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Hyaluronan breakdown
by snake venom hyaluronidases:
From toxins delivery
to immunopathology

Felipe Silva de França and Denise V. Tambourgi*

Immunochemistry Laboratory, Instituto Butantan, São Paulo, Brazil
Snake venom enzymes have a broad range of molecular targets in plasma,

tissues, and cells, among which hyaluronan (HA) is outstanding. HA is

encountered in the extracellular matrix of diverse tissues and in the

bloodstream, and its different chemical configurations dictate the diverse

morphophysiological processes in which it participates. Hyaluronidases are

highlighted among the enzymes involved in HA metabolism. This enzyme has

been detected along the phylogenetic tree, suggesting that hyaluronidases exert

multiple biological effects on different organisms. Hyaluronidases have been

described in tissues, blood and snake venoms. Snake venom hyaluronidases

(SVHYA) contribute to tissue destruction in envenomations and are called

spreading factors since their action potentiates venom toxin delivery.

Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with

mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act

upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA

generated by HYAL becomes a damage-associated molecular pattern that is

recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades

culminating in innate and adaptive immune responses that are characterized by

lipid mediator generation, interleukin production, chemokine upregulation,

dendritic cell activation and T cell proliferation. In this review, aspects of the

structures and functions of HA and hyaluronidases in both snake venoms and

mammals are presented, and their activities are compared. In addition, the

potential immunopathological consequences of HA degradation products

generated after snakebite envenoming and their use as adjuvant to enhance

venom toxin immunogenicity for antivenom production as well as envenomation

prognostic biomarker are also discussed.

KEYWORDS

hyaluronidases, animal venoms, hyaluronan, high molecular weight hyaluronan, low
molecular weight hyaluronan, damage associated molecular patterns, inflammation
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125899/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125899/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125899/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125899/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1125899&domain=pdf&date_stamp=2023-03-17
mailto:denise.tambourgi@butantan.gov.br
https://doi.org/10.3389/fimmu.2023.1125899
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1125899
https://www.frontiersin.org/journals/immunology


Silva de França and Tambourgi 10.3389/fimmu.2023.1125899
1 Introduction

The diffusion of venom toxins from the inoculation site to the

bloodstream is essential for the envenomation process/success. The

degradation of extracellular matrix components (ECM), such as

proteins and glycosaminoglycans (GAGs), is necessary for

successful envenomation (1, 2). Together with other components

of the ECM, GAGs produce a gel that is quite important for several

morphophysiological processes, including maintenance of tissue

stability and structure. These components present viscous

characteristics, which delay microorganisms penetration into the

tissues. Among the GAG targets of virulence factors from several

pathogenic microorganism species and animal venom enzymes,

hyaluronan (HA) has been highlighted (1, 3, 4).

HA is degraded by enzymes known as hyaluronidases (HYAs),

which are present in venoms from snakes, lizards, and arthropods,

as well in mammalian tissues and the bloodstream. Due to their

functions in infections and envenomations, these enzymes are also

called spreading factors (1, 5). Interestingly, the degradation

products resulting from mammalian Hyaluronidases (HYAL)

actions upon HA have been reported as inflammatory triggers,

since they act as damage-associated molecular patterns (DAMPs)

(3, 6–10), suggesting that hyaluronidases present in snake venoms

(SVHYA) might be potentially inflammatory agents by generating

HA fragments.

In this review, we summarize the structural and functional

properties of HA and hyaluronidases from mammalian tissues and

snake venoms. The similarity of the inflammatory and adjuvant

properties of HA degradation products generated by HYAL and

SVHYA are also compared.
2 Venomous snakes and venom
composition

It has been estimated that 4,038 snake species exist in the world

(11) from which around 15% present human and veterinary

medical importance (12). The venomous snakes belong to the

Colubroidea superfamily, and the most dangerous species are

grouped in Viperidae (e.g., true vipers and pit vipers) and

Elapidae (e.g., coral snakes, cobras, mambas) families (13). In

addition, several species from the Colubridae (e.g., boomslang and

twig snakes) (14–16) and Lamprophiidae (e.g., mole vipers and

scaled burrowing asp) (17, 18) families are also considered of

medical importance, since they can cause severe and fatal accidents.

The diversity of clinical symptoms observed in these accidents is

associated with various factors as gender, age, body weight and

genetic background of the victim (19–21), as well venoms

composition (22, 23).

Snake venoms are complex chemical cocktails, which present a

myriad of effects both in prey and human victims. These cocktails

are composed by a plethora of components including ions, free

amino acids, peptides, nucleotides, carbohydrates, lipids, biogenic

amines, and proteins. Many of these molecules have as their main

biological function immobilize or promote the death of the prey and
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aid in the digestion process (1, 23–25). Besides, venom composition

diversity is responsible for the multitude of pathological effects

observed in human victims (13).

Various classes of proteins can be found in the snake venoms as

Hyaluronidases, Phospholipases A2, Snake Venom Metallo- and

Serineproteases, and Three Finger Toxins, among others (1, 13).

Although the presence of some venom components can vary

depending on the species, genus or family of the snake, there is

one that is ubiquitously encountered, the Hyaluronidase.
2.1 Hyaluronidases

HYAs production has been observed along the phylogenetic

tree, from bacteriophages and other viruses, pathogenic bacteria,

fungi, and invertebrates to vertebrate animals (26–28). In

vertebrates, different cell types produce these enzymes, and they

are detected in the ECM of diverse organs, including the testis, eyes,

skin, spleen, liver, kidney, and uterus, and in secretions, including

serum, semen and animal venoms (29) (Table 1).

HYAs enzymes, also called hyaluronoglucosaminidases, are

members of the class of hydrolases, a subclass of glycosylases (EC

3.2). These enzymes function as glycosidases (EC 3.2.1) due to their

ability to hydrolyze O- and S-glycosyl compounds (30). HYAs are

glycoproteins with a broad range of molecular weights from 7 to 320

kDa. The optimal pH for their action can vary from 3.3 to 7.0 (29).

According to the molecular substrates and products generated by

HYAs enzymatic reactions, these enzymes are classified into three

main subclasses (26–30):
1 . HYAs (EC 3 .1 . 2 . 35 ) : Th i s subc l a s s inc ludes

hyaluronoglucosaminidases present in semen, serum,

tissues, and lysosomes, as well as in hymenopteran and

snake venoms. They possess transglycosidase and

hydrolytic activities. Among the substrates of these

enzymes, hyaluronan is highlighted. In addition, these

enzymes act on chondroitin sulfate A and C and to a

lesser extent on dermatan sulfate (chondroitin sulfate B)

and b-heparin. The main product of their catalytic activity

is the tetrasaccharide GlcUA-GlcNAc-GlcUA-GlcNAc.

2 . HYAs (EC 3 .1 . 2 . 36 ) : Th i s subc l a s s inc ludes

hyaluronoglucuronidases that hydrolyze hyaluronan,

resulting in the release of tetra- and hexasaccharides.

These enzymes have been reported in leeches, parasites,

and crustaceans.

3. HYAs (EC 4.2.2.21): This HYA group is produced by

bacterial species and is characterized as HA lyases. They

degrade HA, dermatan sulfate, and chondroitin sulfate A

and C. These enzymes are called endo-b-N-acetyl-D-

hexosaminidases, which act via b elimination since their

catalytic activity generates disaccharides.
The molecular mechanisms of catalysis and substrate specificity

are dictated by the presence of positional and structural catalytic

residues conserved in the species in which HYAs were identified.
frontiersin.org
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The amino acid residues that characterize this enzymatic class are

Glu149, which is important for the catalytic mechanism; the Asp147,

Tyr220, Trp341 triad, which is responsible for positioning the

carbonyl acetamide group for catalysis; and Tyr265, which is

responsible for the HYAs specificity for HA. The replacement of

the Tyr265 residue for Cys265 switches HYA specificity to

chondroitin (2, 29).
2.2 Snake venom hyaluronidases

The initial data for the SVHYA were obtained during the 1930s.

These studies showed that venoms contained a spreading factor that

was able to increase tissue and blood capillary permeability to

Indian ink and to pathogenic bacterial species. Some authors

postulated that this factor would be important for venom

absorption by prey and human victims (35, 36). In subsequent

decades, the presence of spreading factors involved in efficient toxin

delivery was ubiquitously detected in snake venoms. These factors,

which include snake venom metalloproteinases and SVHYA, are

important factors in tissue destruction since their actions are

responsible for ECM breakdown (2, 29). SVHYA potentiate

hemorrhaging, swelling, muscle damage and lethal effects of

purified venom toxins, since its inhibition by monoclonal

antibodies and plant derivative inhibitors substantially decreased

the toxic effects of the venoms (1, 31–34). Thus, based on the

available data, SVHYA are considered the main snake venom

spreading factors.

Similar to HYAL, SVHYA are glycoproteins; however, their

molecular weight ranges from 33 to 110 kDa, and they are generally
Frontiers in Immunology 03
produced as single chain polypeptides (29). In addition, more than

one isoform has been reported in some venoms (1, 31). Harrison

and colleagues (2) scrutinizing cDNA libraries and protein

sequences showed that SVHYA conserve positional and structural

catalytic residues that characterize this enzyme group.

Although hyaluronidases are ubiquitously expressed in snake

venoms, the mechanisms involved in their effect on HA, which is

present in the ECM and bloodstream, and the inflammatory

consequences of these actions are underexplored. Biochemical

studies examining the structure and activity of SVHYA clustered

these enzymes in the EC 3.2.1.35 subclass together with HYAL (2,

33), which were previously shown to trigger inflammatory events (3,

6–10). Additionally, like HYAL, SVHYA act on HA to generate

tetra- and hexasaccharides, suggesting that they potentially exert

immunopathological effects.
3 HA and its hyaluronidase cleavage
products

3.1 HA structure and function

HA is a glycosaminoglycan that is mainly present in the

vertebrate connective tissue ECM (Figure 1A) and has a broad

range of morphophysiological functions. Structurally, HA is a large,

linear, nonsulfated polymer characterized by repeating disaccharide

units composed of D-glucuronic acid (GluUA) linked to N-acetyl-

D-glucosamine (GlcNAc) (Figure 1B). These disaccharide units are

attached by a glucuronic beta 1-3 linkage between GlcUA and

GlcNAc and a hexosaminic beta 1-4 bond between GlcUA and
TABLE 1 Comparison between HYAL and SVHYA.

Molecular characteristics HYAL SVHYA Reference

Enzyme class Hydrolases Hydrolases 30

Enzyme subclass Glycosidases Glycosidases 30

Classification according to
molecular reactions

EC 3.1.2.35 EC 3.1.2.35 26, 27, 30

Molecular weight range 7 – 320 kDa 33 – 110 kDa 29, 31–34

Presence of isoforms + + 29, 31–34

Substrates Hyaluronan, Chondroitin sulfate A and C, Dermatan sulfate
and b-heparin

Hyaluronan 29, 31–34

Optimal pH 3.3 – 7.0 3.0 - 7.0 29, 31–34

Residues involved with catalysis Glu149, Asp147, Tyr220, Trp341 Glu149, Asp147, Tyr220,
Trp341

2, 29

Residues involved with the HA specificity Tyr265 Tyr265 2

Products generated after HA cleavage Tetra- and Hexassacharides Tetra- and
Hexassacharides

29, 31

HA fragments generated by HYAs triggers
inflammation

+ Must be investigated 3, 6–10

The Table was prepared with Word Processor Microsoft
365 (Office 365)
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GlcNAc (7–39). These disaccharide units are repeated a plethora of

times assembling the HA high molecular weight form found in

tissues (38) (Figure 1A).

HA is produced by a group of enzymes known as hyaluronan

synthases (HAS). In mammalians, three HAS (HAS1, HAS2, HAS3)

isoforms have been detected, which are expressed by different genes

and participate of different steps of the HA biosynthesis (39).

Primary structure analysis showed that all HAS enzymes

contain multiple clusters of hydrophobic amino acids at both the

amino and carboxyl terminus, indicating that they are inserted into

the lipid bilayer of the cellular membrane (39).

The HAS enzymes assemble HA polymers through Uridine

diphosphate (UDP)-sugar precursors (UDP-GlcUA and UDP-

GlcNAc), which are present at the cytoplasm. These enzymes

contain a double catalytic domain, able to interact with two

different substrates and generate disaccharide units necessary to

the formation of structures that culminate with the generation of

High Molecular Weight (HMW-HA) polymers. These molecules

can remain associated to the cell membrane/HAS or to be extruded

to the ECM (39).

HA is detected in different tissues with diverse biochemical

characteristics and at different concentrations, which are crucial

aspects that dictate the broad range of biological and pathological

properties of this glycosaminoglycan (37–39).

Usually, HA is encountered in its native/homeostatic form as an

HMW-HA linear polymer (Figure 1B). In this form, it has a

molecular weight > 800 kDa (2, 37–40).

In the HMW-HA form, this proteoglycan is highly hydrophilic,

a characteristic that enables it to interact with several liters of water

and metal ions; thus, it is a potent tissue lubricant (2, 37–39). In this

form, it confers tissue stability and maintains the ECM architecture
Frontiers in Immunology 04
(3) by forming a network that, together with other components,

delays microorganism infiltration into tissues (5). In addition,

considering that HA is able to interact with high quantities of

water, it is possible that these molecules could act as intravascular

volume expander in life threatening extreme conditions to prevent

circulatory collapse in several pathological disorders, such as septic

shock (41) (Figure 2).

In addition to interactions with water, metallic ions and ECM

components, HA activates diverse cell signaling cascades that elicit

several biological responses, including metabolism, cell growth,

proliferation, migration, mucus secretion and prosurvival

pathways. Among the main receptors through which HA exerts

its effects, CD44, HA-mediated motility receptor (RHAMM) and

HA receptors for endocytosis (HARE; STAB2) have been identified.

The signals triggered by these receptors culminate in the MAPK

(mitogen-activated protein kinase), ERK1/2 (extracellular signal-

regulated kinases 1/2) and NFkB (nuclear factor kappa B)-mediated

gene expression pathways (37, 38, 42–47). Interestingly, the

signaling pathways triggered by HA have been identified in recent

decades as important for inflammatory reactions.

Besides to the maintenance of tissue morphophysiological

parameters, HA is considered an important immune surveillance

molecule since it modulates a broad range of immunological

reactions (3). In its physiological form, the HMW-HA polymer

exerts anti-inflammatory/immunosuppressive (Figure 2) effects

through diverse molecular mechanisms, including Toll-like

receptor 2 (TLR-2) and TLR-4 blockade and cytokine and growth

factor sequestration (3, 10, 48). However, in the sites of tissue injury

and inflammation, HMW-HA polymers are degraded by HYAL

and b-hexosaminidase enzymes and by reactive oxygen species

(ROS) (3, 9), culminating in the generation of low molecular weight
BA

FIGURE 1

Hyaluronan location and composition. (A) Hyaluronan molecules are broadly found through the body, mainly in the extracellular matrix of different
tissues. Additionally, they can also be detected in the bloodstream. (B) Hyaluronan is a high molecular weight polymer (>800 kDa). It is composed by
subunits of D-glucuronic acid (GluUA) and N-acetyl-D-glucosamine (GlcNAc) that are attached, via glucuronic beta 1-3 linkage, thus forming
disaccharide unities, which are the structural base of the Hyaluronan polymers. These disaccharide unities, when linked through hexosaminic beta 1-
4 bonds (between GlcUA and GlcNAc), generate tetrasaccharides. The association of various tetrasaccharide units leads to the formation of the high
molecular weight hyaluronan (HMW-HA). Low Molecular Weight Hyaluronan fragments (LMW-HA) are released, after cleavage of HMW-HA, by
hyaluronidases and -hexosaminidases enzymes or by Reactive Oxygen Species. These fragments are Damage Associated Molecular Patterns
(DAMPs), which act as pro-inflammatory and immunopathological agents. This Figure was partly generated using Servier Medical Art, provided by
Servier, licensed under a Creative Commons Attribution 3.0 unported license. Of note, some icons in this figure were adapted for our necessities.
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hyaluronan fragments (LMW- HA) (tetra- and hexasaccharide)

(Figure 3) that are highly proinflammatory. Thus, LMW-HA

becomes a damage-associated molecular pattern (DAMP), which

serves as an indicator of endogenous injury/dysfunction, and is

recognized by pattern recognition receptors (PRRs) (e.g., TLRs,

inflammasomes, and complement components) to trigger

inflammation (3, 6–10).
3.2 Inflammatory effects of LMW-HA

Although HA-LMW can signal through the abovementioned

receptors, the main signaling pathways involved in the

inflammatory response to those fragments are mediated by TLR-2

and -4 activation and downstream molecules involved in this

signaling cascade (e.g., MyD88/PKC-z (protein kinase C z)/
MAPK/ERK1-2/p38MAPK/p42-44/Scr/NFkB). These pathways

are crucial for HA-induced inflammatory events, since knockout

and mutation of these molecules and receptors in mice, as well as

genetic interference and pharmacological modulation, abrogate

these reactions (3, 6–10).

Macrophages from different anatomical sites and species,

neutrophils, endothelial cells (ECs) and dendritic cells (DCs) can

be highlighted as LMW-HA-responsive cells (Figure 3).
Frontiers in Immunology 05
Several investigations have documented that mouse peritoneal,

alveolar, and synovial macrophages are overly sensitive to LMW-

HA exposure. These cells present increases in CCL2 (C-C motif

chemokine ligand 2), CCL3, CCL5, iNOS (inducible nitric oxide

synthase), PAI-1 (plasminogen activation inhibitor 1), elastase,

CXCL2 (C-X-C motif chemokine ligand 2), CXCL10, and TNF-a
(tumor necrosis factor a) gene expression. Additionally, after

exposure to LMW-HA, mouse macrophages release large

amounts of the cytokines CCL3, CXCL2, interleukin 6 (IL-6), and

TNF-a, as well as HMGB-1 (high mobility group box-1), a DAMP

(3, 6, 8, 9) (Figure 4).

Human macrophages have also been shown to be highly

susceptible to the effects of LMW-HA. In response to these

stimuli, human macrophages release large amounts of arachidonic

acid through mechanisms depending on cPLA2a (cytosolic

phospholipase A2), ERK1/2, p38 (p38 MAPK) and JNK (c-Jun N-

terminal kinase) phosphorylation. In addition, these cells express of

the cyclooxygenase 2 enzyme (COX-2) at high levels and generate

high levels of PGE2 (prostaglandin E2). LMW-HA, by promoting an

increase in inflammation-related gene expression, polarizes

macrophages toward the M1 phenotype, making them highly

inflammatory. In addition, LMW-HA changes the M2a

phenotype (by inducing increased production of PGE2, PGD2,

and 15-HETE) to the M1 phenotype that is characterized as
FIGURE 2

Hyaluronan physiological properties. On its high molecular weight form, hyaluronan is able to control a multitude of body functions. By interacting
with high amounts of water and ions, hyaluronan becomes a potent regulator of the blood volume, thus controlling blood pressure and preventing a
circulatory shock. Additionally, taking into account its chemical interactions, high molecular weight hyaluronan lubricates several tissues dampening
physical friction, as well as contributing for the maintenance of tissues architecture. By interacting with water and extracellular matrix molecules,
hyaluronan forms a mash which delays viruses, bacteria, parasites and material particles penetration into tissues and bloodstream. High molecular
weight hyaluronan polymers are potent immunomodulators. These molecules abrogate innate and adaptive immune responses by blocking Toll Like
Receptors or sequestrating cytokines and growth factors. This Figure was partly generated using Servier Medical Art, provided by Servier, licensed
under a Creative Commons Attribution 3.0 unported license. Of note, some icons in this figure were adapted for our necessities.
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cPLA2ahigh COX-2high and COX1low/ALOX5low/ALOX15low/

LTA4Hlow (10) (Figure 4).

ECs are another cell type that is influenced by LMW-HA

generated by HYAL, including increases in the levels of the

chemokine CXCL8 (7) and TNF-a (8), and in TLR-2 and -4

receptor mRNA expression. In addition, human EC activation by

HA fragments leads to the release of elevated levels of CXCL8 and

TNF-a into the extracellular space (7, 8) (Figure 4).

Strikingly, HA fragments also influence several aspects of DC

biology. LMW-HA elicits functional maturation of human and

mouse DCs, as detected by the increase of MHC-II and B7

molecule expression on the cell surface and TNF-a and CCL3

generation, and by their capacity to promote T cell proliferation in

vitro. Notably, LMW-HA injection in vivo also triggered DC

maturation and lymphoproliferation (7) (Figure 4).

According to Sheibner and colleagues (9), T cells from OT-II

transgenic mice, which express an ovalbumin (OVA)-specific T cell

receptor, produce large amounts of interleukin 2 (IL-2) and

interferon g (IFN-g) when immunized with OVA mixed with

LMW-HA fragments. The IL-2 and IFN-g production in the

presence of LMW-HA was increased two and seven times,

respectively, compared with animals immunized without these

fragments. Thus, LMW-HA fragments appear to trigger systemic
Frontiers in Immunology 06
reactions in vivo. Additionally, these data show that LMW-HA is a

potent adjuvant (Figure 4).

Intraperitoneal injection of these fragments into mice increases

circulating levels of the CXCL1 and CXCL2 chemokines (7), which

are homologous to human CXCL8, a potent bone marrow

neutrophil mobilizer (49). These inflammatory events also

indicate the systemic reactions elicited by HYAL actions upon

HA (Figure 4).

Although SVHYA are broadly produced by venomous snakes,

the immunopathological effects of these enzymes have not been

explored. Strikingly, by coupling biological, transcriptomic and

bioinformatics approaches, our group identified an outstanding

role for HA fragments in a pararamosis cell model. This clinical

condition is characterized by osteoarthritis after accidental chronic

exposure to the hairs of the larval stage of the Brazilian mouth

Premolis semirufa, popularly called pararama. Human chondrocyte

exposure to the pararama hair extract enhanced the activities of the

HA/CD44/TLR-2 and TLR-4/NFkB/AP-1/interleukin/prostanoids/
C-C and C-X-C chemokine/collagen III/growth factor/matrix

metalloproteinase axes, which are upregulated in individuals with

joint disorders (50).

After considering the exposed data, we hypothesize that

SVHYA acts on HA in the ECM and bloodstream, triggering
FIGURE 3

Hyaluronan fragmentation and its targets. After mammalian tissue and organ dysfunctions, elicited by diverse pathological conditions,
hyaluronidases, b-hexosaminidases and ROS are released. These molecules can promote the cleavage of high molecular weight polymeric
hyaluronan and generate tetra and hexasaccharide fragments (LMW-HA). These LMW-HA fragments function as DAMPs, which can be sensed by
immune cells, via Toll Like Receptors -2 and -4. This event can lead to the production of interleukins, chemokines, and lipid mediators, leukocytes
infiltration, as well as tissue damage. Hyaluronidases from snake venoms, as the mammalian molecules, can also act upon hyaluronan and release
tetra and hexasaccharide fragments, which suggests that snake venom hyaluronidases can be potent inducers of inflammatory events via LMW-HA.
This Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
Of note, some icons in this figure were adapted for our necessities.
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several inflammatory events that account for snake envenomation

immunopathology (Figure 5). By performing in vivo and ex vivo

approaches using crude venom from different venomous snake

species in which SVHYA were detected (5, 51, 52), different authors

observed several inflammatory events suggestive of the actions of

SVHYA enzymes, such as COX-2 enzyme expression (53); CXCL1,

CXCL8, TNF-a, IL-6 and PGE2 production; acute lung injury; and

neutrophil tissue infiltration (5, 54, 55). The production of some

inflammatory mediators, such as PGE2, via the SVHYA/LMW-HA

axis could be responsible for pain (56) and systemic vasodilation

(57, 58) in envenomed individuals, which could evolve to severe

hypotension resulting in circulatory shock and extensive edema.

Surprisingly, LMW-HA fragments are presented as potent

adjuvant molecules since potentiates immune response to some

antigens, thus these molecules could be used in the antivenom

production to increase immunogenicity of some potent

neurotoxins/low molecular weight toxins that antibody

production is problematic due to low immunogenicity.

Additionally, some inflammatory events elicited directly or

indirectly by crude snake venoms might result in HA degradation

and, consequently, LMW-HA formation, for example, by the b-
hexosaminidase enzyme released from human and mouse mast cells

exposed to snake venoms (59) and local and systemic ROS

generation after mouse experimental envenomation (60).
Frontiers in Immunology 07
Importantly, patients suffering from several clinical illnesses,

such as sepsis, acute lung injury, asthma and kidney failure, present

increased systemic levels of LMW-HA (10). Notably, elevated levels

of LMW-HA in septic patients are correlated with disease severity

and a poor prognosis (6, 8). Thus, because envenomated patients

present some clinical symptoms similar to those observed in

patients with the clinical conditions mentioned above and HYAs

are ubiquitously expressed in snake venoms, systemic LMW-HA

levels may be used as a biomarker of envenomation severity.

Interestingly, the blockade of LMW-HA actions with a Pep-1

inhibitor abrogated the massive macrophage migration to arthritic

joints (8), as well as neutrophil infiltration in alveolar spaces after

bleomycin-induced injury (6), which were linked to a decrease in

chemokine production. Considering that the production of

chemokines and other inflammatory mediators that are present

during snakebite envenomation may be partially mediated by

LMW-HA, this inhibitory approach may have therapeutic

potential to control this clinical condition (Figure 5).

In addition to determining the inflammatory properties of

envenomation, LMW-HA fragments generated by SVHYA or

HYAL might be an interesting adjuvant to improve antivenom

production for poorly immunogenic snake venoms, since these

fragments might potentiate an adaptive immune response to venom

toxins (Figure 5).
FIGURE 4

Inflammatory effects of LMW-HA fragments. LMW-HA can be sensed by different cell types. By performing in vivo, in vitro and ex-vivo experiments,
using diverse pharmacological strategies, genetic interference and knock out mice, various studies have shown that LMW-HA fragments, in their
DAMP form, are sensed by TLR-2 and -4, on endothelial cells, macrophages and dendritic cells. This event leads to cell activation, with expression
of inflammatory genes, production of chemokines, interleukins and lipid mediators, modulation of the expression of cell surface molecules and
lymphoproliferation. Besides, it can promote infiltration of macrophages and neutrophils into the synovial and pulmonary tissues causing joint and
alveoli destruction, respectively. (*) effects characterized both in mice and human samples. This Figure was partly generated using Servier Medical
Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license. Of note, some icons in this figure were adapted for
our necessities.
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Additionally, regarding the immunopathological effects, studies

investigating whether the canonical function of SVHYA, e.g., toxin

delivery to the bloodstream, is influenced by inflammatory

mediators will be interesting. Although the dissemination of

toxins mediated by the SVHYA in some venoms are assisted by

toxins that kill endothelial cells, some venoms do not contain

cytotoxins. Thus, toxin delivery mediated by these enzymes may

occur via endothelial dysfunction caused, for example, by lipid

mediators elicited by LMW-HA.
4 Concluding remarks

HYAs have been detected in a plethora of animal venoms,

which suggests important pathological roles similar to those of

other venom components. In recent years, several authors have

described diverse molecular mechanisms underlying the deleterious

inflammatory reactions to envenomations by snakes (61, 62),

caterpillars (50) and scorpions (63–65), making them an

immunopathological signature in these accidents. The World

Health Organization (WHO) (66) has established actions to

decrease snakebite envenoming-associated mortality and

disabilities by 50% by 2030. This program includes incentives for
Frontiers in Immunology 08
studies of “next-generation” therapies, whose development will

require the best characterization of the molecular mechanisms

involved in envenomation pathology. Thus, the inflammatory

actions of animal venom hyaluronidases may provide new

opportunities for the development of novel therapeutic targets

prognostic biomarker for snakebite envenoming. Additionally, the

use of HA-LMW as an adjuvant to increase B and T cell responses

and improve the humoral response to poorly immunogenic toxins

in antivenom-producing animals should be considered.
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