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Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of

immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role

in the regulation of the immune response of the body to pathogens, especially in

inflammatory response and pathogenesis during anti-infection. Pathogens such

as bacteria and viruses use MDSCs as their infectious targets, and even some

pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen

persistence and chronic infection of the host. Recent researches have revealed

the pathogenic significance of MDSCs in pathogens such as bacteria and viruses,

despite the fact that the majority of studies on MDSCs have focused on tumor

immune evasion. With the increased prevalence of viral respiratory infections, the

resurgence of classical tuberculosis, and the advent of medication resistance in

common bacterial pneumonia, research on MDSCs in these illnesses is

intensifying. The purpose of this work is to provide new avenues for treatment

approaches to pulmonary infectious disorders by outlining the mechanism of

action of MDSCs as a biomarker and therapeutic target in pulmonary

infectious diseases.

KEYWORDS

myeloid-derived suppressor cells, novel coronaviral pneumonia, tuberculosis, other
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1 Introduction

With the spread of novel coronavirus pneumonia (COVID-19), the resurgence of

tuberculosis, and the emergence of antibiotic resistance in bacterial pneumonia, standard

antiviral, anti-tuberculosis and antibiotic therapy against bacteria have reached a bottleneck.

Immunotherapy for infectious illnesses has become one of the primary research foci as the

hunt for therapies with fewer side effects and greater effectiveness has become imperative. In

the inflammatory response to pathogens that assault the body and in the latter phases of

chronic infection, the immune system is vital. Under normal circumstances, the innate

immune system automatically recognizes and clears pathogens after they attack the body;

however, when the innate immune system is compromised, pathogens are difficult to

eliminate in a timely manner and are more likely to cause disease exacerbation or chronic
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infection. Myeloid-derived suppressor cells (MDSCs) are

immunosuppressive cells, and the initial research on MDSCs

focused mostly on malignancies, where MDSCs proliferate in the

tumor microenvironment and may promote tumor proliferation

and metastasis by mediating immune escape of tumor cells (1).

Targeted immunotherapy against MDSCs promotes tumor

regression by modulating the immune activity of T cells (2, 3). In

addition, there is accumulating evidence that MDSCs also play a

crucial role in regulating the immunological response of the body to

infections. Numerous studies have also revealed that MDSCs may

multiply and correlate with the severity of infectious lung disease,

such as novel coronavirus pneumonia, tuberculosis, and bacterial

pneumonia (4–10). Therefore, this research investigates the

significance and mechanism of action of MDSCs in infectious lung

illnesses, as well as MDSC immunotherapy.
2 Myeloid-derived suppressor cells

In the 1970s, a bone marrow-derived cell that suppressed T cells

was identified in a mouse model of lung cancer and give the name

“nature suppressor cells (NS)” due to its myeloid origin and

immunosuppressive activity (11, 12). These cells were renamed

“immature myeloid cells (IMCs)” or “myeloid suppressor cells

(MSCs)” towards the beginning of the twenty-first century (13, 14).

Due to the morphological, phenotypic, and functional heterogeneity

of these cell populations, their nomenclature was controversial

internationally until 2007, when they were unified as “myeloid-

derived suppressor cells (MDSCs)” to describe heterogeneous cell

populations of immature myeloid cells found in pathological settings

(15). MDSCs are cells formed mostly from bone marrow

hematopoietic precursor cells, which are progenitors of

granulocytes, dendritic cells, or macrophages, and which are

extensively dispersed in bone marrow, spleen, peripheral blood,

cancers, and other tissues with significant heterogeneity and

immunosuppressive activity (16, 17). Depending on their

phenotypes, MDSCs may be divided into granulocytic/

polymorphonuclear myeloid-derived suppressor cells (PMN-

MDSCs or G-MDSCs) and monocytic myeloid-derived suppressor

cells (M-MDSCs). MDSCs in mice are all expressed as CD11b and

can be classified into PMN-MDSCs (CD11b+ Ly6Clow L6G+) and M-

MDSCs (CD11b+ Ly6Chi Ly6G-) according to the expression levels of

Ly6G and Ly6C (5, 18). In mice chronically infected with

Staphylococcus aureus, Eo-MDSCs (CD11b+ SyglecF+ CCR3low IL-

5Ralow SSC-Ahigh) with phenotypic characteristics of immature

eosinophils were identified (16, 19). MDSC subtypes and

phenotypic markers in human peripheral blood mononuclear cells

(PBMC) include PMN-MDSCs (CD11b+ CD14- CD33+ CD15+

HLA-DR-/low) and M-MDSCs (CD11b+ CD14+ CD33+ CD15-

HLA-DR-/low) (20, 21).

In a healthy state, immature myeloid cells may be produced in

the bone marrow and develop into mature granulocytes,

macrophages, or dendritic cells, which then penetrate the proper

tissues and organs to execute typical immune tasks. However, their

normal differentiation is hindered in pathological settings such as

tumors, infectious diseases, and autoimmune diseases, and MDSCs
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can rapidly accumulate and be activated through injury-associated

molecular patterns or pathogen-associated molecular patterns, etc.,

by promoting reactive oxygen species (ROS) release; expressing

high levels of arginase-1 (Arg-1) (22) and inducible nitric oxide

synthase (iNOS) (23), promoting the release of interleukin (IL)-10,

IL-1b, IL-6, tumor necrosis factor (TNF)-a and other cytokine (10,

24–27), and the immunosuppressive activity of M-MDSCs was

stronger than that of PMN-MDSCs (16, 28–30). The mechanism

of MDSCs in infectious lung diseases is shown in Figure 1. Despite

the fact that the majority of data on MDSCs are generated from

malignancies, pulmonary infectious illnesses have commonalities

with their activity in tumors and are linked to poor clinical

outcomes (5, 31, 32). Nevertheless, in infectious lung disorders,

the behavior of MDSCs in infections seems to be dependent on the

kind of invading pathogen and the disease stage (30, 33).
3 MDSCs as a target for infectious
lung diseases

3.1 Novel coronavirus pneumonia

Novel coronavirus pneumonia (COVID-19) remains a

potentially life-threatening global pandemic acute infectious disease

characterized by inflammatory storms, coagulation disorders, and

organ damage (34). MDSCs with immunomodulatory activity were

found to play an important role in mediating the excessive

inflammation or inflammatory storm of COVID-19, and MDSCs

can limit infection-induced excessive inflammation or inflammatory

storm and protect host immunity (34); on the other hand, excessive

inflammation or inflammatory storms also lead to accumulation of

MDSCs in the peripheral blood of COVID-19 patients, participate in

the pathological process of the disease, and correlate with the severity

of the disease (8, 35–39). Significantly, a link between MDSCs and

COVID-19 has been identified in a number of recent investigations

(Table 1). Compared with healthy subjects or patients with mild

COVID-19, the frequency of PMN-MDSCs in the peripheral blood of

COVID-19 increases with disease exacerbation, especially in severe

instances and deceased patients, and proliferating PMN-MDSCs will

further suppress T cells, resulting in a reduction in lymphocytes and

further compromising the host immune response, so establishing a

vicious cycle (7, 20, 44, 45). Comparison with indicators reflecting

disease severity (levels of C-reactive protein, ferritin, and lactate

dehydrogenase) demonstrated that these indicators were elevated

with PMN-MDSCs in severe cases, especially immature PMN-

MDSCs, confirming a positive correlation between PMN-MDSCs

and COVID-19 severity (41). A 1% increase in PMN-MDSC

frequency was independently related with a 3% increase in the

probability of fatal outcomes, as determined by an age- and gender-

adjusted Cox regression model (20). In contrast to these results,

Japanese researchers found that the frequency of PMN-MDSCs (but

not other MDSC subgroups) may be transiently elevated in patients

surviving severe COVID-19 compared to patients dying from severe

COVID-19, and the investigators suggest that PMN-MDSCs may

reduce detrimental immune responses and be associated with genetic

factors (36). In severely sick individuals, low levels of PMN-MDSCs
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FIGURE 1

Mechanism of MDSCs in infectious lung diseases.
TABLE 1 Summary current studies on MDSCs in COVID-19 patients.

Samples
(COVID-19
patients and
healthy donors
(HD))

Source of
MDSCs

Subtypes and phenotypic markers of
MDSCs

Frequency of
MDSCs

Cytokines Reference

N=68(COVID-19:48;
HD:20)

PBMC CD11b,CD14,HL (39)A-DR,CD33,CD88,CD56,
CD19,CD3,CD15,CD45,DRAQ7

MDSCs↑ (as compared
to HD)

IL-1b, IL-6, IL-8 and
TNF-a↑

(40)

N=68(COVID-19:15
severe, Nosevere:26;
HD:26)

PBMC Total MDSCs: HLA-DR-CD11b+;
Mature PMN-MDSCs: HLA-DR-

CD11b+CD15+CD66b+CD14-CD16+;
Immature PMN- MDSCs: HLA-DR-

CD11b+CD15+CD66b+CD14-CD16-;
M-MDSCs: HLA-DR-CD11b+CD15- CD66b-

CD14+

Total MDSCs, mature
PMN-MDSCs,
immature PMN-
MDSCs and M-MDSCs↑
(as compared to HD);
mature PMN-MDSCs
and immature PMN-
MDSCs severe patients
(as compared to
nosevere)

None (41)

N=22(CoV2-=9,
CoV2+=13) SARS
Coronavirus 2

PBMC M-MDSCs;CD11b+CD33+CD14+HLA-
DR-/lo

M-MDSCs↑ IL-6↑ (39)

N=66(COVID-19 =
56, moderate: 45,
severe: 11; HD=10);
after 3 months
(n=21)

EDTA-
anticoagulated
blood

PMN-MDSCs: CD11b+CD14-CD15+CD16+CD33-

HLA-DR-; M-MDSCs: CD11b+CD14+CD15-/
lowCD16-CD33+HLA-DR-/low

PMN-MDSCs: severe:
moderate=10:1; M-
MDSCs: severe:
moderate=4:1

IL-1b, IL-6, IL-7, EGF,
HCF, PDGF-BB, et al. ↑

(42)

N=158(COVID-19 =
96(ICU:32, non-
ICU:96); HD:30);
59 patients recovered;
19 died

PBMC PMN-MDSCs: CD11b+CD14-CD33+CD15+

HLADR-/low;
M-MDSC: CD11b+CD14+CD33+HLA-DR-/low

PMN-MDSCs↑,
especially in patients
who required intensive
care treatments (as
compared to HDs)

IL-1b, IL-6, IL-8, and
TNF-a↑

(20)

(Continued)
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may aid in survival (45). However, the majority of investigations have

revealed that the frequency of M-MDSCs in peripheral blood

following COVID-19 therapy is substantially linked with disease

severity (8, 37). Analysis of SARS-CoV-2 viral RNA burden

revealed a connection between M-MDSCs and viral load, indicating

that SARS-CoV-2 infection may inhibit host immunological

responses by encouraging the proliferation of M-MDSCs (43). M-
Frontiers in Immunology 04
MDSCs inhabit CD4+ and CD8+ T cell proliferation and IFN-g
production through an Arg-1-dependent mechanism, with

downregulation of CD3z chain expression (8). Despite the fact that

MDSCs and cytokine levels (such as IL-6, TNF, IL-1, etc.) remained

persistently elevated during the recovery phase of COVID-19, this

also suggests that MDSCs exerted an inhibitory T-cell recall response,

that the suppressive activity of T cells persisted after recovery from
TABLE 1 Continued

Samples
(COVID-19
patients and
healthy donors
(HD))

Source of
MDSCs

Subtypes and phenotypic markers of
MDSCs

Frequency of
MDSCs

Cytokines Reference

N=40(COVID-19 =
27(ICU:8, non-
ICU:19; HD:13)

EDTA-
anticoagulated
peripheral
blood

PMN-MDSCs: CD11b+CD33+CD15+HLA-DR+;
M-MDSCs: CD11b+CD33+CD14+HLA-DRlo/neg

or CD14+HLA-DRlo/neg;
the new subset of MDSCs: CD14+HLA-DRlo/neg

CD14+HLA-DRlo/neg

MDSCs↑, especially in
patients
who required intensive
care treatments (as
compared to HD)

None (43)

N=71(COVID-19 =
62(ICU:31, non-
ICU:31; HD:9))

PBMC PMN-MDSCs: HLA-DRlow/- CD11b+CD14-

CD33+CD15+; M-MDSCs: HLA-DRlow/-CD11b+

CD14+CD33+

PMN-MDSCs↑,
especially in patients
who required intensive
care treatments (as
compared to HD)

None (44)

N=26(COVID-19 =
18(mild:9; severe:9);
HD=8)

PBMC PMN-MDSCs: HLA-DR-Lin-

CD33+CD11b+CD15+
PMN-MDSCs↑,
especially in severe (as
compared to HD)

IL-6, IL-8, IL-1b, TNF-
a↑; TGF-b↑ (in plasma
from patients with severe
disease, which decreased
over time.)

(7)

N=224 (COVID-19 =
147; influenza A
virus infected
patients=44; HD=33)

PBMC and
nasopharyngeal
Aspirates
(NPA)

M-MDSCs : CD14+

Lin-(CD3-CD56-CD19-CD20-CD66-) HLA-DR-;
PMN-MDSCs: CD56-CD14-CD3-CD19-HLA-DR-

CD66abce LOX-1

M-MDSCs↑ (as
compared to influenza A
virus infected patients
and HDs)

IL-6, IL-10↑ (8)

N=80 (COVID-19
with ICU treatment)

Whole blood
samples

M-MDSCs: CD45+CD11b+CD33+HLA-DRlow/−

CD14+CD15-, G-MDSCs:
CD45+CD11b+CD33+HLA-DRlow/- CD14-CD15+

PMN-MDSCs ↓ (as
compared to the ICU
deceased)

None (45)

N=47(COVID-19 =
40(mild:12; moderate
I:7; moderate II:8;
severe:13); HD=7)

PBMC e-MDSCs : CD3-CD19+CD56-HLA-DR-

CD11b+CD33+CD14-CD15-; M-MDSCs: D3-

CD19-CD56-HLA-DR-

CD11b+CD33+CD14+CD15-; PMN-MDSCs: CD3-

CD19-CD56-HLA-DR-CD11b+CD33+CD14-

CD15+

PMN-MDSCs ↑in
survivors of severe
COVID-19 (as
compared to mild,
moderate, deceased and
HDs)

IL-8↑ (36)

N=32(excluded n=3;
COVID-19 n=29(no
secondary
infection=17;
secondary
infection:12))

EDTA
anticoagulated
blood

M-MDSCs: CD11b+HLA-DR- M-MDSCs↑ None (31)

N=57(COVID-19 =
41(mild:21;
severe:20); HD=16)

PBMC PMN-MDSCs: Lin-HLA-
DRlowCD11b+SSClowCD15+CD66b+; M-MDSCs:
Lin-HLA-DRlowCD11b+SSClowCD14+; e-MDSCs:
Lin-HLA-DRlowCD11b+SSClowCD15-CD66b-/
CD14-

PMN-MDSCs and M-
MDSCs↑ (as compared
to HDs)

IL-6,IL-8,MCP-1,IL-18,
TGF-b, IL-10↑

(38)

N=26(ARDS COVID:
13; Moderate
COVID:13)

PBMC M-MDSCs: CD14+HLA-DR-; PMN-MDSCs:
CD45+Lin-HLA-DR-CD15+CD11b+; e-MDSCs :
CD45+CD3-Lin-HLA-DR-CD15+CD33+

M-MDSCs and PMN-
MDSCs↑

IL-6, IL-10, MCP-1,
CXCL9, CXCL10, ↑(as
compared to HDs),and G-
CSF↑ in ARDS

(37)
f

↑ represents increased, ↓ represents decreased, PBMC, peripheral blood mononuclear cell; IL-1b, interleukin-1b; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10;IL-18, interleukin-
18;TNF-a, tumor necrosis factor-a; TGF-b, transforming growth factor-b; EGF, Epidermal Growth Factor; PDGF-BB, Platelet derived growth factor-BB; MCP-1, monocyte chemotactic protein-
1; G-CSF, granulocyte-colony stimulating factor; CXCL9, chemokine (C-X-C motif) ligand 9; CXCL10, chemokine (C-X-C motif) ligand 10.
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infection (39, 42). It can be seen thatM-MDSCs not only suppress the

immune activity of T cells during the acute episode after SARS-CoV-

2 infection, but also have a recall response to suppress T cells during

the recovery period. In conclusion, the results of different studies may

vary, but MDSCs exhibit different phenotypic characteristics and

functional status with various stages of COVID-19, and MDSCs, as

one of the key pathogenic factors of COVID-19 inflammation and

immunosuppression, may be a major target for treatment (30, 46, 47).

Inflammatory cytokines are one of the primary mechanisms

that induce expansion of MDSCs and are the focus of research on

COVID-19-targeted therapy (40, 48). The pro-inflammatory

cytokine IL-6 phosphorylates STAT3 via the gp130/JAK/STAT

pathway, hence regulating M-MDSC differentiation, proliferation

and survival in human and animal disease conditions including

COVID-19 (49–51). In addition, studies have shown that IL-6 levels

rise with the degree of illness in individuals with severe disease (7, 8,

52). Therapeutic modulation of IL-6 levels by anti-IL-6 receptor

antagonists (tocilizumab, sarilumab) reduces the duration of

COVID-19 and/or reduces the severity of the disease (53–55). In

vitro culture of PBMC isolated from peripheral blood of COVID-19

patients revealed that 5-fluorouracil (5-FU) restored lymphocyte

proliferation and propagated Th1-mediated immune response by

decreasing levels of MDSCs and decreasing production of IL-10, IL-

8, IL-17, and Th2 cytokines, while boosting production of IFN-g
and IL2 (38). In COVID-19 therapy, it has been proposed that 5-FU

in conjunction with deoxyribonucleosides and deoxyribose may

have antiviral effects (56). In addition, it has also been hypothesized

that vitamin D deficiency increases the risk of developing ARDS in

COVID-19 patients and that vitamin D supplementation may

attenuate the inflammatory response caused by pulmonary

macrophages and MDSCs in COVID-19 patients and reduce

acute respiratory distress syndrome in COVID-19 patients (57).

Despite the fact that the aforementioned studies demonstrated that

targeting MDSCs for the treatment of COVID-19 may be more

effective, these studies are still restricted to in vitro cell culture and

clinical trials, and the particular therapeutic processes need

more research.
3.2 Tuberculosis

Tuberculosis is a devastating infectious disease caused by

Mycobacterium tuberculosis, as of the year 2020, it has

superseded SARS-CoV-2 as the second most infectious disease

killer, with roughly 1.3 million fatalities every year (58). Although

BCG vaccination and antituberculosis chemotherapy have been

extensively utilized for TB prevention and treatment, the

consequences have been unsatisfactory (6, 59), thus, it has

become necessary to investigate alternative antituberculosis

treatment strategies. MDSCs have been found to make a

significant contribution in the pathology of TB, and the majority

of studies indicate that MDSCs provide ecological niches for the

survival of Mycobacterium avium in the lungs of infected hosts and

promote replication of Mycobacterium tuberculosis at the site of

pulmonary infection (5, 6, 60, 61). Recent investigation has shown
Frontiers in Immunology 05
that Mycobacterium tuberculosis may employ the MPT64 protein

to stimulate the creation of MDSCs, hence facilitating its survival

and evasion of host immunological defenses (62). MDSCs not only

accumulate in the peripheral blood of M. tuberculosis model mice

(63), but also in the spleen of M. tuberculosis-infected mice (64). In

addition, an increased frequency of MDSCs was observed in

peripheral blood, bronchoalveolar lavage fluid, and pleural fluid

specimens from patients with pulmonary or extrapulmonary

tuberculosis, and the frequency of circulating MDSCs also

decreased significantly at the end of antituberculosis treatment,

indicating that MDSCs play an important role in the pathogenesis

of tuberculosis (6, 65–69). In vitro granuloma model tests have

shown that human MDSCs activate MAPK channels, hence

boosting IL-1O production and Mycobacterium tuberculosis

replication (60). The results of studies on TB patients also

confirm the correlation between MDSCs and disease (Table 2).

The frequency of both subpopulations of MDSCs was elevated in

PBMC of patients with active TB, was dominated by M-MDSCs,

reduced the immunological function of lymphocytes in TB patients,

and was proportional to the severity of the disease (67–70). Other

investigations have shown that the levels of PMN-MDSCs are

elevated in the peripheral blood and bronchoalveolar lavage fluid

of patients with active TB, and that these levels correlate with

plasma nitric oxide levels (6, 72). Grassi et al. established the link

between PMN-MDSCs and TB severity by confirming by chest X-

ray and experiment that PMN-MDSCs levels were higher in

patients with milder disease severity than in those with more

severe disease severity (71). Bindu et al. further found through

studies on non-human primate TB granulomas that PMN-MDSCs

levels were elevated in animal models of active TB (ATB) compared

to latent TB-infected animals and were located in the lymphocyte

cuffs surrounding the granuloma, thereby inhibiting T-cell entry

into granuloma’s core (73). These results indicate that MDSCs may

represent a novel target for TB host-directed treatment and a

possible signal for detecting success.

Host-directed therapy (HDT) is a novel approach to innovative

host-specific therapies designed to reduce excessive inflammation

or enhancing the host’s immune defense against pathogens, with

the goal of shortening treatment regimens without inducing drug

resistance (74). Several FDA-approved medicines, including all-

trans retinoic acid (ATRA), cyclooxygenase-2 inhibitor (COX-2i),

phosphodiesterase-5 inhibitor (PDE-5i), and sildenafil, have been

validated in the treatment of tuberculosis (TB) (61, 69, 74–76). It

was found that MDSCs levels were excessively elevated in the lungs

of a mouse model of tuberculosis, which was related with increased

mortality, and the frequency of MDSCs decreased while the number

of T cells rose after host-directed therapy with all-formic retinoic

acid (ARTA) (61). COX-2i has been demonstrated to reduce

pathological lung damage caused by the host immunological

response in tuberculosis patients (76). Combining COX-2i with

anti-inflammatory effects with anti-tuberculosis basal treatment

reduced cytokines that induce high levels of M-MDSCs, including

IL-1, IL-10, IL-6, TNF, and S100A9 (69). Combining PDE-5i

sildenafil with antituberculosis basal therapy improved treatment

efficacy because PDE-5i sildenafil increased cyclic adenosine
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monophosphate (cGMP) in MDSCs, leading to a decrease in Arg-1

and nitric oxide synthase 2 (NOS2), thereby decreasing the

mechanism of MDSCs-induced T-cell suppression (74). However,

Vinzeigh N et al. demonstrated that sildenafil was incapable of

reversing MDSCs-mediated T-cell suppression and had little effect

on enhancing host immunity (77). The above findings for MDSCs-

targeted therapy suggest that MDSCs may be a new target for anti-

tuberculosis host-directed therapy, but the results are contradictory

and additional investigation is required.
3.3 Other infectious lung diseases

Studies on the correlation between MDSCs and infectious lung

diseases have included lung injury caused by pathogens such as

Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella

pneumoniae, Pseudomonas aeruginosa, and Pneumocystis carinii,

in addition to the two specific pathogens mentioned above. In a

mouse model of Streptococcus pneumoniae pneumonia, MDSCs

levels are elevated in model mice’s circulation and are associated
Frontiers in Immunology 06
with a choline-binding protein, although the specific mechanism

remains unclear (78). However, the results of an animal experiment

combined with clinical trials suggest that the macrolide antibiotic

clarithromycin promotes elevated levels of MDSCs in the

circulation of animals and humans through a particular

mechanism that promotes the expansion of MDSCs (CD11b+Gr-

1+) through the STAT3/Bv8 axis, decreases INF-g, boosts IL-10

levels, and protects the organism from post-influenza Streptococcus

pneumoniae infection (79). Staphylococcal enterotoxin B secreted

by Staphylococcus aureus induces an increase in circulating levels of

MDSCs in Staphylococcus aureus-infected mice, and treatment

with resveratrol increases the proportion of circulating MDSCs

because MDSCs can downregulate the body’s immune response to

prevent tissue damage at the site of inflammation (80). MDSCs play

a pivotal part in the efferocytosis of neutrophils following infection

with Klebsiella pneumoniae, and elevated levels of MDSCs in

animal models of Klebsiella pneumoniae pneumonia promote IL-

10 production in the late stages of infection to facilitate the

efferocytosis of apoptotic neutrophils and reduce lung injury (10,

81). It has also been hypothesized that the early expansion of M-
TABLE 2 Summary current studies on MDSCs in tuberculosis patients.

Samples Source of
MDSCs

Subtypes and phenotypic markers of
MDSCs

Frequency of
MDSCs

Cytokines Reference

N=62(TB=43(low
responders (LR-TB):23,
high responders (HR-
TB):20); HD=19)

PBMC M-MDSCs: CD14+CD33+CD11b+CD15-HLA-DR-/low;
PMN-MDSCs: CD15+CD33+CD11b+CD14-HLA-DR-/

low

M-MDSCs and PMN-
MDSCs ↑ (M-MDSCs ↑
in LR-TB; PMN-MDSCs
↑ in HR-TB)

IFN-g↓ (in LR-
TB)

(70)

N=48 (active TB=38;
HD=10)

PBMC M-MDSCs: Lin-HLA-DR-/

lowCD33+CD11b+CD14+CD15-; PMN-MDSCs: Lin-

HLA-DR-/lowCD33+CD11b+CD14-CD15+; e-MDSCs:
Lin- (CD3/CD14/CD15/CD19/56)HLA-DR-CD33+

M-MDSCs↑ (as
compared to recovered
and HDs)

IL-6 ↑ (67)

N=45 (active TB=35;
HD=10)

PBMC and
bronchoalveolar
cells (BALc)

PMN-MDSCs: CD11b+CD14-CD33+CD15+HLA-
DRlow; M-MDSCs : CD11b+CD14+CD33+ HLA-
DRlow; MDSCs: HLA-DR-/lowCD11b+CD33+

MDSCs ↑ (in PBMCs
and BALc); PMN-
MDSCs ↑ (as compared
to HDs)

None (6)

N=230 (active TB=110;
latent TB infection
(LTBI)=80; HD=40)

PBMC PMN-MDSCs: CD14-CD15+CD11b+CD33+HLA-
DRlow/−; M-MDSCs: CD14+CD15-

CD11b+CD33+HLA-DRlow/-; MDSCs: CD33+ HLA-
DR-/LOW

MDSCs↑ (as compared
to HDs)

IFN-g↓ (68)

active TB and
household contacts
(HHC)

PBMC and/or
pleural fluid

MDSCs: LIN-/lo HLA-DR+CD33+CD11b+; M-MDSCs:
HLA-DR-/loCD11b+CD14+ or S100A9+; PMN-
MDSCs: HLA-DR-/loCD11b+CD15+

MDSCs↑ IL-1b, IL-6, IL-8,
G-CSF,MCP-1↑;
GM-CSF and
MIP-1b↓

(65)

N=16 (standard TB
treatment=8; standard
TB treatment+ COX-
2i=8);

PBMC NDSCs: HLA-DRneg/lowCD14+CD33+CD11b+ M-MDSCs↑ None (69)

N=49 (active TB=19;
latent TB infection
(LTBI)=18; HD=12)

PBMC PMN-MDSCs: HLA-DR-/lowCD11b+CD14-CD15+/
CD66b+; M-MDSCs: HLA-DR-/lowCD11b+CD33+

CD14+CD15-; e-MDSCs: HLA-DR-CD33+CD15-Lin
(CD3-CD56-CD19-CD14-)

PMN-MDSCs ↑ (as
compared to LTBI and
HDs)

None (71)

N=33 (active TB=23;
latent TB infection
(LTBI)=10)

PBMC e-MDSCs: LIN1-HLA-DR-/lowCD11b+CD33+; PMN-
MDSCs: HLA-DR-/lowCD14-CD15+CD33+/dim; M-
MDSCs: HLA-DR-/lowCD14+CD15-CD33+

PMN-MDSCs↑ (as
compared to LTBI)

None (72)
f

IFN-g, interferon-g; IL-1b, interleukin-1b; IL-6, interleukin-6; IL-8, interleukin-8; G-CSF, granulocyte-colony stimulating facto; GM-CSF, granulocyte-macrophage colony stimulating factor;
MCP-1, monocyte chemotactic protein-1; MIP-1b, macrophage inflammatory protein 1b.
↑ represents increased and ↓ represents decreased.
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MDSCs during an infection terminates the proinflammatory

signaling essential for the clearance of Klebsiella pneumoniae,

hence causing a chronic infection (82). While the particular

mechanism of MDSCs in Klebsiella pneumoniae pneumonia

remains a complicated process, it is known that MDSCs are

involved (83). Both in clinical trials and in animal studies, P.

aeruginosa infection leads to increased levels of circulating PMN-

MDSCs in patients with chronic inflammatory diseases of the lung,

including pulmonary cystic fibrosis, disrupting the host immune

response (84). Levels of MDSCs in alveolar lavage fluid in animal

models of Pneumocystis pneumonia (PcP) increase with increasing

numbers of Pneumocystis carinii in the organism and with

increasing lung inflammation; moreover, secondary transfer of

MDSCs may directly cause lung damage in normal mice (85).

Treatment with immunosuppressive drugs and antibiotics (all-trans

retinoic acid combined with Primaquine) transforms MDSCs in the

lung into alveolar macrophages capable of clearing Pneumocystis

infection, enabling the host to successfully fight against infection

(86). Further studies revealed that MDSCs are depleted of alveolar

macrophage phagocytic activity during PcP via the PD-1/PD-L1

pathway (87). Despite the fact that the majority of the

aforementioned studies on other pulmonary infectious diseases

are limited to animal experiments, the fact that MDSCs are

associated with the disease, for better or for worse, regardless of

the type of pulmonary infectious disease may indicate that MDSCs

are poised to become another therapeutic target for these diseases.
4 The role of traditional Chinese
medicine in infectious lung diseases

Traditional Chinese medicine (TCM) refers to traditional

medicine that studies the relationship between human physiology

and pathology and the natural environment from a dynamic and

holistic perspective under the guidance of the theory of yin-yang

and the five elements, and explores effective methods to prevent and

treat diseases, with a holistic view and discriminatory treatment as

its main ideas. As traditional medicine, TCM is an important part of

the medical field with a long history and rich experience in

preventing and treating infectious diseases. Modern research

results have also demonstrated the advantages of TCM in

improving clinical symptoms, suppressing pathogens, promoting

host immunity, and reducing side effects (88). Particularly, during

COVID-19 pandemic, the vast majority of novel coronavirus

pneumonia patients in China received TCM treatment, showing

that TCM can significantly alleviate symptoms, reduce the

inflammatory response, and promote recovery in patients with

novel coronavirus pneumonia (89, 90). Several findings involving

methods such as network pharmacology and molecular docking

techniques have also pointed out that the active ingredients of single

herbal medicines such as glycyrrhiza, scutellaria baicalensis, Coptis

chinensis and lonicera japonica, and compound herbal medicines

such as Yinqiaosan and LianhuaQingwen capsule can act on

different targets and pathways of COVID-19, such as angiotensin-

converting enzyme 2 (ACE2), TNF signaling pathway, T-cell
Frontiers in Immunology 07
receptor signaling pathway, Toll-like receptor signaling and

MAPK signaling pathway (91–95). In vitro experiments have also

demonstrated that LianhuaQingwen capsule inhibits the replication

of SARS-CoV-2 and significantly reduces the production of pro-

inflammatory cytokines (TNF-a, IL-6, CCL-2/MCP-1 and CXCL-

10/IP-10) (96). In tuberculosis, the active ingredients of TCM not

only modulate the cellular immune function of the body and

promote the clearance of Mycobacterium tuberculosis, but also

play a role in suppressing the inflammation of the body and

inhibiting the development of drug resistance in Mycobacterium

tuberculosis, such as gynostemma pentaphylla, luteolin and

isoliquiritigenin (97–101). In addition, in pneumonia infected

with P. aeruginosa, the active ingredients of TCM active

ingredients not only inhibit the release of cytokines and

chemokines in the organism, such as TNF-a, IL-6, IL-4, IL-8, and
RANTES, to improve the lung infection, but also may inhibit the

proliferation of P. aeruginosa through PI3K/AKT and Ras/MAPK

pathways, selectively act on the QS (quorum sensing) of P.

aeruginosa system to reduce bacterial virulence, and inhibition of

P. aeruginosa biofilm formation (102–104).
5 Conclusions

MDSCs were discovered for the first time in oncological

disorders, where they play unique immunomodulatory functions

under pathological settings. There are increasing indications that

MDSCs play a crucial role in regulating the immunological response

of the organism, particularly in lung infectious illnesses. Depending

on the disease state and research methodology, the percentage of

MDSC subtypes might vary. In spite of the fact that the subtypes and

levels of MDSCs in the host correlate with the severity of the disease,

the exact mechanism of action of MDSCs in various diseases is still a

matter of debate. MDSCs function as an immunosuppressive cell that

inhibits the acute inflammatory response, promotes inflammation

subsidence, and initiates the repair process of the organism, thereby

ameliorating clinical symptoms, such as those caused by

Streptococcus pneumoniae pneumonia and staphylococcal

enterotoxin infection pneumonia. In COVID-19, tuberculosis,

Pseudomonas aeruginosa infection, and Pneumocystis pneumonia,

however, the levels of MDSCs in the circulation are positively

correlated with the degree of inflammation of the disease, as

MDSCs further impair the host’s immune response, resulting in

persistent and recurrent bacterial or viral infections. In conclusion,

there is a correlation between MDSCs and a variety of pulmonary

infectious diseases, and the findings suggest that targeting MDSCs

may reduce adverse drug reactions and resistance, and that MDSCs

would be one of the important targets in the treatment of these

pulmonary infectious diseases, with immune-targeted therapy against

MDSCs being clearly proposed in the treatment of tuberculosis.

These investigations imply that MDSCs create a pivotal regulatory

function in lung infectious illnesses; nevertheless, due to the

complexity of the disease, focused treatment in contemporary

medicine has not yet been able to modify the disease’s overall

development environment.
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TMC, a traditional medicine with a holistic view and evidence-

based treatment as the main ideas, is an important part of the

medical field with a long history and rich experience in the

prevention and treatment of infectious diseases. TMC plays a role

in COVID-19, tuberculosis and other pulmonary infectious diseases

by improving clinical symptoms, inhibiting pathogen proliferation,

promoting pathogen clearance, regulating host immunity, reducing

adverse effects and inhibiting pathogen resistance, highlighting the

multi-target advantages of Chinese medicine in pulmonary

infectious diseases. It can be seen that TCM may be an important

available resource to target MDSCs for the treatment of pulmonary

infectious diseases. There are no studies that have employed TCM

to modify MDSCs and thereby affect lung infectious illnesses,

according to a review of a broad body of research. Consequently,

our future research will focus on advancing TCM research into the

investigation of MDSCs in lung infectious illnesses. In addition, it is

essential to integrate TCM with contemporary medicine in order to

maximize the benefits of TCM in increasing and lowering toxicity,

as well as in treating both symptoms and underlying causes in order

to enhance patients’ quality of life.
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