil is another potential candidate drug identified in our study.

It is a ras homolog-associated kinase inhibitor that participates in

the regulation of T and B cells to achieve anti-inflammatory and
B

C D
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G H

A

FIGURE 9

Immune infiltration analysis of antiphospholipid syndrome (APS) and repeated implantation failure (RIF). Bar graphs showing the immune infiltration
of each sample in APS (A) and RIF (B). Heatmaps showing the correlations between immune cells in APS (C) and RIF (D). Violin plots showing
comparisons of immune cells in APS (E) and RIF (F). Correlations between immune cells and candidate diagnostic genes in APS (G) and RIF (H).
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immunomodulatory effects (71, 72). Excitingly, Fasudil has been

shown to have beneficial effects in a range of cardiovascular and

autoimmune diseases (73, 74). This suggests that perhaps Fasudil

could play an unexpected role in the treatment of APS. These

findings indicated that Acetaminophen and Fasudil might have

effects on RIF with APS. In this study, maternal-fetal immune

disorders are associated with the development of RIF, indicating

that immunotherapy is a prospective treatment modality for RIF

and APS. Although drug repurposing is an effective strategy to

search for therapeutic candidates, due to these drugs and target

genes are only experimental predictions, more evidence and data

from extensive animal experiments and clinical trials need to

be obtained.
4.1 Strengths and limitations

Our research addresses a gap in previous mechanistic studies

and expands new ideas for future research. It is the first study to

investigate the functions of common DEGs in APS and RIF and

explore their link by bioinformatics. The application of new tools

like machine learning and public databases makes our research

more comprehensive and novel, and also makes the results more

reliable. More importantly, our common DEG-based prediction

model has demonstrated good predictive value. These genetic
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markers can provide higher specificity and sensitivity, especially

when they are associated with specific disease subtypes or specific

stages of disease progression.Certain genetic markers may be altered

in the early or pre-disease stage, and can therefore be used as a tool

fo r ea r l y d i agnos i s t o avo id embryo imp lan ta t i on

failures.Additionally, we visualized the prediction model, which

can be used for clinical diagnosis and treatment. At the moment, the

four candidate genes are only in the gene pool, there was no further

analysis of the process of expression regulation of these genes,

which is the focus of our next work. Because APS is a systemic

disease that is limited by ethical and current experimental

conditions, only datasets of peripheral blood samples can

currently be retrieved, which may affect the results. As our

research only used bioinformatics analysis with no animal or

clinical experimental validation, further experimental research

and clinical trials are needed to validate the biological functions

of the candidate diagnostic genes. Furthermore, the safety and

efficacy of candidate drugs in vivo also need to be verified.
5 Conclusion

In conclusion, through a series of bioinformatics analyses, we

identified four key genes (MARK2, CCDC71, GATA2, and KLRC3)

that could serve as biomarkers or potential therapeutic targets, and
B C

A

FIGURE 10

Prediction of candidate drugs. (A) Sankey diagram demonstrating the flow between candidate drugs, genes, and immune cells. (B, C) The 3D
structure tomographs of the candidate drugs for repeated implantation failure (RIF) with antiphospholipid syndrome (APS).
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then established an effective diagnosis model. Meanwhile, the

candidate drugs were predicted. These findings may provide a

new and powerful scientific foundation for the diagnosis and

treatment of RIF with APS.
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