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The transcriptional program
during germinal center reaction -
a close view at GC B cells, Tfh
cells and Tfr cells
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The germinal center (GC) reaction is a key process during an adaptive immune

response to T cell specific antigens. GCs are specialized structures within

secondary lymphoid organs, in which B cell proliferation, somatic hypermutation

and antibody affinity maturation occur. As a result, high affinity antibody secreting

plasma cells and memory B cells are generated. An effective GC response needs

interaction between multiple cell types. Besides reticular cells and follicular

dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T

follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas

Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized

subset of regulatory T cells (Tregs), are able to suppress the GC reaction

maintaining the balance between immune activation and tolerance. The

formation and function of GCs is regulated by a complex network of signals and

molecules at multiple levels. In this review, we highlight recent developments in

GC biology by focusing on the transcriptional program regulating the GC reaction.

This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose

important role for GC B, Tfh and Tfr cell differentiation became increasingly

clear in recent years. Moreover, we outline how deregulation of the GC

transcriptional program can drive lymphomagenesis.

KEYWORDS

germinal center (GC), GC B cells, Tfh cells, Tfr cells, transcriptional regulation, BOB.1/
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1 Introduction

Germinal centers (GCs) are transient structures that form within B cell follicles of

secondary lymphoid organs (SLOs), including lymph nodes (LNs), spleen and Peyer’s

patches (PPs), in response to T cell dependent antigens (Ags) (1). Within GCs, B cells

undergo intensive proliferation, immunoglobulin (Ig) gene somatic hypermutation (SHM),

class-switch recombination (CSR) and affinity maturation. As a result, high affinity antibody

(Ab) secreting plasma cells and memory B cells are generated (2). An effective GC response

needs interaction between multiple cell types. These are in addition to follicular dendritic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125503/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1125503/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1125503&domain=pdf&date_stamp=2023-02-03
mailto:cornelia.brunner@uniklinik-ulm.de
https://doi.org/10.3389/fimmu.2023.1125503
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1125503
https://www.frontiersin.org/journals/immunology


Betzler et al. 10.3389/fimmu.2023.1125503
cells (FDCs), which are stromal cells residing in B cell follicles of

SLOs, specifically B cells, T follicular helper (Tfh) cells and T follicular

regulatory (Tfr) cells (2).

In LNs, B cells are organized in follicles within the outer cortex,

while T cells are located in the surrounding paracortical area (3).

Follicles are proximate to the subcapsular sinus (SCS), where Ags are

delivered from the upstream lymphatic vessels (4). Ag presentation to

B cells can take place in the SCS, the follicle or the paracortex (5). The

spleen is composed of two compartments, the blood-filtering red pulp

and the lymphoid white pulp (6). Similar to LNs, the white pulp is

composed of B cell follicles and surrounding T cell areas, but follicles

are additionally surrounded by the marginal zone. B cell follicles are

separated by interfollicular regions in LNs and by arterial vessels in

the spleen (4). GCs form within the center of the B cell follicles.

Organization of the distinct areas and GC formation relies on the

coordinated expression of chemokines and interaction of various cell

types, as outlined in more detail in the following.

Naïve B cells located in the follicles of SLOs can be activated by

binding Ags via their BCRs (4). Several mechanisms for B cell Ag

encounter depending on factors like Ag size or their route of entry

have been described (4, 5). Small Ags can diffuse through the SCS or

follicular conduits to the follicle and activate B cells (4, 7). Larger Ags

can be presented to B cells on the surface of DCs, FDCs or

macrophages (7). The different mechanisms of Ag presentation to B

cells are thoroughly reviewed elsewhere (4, 5, 7).

Upon BCR signaling, the BCR/Ag-complex is internalized and the

Ag degraded to present its peptides on major histocompatibility

complex (MHC)-class II to T cells (8). BCR engagement also

increases expression of CCR7, which initiates B cell migration

towards the B/T cell border, as its ligands CCL19 and CCL21 are

expressed in the T cell zone by dendritic cells (DCs) and stromal cells

(9). At the same time, naïve T cells located in the T cell zone recognize

Ag presented by DCs. This initiates the differentiation towards a Tfh

cell phenotype, which is characterized by the upregulation of CXCR5

and downregulation of CCR7 (10). This induces migration to the B/T

cell border, where CXCL13, the ligand for CXCR5, is abundantly

secreted by FDCs (11). Additionally, both B and T cells increase

expression of Epstein-Barr virus-induced G protein coupled receptor

2 (EBI2), which directs their migration to the B/T cell border (12, 13).

At this site, B cells present peptides of the Ag on MHC-II to CD4+ T

helper cells thereby providing survival and co-stimulatory signals. Ag

primed B and T cells form long-lived interactions, which results in full

B cell activation (14). Subsequently, activated B and Tfh cells migrate

into the center of the follicle, where B cells begin to proliferate and

seed the GC. Therefore, B and T cells downregulate CCR7 and EBI2

while constantly expressing CXCR5, which enables them to move into

the center of the follicle (15, 16). Moreover, B cells upregulate S1P

receptor 2 (S1PR2), which promotes B cell migration to the follicle by

binding S1P present in the follicle (17). S1PR2 also seems to be

required for retention of Tfh cells in the GC (18). However, a subset of

activated B cells does not enter the follicle, but migrate to

extrafollicular regions in the spleen or in the medullary cords of

LNs and differentiate into short-lived plasmablasts (19). Plasmablasts

provide immediate help in recognition and elimination of the Ag by

IgM secretion and subsequently, by IgM-mediated pathways (19, 20).

Consequently, extrafollicular responses generate Abs faster, but with

lower affinity compared to GC responses (19).
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After migration into the follicle, the GC expands fast as a

consequence of rapid proliferation and GC B cells push aside the

resident follicular B cells (11). By day 7, the GC is fully established and

polarized into dark and light zones. The dark zone is named for its

densely packed appearance as rapidly proliferating B cells, termed

centroblasts, reside in this area and undergo SHM (2). Centroblasts

express CXCR5 and CXCR4 and are retained in the dark zone by the

expression of CXCL12 released by local stromal cells (21). Over time,

centroblasts reduce their cell division rates as well as their CXCR4

expression. These B cells are then termed centrocytes. Loss of CXCR4

expression allows their entry into the less densely packed light zone,

attracted by the FDC released CXCL13, the ligand of CXCR5 (11).. In

the light zone, affinity-based selection and CSR takes place. B cells

compete for available Ag and T cell help. Those B cell clones which

developed high affinity towards the Ag have a survival advantage over

lower affinity B cell clones, which undergo apoptosis (2). GC B cells

experience multiple rounds of re-entry into the dark zone before they

finally differentiate into either plasma cells or memory B cells (11).

The formation and function of GCs is regulated by a complex

network of signals and molecules at multiple levels. In this review, we

highlight recent developments in GC biology focusing on the

transcriptional program regulating the GC reaction. Besides B cells,

we will also highlight the transcriptional program essential for Tfh

and Tfr cell differentiation and function.
2 Transcriptional program regulating
GC reaction

2.1 Transcriptional control of GC B cells

Several excellent reviews exist describing the transcriptional

regulation of B cells during GC initiation, expansion and terminal

differentiation into plasma or memory B cells in detail (1, 11, 22, 23).

Therefore, we will just briefly highlight the main TFs regulating GC B

cell differentiation and function, and focus on the transcriptional co-

activator BOB.1/OBF.1, which was recently described to be essential

for the GC transcriptional program.

2.1.1 Master regulators of GC B cell
expression programs

Throughout the GC reaction, multiple regulatory and

transcriptional networks characterized by the expression of ‘master

TFs’ take place (Figure 1). BCL6 (B cell lymphoma 6 protein) is

regarded as the master regulator of the GC reaction and essential for

its initiation. The expression of BCL6 is induced by IRF4 (Interferon-

regulatory factor 4), IRF8 (Interferon-regulatory factor 8) and MEF2B

(Myocyte-specific enhancer factor 2B) (24–26). BCL6 acts as a

transcriptional repressor on multiple levels during the GC reaction

allowing the establishment of the GC B cell program. Firstly, BCL6

represses cell cycle regulators (CDKN1A/p21) (27) and genes of the

DNA damage response pathway (TP53, ATR, CHEK1) (28–30), which

permits rapid proliferation and SHM (31). Secondly, BCL6 regulates a

transcriptional program facilitating B cell migration into the GC (32,

33). Thirdly, BCL6 represses genes necessary for B cell differentiation

into premature plasma cells, thereby facilitating effective affinity

maturation of GC B cells (34). In the dark zone, AID (Activation-
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induced cytidine deaminase), encoded by Aicda, is the key enzyme for

SHM (35). Its expression is positively regulated by PAX5 (Paired box

protein 5), E2A and IRF8 (25, 36, 37). Moreover, FOXO1 (Forkhead-

Box-Protein O1) is highly expressed in the nucleus of GC dark zone B

cells (38, 39). The activity of FOXO proteins is regulated by

posttranslational modifications thereby regulating e.g. its shuttling

between the cytoplasm and the nucleus, its stability or DNA binding

(40). Phosphorylation of FOXO1 by the PI3K/AKT pathway induces

its translocation from the nucleus to the cytoplasm resulting in its

transcriptional inactivity (40, 41). On the other hand,

phosphorylation at different sites by other protein kinases like RAS/

mitogen-activated protein kinase promote nuclear localization and

therefore the transcriptional activity of FOXO (41, 42). Several studies

revealed that FOXO1 is essential for the GC dark zone program, as

Foxo1-deficient GCs lacked a dark zone (38, 39, 43). Moreover,

FOXO1 and BCL6 both repress BLIMP1 (B lymphocyte maturation

protein 1), which is essential for plasma cell differentiation, thereby

maintaining the GC dark zone program (38). In the light zone, affinity

maturation and CSR take place. IRF4 is upregulated in light zone

B cells, which in turn represses BCL6, thereby ending the dark zone

transcriptome and establishing the light zone program (23). FOXO1

also seems to be involved in regulating light zone programs, as

Foxo1-deficient GC B cells were described with impaired affinity

maturation and CSR (38). CSR also relies on the expression of AID.

During CSR, IRF4, FOXO1, PAX5, E2A and BATF (B Cell Activating

Transcription Factor) are involved in AID regulation (38, 44–46).

Upregulated IRF4 expression also induces BLIMP1 (encoded by

Prdm1) expression (44, 47), which is essential for plasma cell

development (48, 49). BLIMP1 further represses the expression of

Aicda, Bcl6 and Pax5, finally terminating the GC program (50, 51).

BLIMP1 and IRF4 both activate XBP1 (X-box binding protein 1),

which is required for Ab production and secretion (52–54). In
Frontiers in Immunology 03
contrast, ABF1 (Autonomously replicating sequence (ARS) binding

factor 1) induces memory B cell differentiation and prevents plasma

cell development (55). Another essential TF of the GC reaction is

MYC. However, its role is incompletely understood. MYC is required

during the very early phase of GC initiation, as its expression is

induced immediately after immunization (56, 57). However, in dark

zone B cells its expression is repressed by BCL-6. Later, MYC becomes

re-expressed in a subset of light zone B cells and probably regulates

their re-entry into the dark zone (56, 57).

2.1.2 BOB.1/OBF.1 controls the GC B cell
transcriptional program

Another factor essential for the GC reaction is BOB.1/OBF.1 (B

cell Oct binding factor 1/Oct-binding factor 1), also known as OCA-B

(octamer coactivator from B cells). BOB.1/OBF.1 is encoded by the

Pou2af1 (POU domain class 2-associating factor 1) gene. BOB.1/

OBF.1 is expressed in both B and T lymphocytes and acts as

transcriptional co-activator of octamer-dependent transcription

(58). The octamer motif is found in regulatory elements of B and T

cell specific genes (59–61). BOB.1/OBF.1 interacts with TF of the Oct-

family (Oct-1 and Oct-2) and enhances their binding selectivity to the

octamer motif (5’-ATGCAAAT-3’) and their transcriptional activity

(62–65). Thus, the ternary complex built by BOB.1/OBF.1 together

with Oct-1 or Oct-2 on the DNA octamer motif regulates expression

of genes essential for lymphocyte physiology (62, 65–70). Analysis of

BOB.1/OBF.1-deficient mice revealed several defects in early and late

B cell antigen-independent maturation. BOB.1/OBF.1 is critical for

early B cell development in the bone marrow, as BOB.1/OBF.1-

deficient mice feature a developmental block at the pro/pre B cell

stage (71, 72). Consequently, the number of peripheral B cells is

severely reduced in these mice (73). Additionally, BOB.1/OBF.1 is

essential for the maturation of follicular B cells, since BOB.1/OBF.1-
FIGURE 1

Transcriptional control of GC B cells. During GC initiation, TFs IRF4, IRF8 and MEF2B induce the expression of BCL-6. BOB.1/OBF.1 is also involved in the
initiation of BCL-6 expression. Moreover, the transcriptional co-activator drives MEF2B expression. On the other hand, IRF4 seems to modulate the
expression of BOB.1/OBF.1. In the dark zone, PAX5, E2A and IRF8 induce AID and therefore SHM. BOB.1/OBF.1 was also shown to be involved in AID,
BCL-6 and FOXO1 induction. BCL-6 and FOXO1 inhibit BLIMP-1 and BOB.1/OBF.1 blocks IRF4 expression to prevent initiation of plasma cell
differentiation at this stage. In the light zone, IRF4 is upregulated and prevents BCL-6 expression to terminate the dark zone program. IRF4, PAX5 and
E2A promote AID expression and thereby affinity maturation and CSR. BOB.1/OBF.1 (POU2AF1) is again involved in regulation of AID and FOXO1
expression. The TF MYC probably regulates re-entry into the dark zone. IRF4 and BOB.1/OBF.1 are involved in driving BLIMP-1 expression. BLIMP-1 in
turn represses BCL-6, AID, PAX5 and MYC and on the other hand facilitates expression of XBP1 together with IRF4 resulting in plasma cell differentiation.
In contrast, ABF-1 induces memory B cell differentiation. This figure was created with BioRender.com.
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deficient mice show increased levels of immature but decreased

numbers of mature B cells (71, 73). Besides, the number and

function of marginal zone B cells is affected in the absence of

BOB.1/OBF.1 (74). However, the most striking characteristics of

BOB.1/OBF.1-deficient mice are the complete absence of GCs and

consequently dramatically reduced levels of class-switched Igs (71–73,

75). However, it was completely unsolved at which stage of B cell

development BOB.1/OBF.1 expression is essential for GC formation.

By establishing a mouse system allowing the conditional deletion of

BOB.1/OBF.1 at different time points of B-cell maturation, we have

recently shown that an efficient GC reaction needs BOB.1/OBF.1

expression during the complete B-cell ontogeny (76). Notably, in

Pou2af1fl/fl x Cg1-Cre mice, in which BOB.1/OBF.1 is specifically

deleted in GC B cells four days after immunization also lack GCs (76).

This finding proves that this deficiency is a GC B-cell autonomous

defect and not exclusively a consequence of defective early B-cell

maturation. The TF IRF4 seems to regulate the induction of BOB.1/

OBF.1 expression during the early GC reaction initiation (24). For a

long time, GC-specific BOB.1/OBF.1 target genes were largely

unknown. In 1998, NF-kB, Oct-2 and BOB.1/OBF.1 were shown to

cooperatively regulate the promoter activity of the chemokine

receptor Cxcr5 in B cells (77). Thus, reduced Cxcr5 expression

observed in conventional BOB.1/OBF.1-deficient mice might

contribute to the absence of GCs in these animals as a consequence

of impaired B lymphocyte migration (69, 77). In addition, BOB.1/

OBF.1-deficient B cells of postnatal day 9 showed a dramatic

reduction in the frequency of migration towards Cxcl13 indicating

an impaired Cxcr5 function in these cells (78). These findings in

combination with observed diminished FDC numbers and reduced

Cxcl13 expression in the absence of BOB.1/OBF.1 suggest that

reduced lymphocyte numbers in SLOs of these mice could be a

consequence of defective Cxcl13-Cxcr5 signaling (78). In 2006 Spi-B,

which is essential for GC formation and maintenance (79), was

revealed as BOB.1/OBF.1 target (80). Ten years later, a ternary

complex on the Bcl6 promoter formed by BOB.1/OBF.1 and Oct-

TFs was described, activating Bcl6 transcription and thereby

promoting Tfh cell development (69). In 2020, it was demonstrated

that BOB.1/OBF.1 also regulates BCL-6 expression in GC B cells (81).

The authors found that BOB.1/OBF.1 forms a ternary complex with

Oct-2 and the TF MEF2B, which occupies and regulates a locus

control region that regulates BCL-6 expression (81). Most recently,

combining multiple experimental approaches a map of direct BOB.1/

OBF.1 target genes was defined. Precisely, transgenic mice expressing

tagged versions of Oct-1, Oct-2 and BOB.1/OBF.1 were generated,

which allowed for ChIP-sequencing and the identification of their

DNA-binding sites (68). This strategy in combination with the

analysis of specific histone marks to examine chromatin activity

status as well as RNA-sequencing experiments allowed the

identification of several BOB.1/OBF.1 target genes (68). These data

show that BOB.1/OBF.1 and Oct-TFs regulate the GC transcriptional

program by binding to multiple genes encoding TFs essential for GCs

including Bcl6, Myc, Foxo1, Mef2b, Aicda and Spi1in primary B cells

(68) (Figure 1). Moreover, the authors provide evidence that BOB.1/

OBF.1 is also required for the maintenance of the GC transcriptional

program. In the absence of BOB.1/OBF.1 the GC transcriptional

program is disrupted as genes essential for GCmaintenance (Bcl6) are

downregulated and genes initiating the plasma cell program are
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upregulated (Irf4) (68). Together, these results highlight BOB.1/

OBF.1 as a key player in maintaining the GC transcriptional

program by activating BCL-6 and repressing IRF4. When the

expression of BOB.1/OBF.1 is abolished, the BCL-6 pathway is

diminished and IRF4 expression gets enhanced, which results in the

termination of the GC program and the initiation of plasma cell

differentiation (68). In addition, BOB.1/OBF.1 seems to be essential

for the induction of Prdm1, thereby contributing to plasma cell

differentiation (70).
2.2 Transcriptional control of GC T cells

2.2.1 Transcriptional regulation of
Tfh cell differentiation

The differentiation of Tfh cells is a multistage process, whereby

multiple TFs that either promote or repress Tfh cell fate are involved

(Figure 2). The first step of Tfh cell differentiation is the interaction of

naïve CD4+ T cells with DCs in the T cell zone. CD4+ T cells undergo

cell fate decision either towards T helper (TH) cell subsets or Tfh cells.

There is evidence that Tfh cell development is initiated already during

DC priming after viral infection (82). Thereby, ICOS (Inducible T-cell

COStimulator) seems to be required to induce Bcl6 expression (82).

Another study also suggested a direct link between TCR signal

strength, IL-2 production and Tfh cell fate decision (83). Indeed,

CD4+ T cell commitment towards Tfh cell fate was reported within

first rounds of cell division only two days after viral infection (82).

Cells either start to express Bcl6, the master regulator of Tfh cell

differentiation, or its antagonist Blimp-1, which favors TH cell

development. The expression of BCL-6 is induced on multiple

levels. Several cytokines including IL-21, IL-6 and type I IFNs

(IFN-a/b) induce Bcl6 expression via the activation of STAT1/3

(84–87). The TFs LEF-1 (Lymphoid enhancer binding factor 1) and

TCF-1 (T cell factor-1) promote Bcl6 expression by targeting

signaling molecules upstream of BCL-6 like IL-6R and ICOS (88).

TCF-1 was also shown to directly bind to the Bcl6 promoter

facilitating its expression (89). BCL-6 in turn represses Blimp-1 and

TFs like T-bet, Gata3 and RORgt, which favor the development into

TH subpopulations (90). BCL-6 and also the TF ASCL2 (Achaete-

Scute Family BHLH Transcription Factor 2) induce the expression of

CXCR5 and suppresses CCR7 expression inducing migration of pre-

Tfh cells to the B/T cell border (91, 92). The second step of Tfh cell

differentiation occurs upon interaction of pre-Tfh cells with Ag-

specific B cells in the B/T cell border. B/T cell interaction functions

as feedback loop as it further drives both Tfh as well as GC-B cell

development. The B/T crosstalk happens in a peptide/MHC II and

ICOS/ICOSL dependent manner. ICOS/ICOSL signaling represses

the TF KLF2 (Krüppel-like Factor 2), which is required to maintain

the Tfh cell phenotype as KLF2 promotes the expression of genes that

mediate the migration to the T cell zones and away from the follicles

(93). ICOS signaling also induces the TF c-MAF, which directly binds

to the Il-21 promoter inducing the expression of this key-Tfh cytokine

(94). Within GCs, SLAM/SAP binding is required to stabilize B/T cell

interactions (95). Here, pre-Tfh cells differentiate into Tfh cells, a

further polarized state characterized by highest expression levels of

BCL-6, CXCR5, PD-1, ICOS and BTLA (96). What happens to Tfh

cells after they have fully differentiated and provided help for GC B
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Betzler et al. 10.3389/fimmu.2023.1125503
cells is very well understood. It is supposed that Tfh cells can exit a GC

and (i) migrate to another GC, (ii) transitionally reside in an adjacent

follicle and re-enter the same follicle again or (iii) completely exit the

GC and acquire a memory-like phenotype (97, 98).

2.2.2 Requirement of BOB.1/OBF.1 for
Tfh cell differentiation

The transcriptional co-activator BOB.1/OBF.1 plays a central role

in controlling the transcriptional program of GC B cells as outlined

above. BOB.1/OBF.1 has long been considered a B cell specific factor,

but in recent years a contribution of BOB.1/OBF.1 expression in T

cells to the GC reaction became evident. Several recent studies

revealed a high BOB.1/OBF.1 expression in murine and human Tfh

cells (69, 99–101) and BOB.1/OBF.1 ablation results in reduced Tfh

cell numbers in mice (69, 102–105). Most recently, a patient with

mutation in the Pou2af1 gene resulting in the absence of BOB.1/

OBF.1 protein was reported who also featured reduced Tfh cell

numbers (103). Moreover, BOB.1/OBF.1 deficiency prevented the

differentiation of CD4+ T cells into Tfh cells in an autoimmune mouse

model (106). In line, BOB.1/OBF.1-deficient mice revealed a

significantly reduced Tfh cell compartment in response to viral

infection (102). However, when mice were reconstituted with

BOB.1/OBF.1-deficient T and WT B cells prior to influenza
Frontiers in Immunology 05
infection Tfh cells developed normally (102). In contrast, mice

reconstituted with BOB.1/OBF.1-deficient B and WT T cells

revealed impaired Tfh cell differentiation, which initially led to the

conclusion that this defect might be B-cell mediated (102).

Nonetheless, Stauss et al. reported a prominent reduction of Tfh

cells in BOB.1/OBF.1-deficient mice upon SRBC immunization and

revealed a CD4+ T cell autonomous defect by performing

reconstitution experiments (69). In addition, loss of BOB.1/OBF.1

was found to be associated with reduced Bcl-6 expression in Tfh cells

from mixed bone marrow chimeras. ChIP experiments of BOB-

deficient CD4+ T cells maintained under Tfh inducing conditions

revealed binding of BOB.1/OBF.1 together with Oct-1 and Oct-2 to an

octamer motif within the Bcl6 promoter (69). In the same year, the

study by Yamashita et al. contradicted these findings (99). They

reported increased Tfh percentages in BOB.1/OBF.1-deficient

animals suggesting a BOB.1/OBF.1 related mechanism that limits

TCR-mediated Tfh cell expansion (99). Different experimental

settings regarding immunization and mouse strains might account

for this discrepancy. Yamashita et al. only analyzed PD1+ CXCR5+

Tfh cells of spleens by flow cytometry and their further experimental

approach was predominantly in vitro (99). Stauss et al., reported a

reduction of multiple Tfh cell subsets (PD1+, ICOS+ BTLA+) in

spleen, LNs and PPs of BOB.1/OBF.1-deficient mice by flow
FIGURE 2

Transcriptional control of Tfh cell differentiation. Tfh cell differentiation occurs in three main steps. The first step of Tfh cell differentiation is the
interaction of naïve CD4+ T cells with DCs in the T cell zone. The expression of BCL-6, master TF of Tfh cells, is induced on multiple levels. Cytokines
including IL-21, IL-6 and type I IFNs (IFN-a/b) drive Bcl-6 expression via the activation of STAT1/3. Besides, TFs LEF-1 and TCF-1 as well as the
transcriptional co-activator BOB.1/OBF.1 together with TFs Oct-1/Oct-2 induce Bcl- 6 expression. BCL-6 in turn represses Blimp-1 and TFs favoring
development into TH subpopulations. BCL-6 and the TF ASCL2 induce the expression of CXCR5 and suppresses CCR7 expression inducing migration of
pre-Tfh cells to the B/T cell border. The second step of Tfh cell differentiation then occurs upon interaction of pre-Tfh cells with Ag-specific B cells in
the B/T cell border. ICOS/ICOSL signaling represses the TF KLF2 thereby inhibiting migration back to the T cell zones. ICOS signaling also induces the TF
c-MAF, which facilitates IL21 expression. The third step of differentiation occurs within GCs, where SLAM/SAP binding is required to stabilize B/T cell
interactions. Here, pre-Tfh cells differentiate into Tfh cells, a further polarized state characterized by highest expression levels of BCL-6, CXCR5, PD-1,
ICOS and BTLA. This figure was created with BioRender.com.
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cytometry and immunofluorescence (69). Moreover, they showed

that BOB.1/OBF.1 transactivates Bcl6 and Btla promoters (69). In

2022, Lombard-Vadnais et al., could show that Tfh differentiation is

blocked at the early Tfh maturation stage when BOB.1/OBF.1 is

absent in hematopoietic cells (104). However, in line with the

observation of Karnowski et al. (102), the authors here also

suggested that BOB.1/OBF.1 plays a T cell extrinsic role in Tfh cell

differentiation and that instead its expression in B cells promotes Tfh

cell maturation (104). In the same year, a study by us revealed reduced

Tfh cell numbers when BOB.1/OBF.1 was deleted tissue-specific in a

CD4- or IL21-Cre dependent manner (105). In particular, the

reduction in Pou2af1fl/fl x IL21-Cre mice, which deletes BOB.1/

OBF.1 predominantly in Tfh cells, provides evidence that Tfh cell

development and function requires T-cell specific BOB.1/OBF.1

expression. Since IL21 is also required for Tfh cell differentiation

(84), crossing Pou2af1fl/fl mice to IL21-Cre mice results in BOB.1/

OBF.1 deficiency already in pre-Tfh cells. Thus, BOB.1/OBF.1 might

play a role already in pre-Tfh cells and their subsequent

differentiation. Moreover, T and Tfh cell-specific BOB.1/OBF.1

deletion also resulted in impaired GC formation (105). Thus,

BOB.1/OBF.1 expression in T cells is also required for efficient GC

formation. Consequently, the contribution of BOB.1/OBF.1 to the GC

reaction cannot be exclusively attributed to its expression in B cells.

The fact that the reduction of GCs was more prominent in Pou2af1fl/fl

x CD4-Cre mice suggests that BOB.1/OBF.1 expression in T cells is

required early during the process of GC initiation. This is in line with

findings of Pou2af1 being highly expressed in early stage GC-Tfh cells

(88). Altogether, the role of BOB.1/OBF.1 for Tfh cell differentiation

was controversially discussed in the past years due to different

experimental approaches. However, tissue-specific deletion of

BOB.1/OBF.1 emphasizes the Tfh cell intrinsic role of BOB.1/OBF.1

for Tfh cell maturation and function (105). Yet, since signals from GC

B cells are required for Tfh maintenance, a combination of both the B

cell and Tfh cell intrinsic role of BOB.1/OBF.1 might contribute to

both efficient GC B and Tfh cell development.

2.2.3 Transcriptional control of Tfr cells
Tfr cells are a subpopulation of regulatory T cells (Tregs) and

are found within GCs in mice and humans (107–112). Their assumed

function is the suppression of the GC reaction by repressing excessive

Tfh and GC B cell proliferation thereby promoting selection of

high affinity B cell clones (107–109, 113). Tfr cells share

characteristics of both Tregs and Tfh cells and it is supposed that

Tfr cells have different phenotypes at different stages of maturation or

in various locations (111, 114, 115). Tfr cells express FoxP3 (Forkhead

box P3), CTLA-4 (Cytotoxic T-lymphocyte-associated Protein 4),

GITR (Glucocorticoid-induced TNFR-related gene) and BLIMP-1

similar to Tregs (108, 111, 116, 117). On the other hand, they express

BCL-6, CXCR5, ICOS, PD1 and SAP typical for Tfh cells (108, 111,

117). It is assumed that the majority of Tfr cells arises from natural

Tregs (107, 108). However, there is evidence that they can also derive

from naïve FoxP3-negative CD4+ T cells (118).

Similar to Tfh cells, the Tfr cell differentiation process is initiated

by Ag presentation by DCs (Figure 3). However, it is not completely

solved which Ag signals initiate Tfr cell differentiation since Tfr cells

respond to both foreign and self-Ags, but more strongly to self-Ags

(118, 119). Besides Ag-receptor stimulation, Tfr cell differentiation
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depends on co-stimulation through CD28 and ICOS (108, 120).

However, Tfr and Tfh cells were shown to have different TCR

repertoires and that of Tfr cells resembles more that of Tregs (121).

This allows the conclusion that Tfr cells develop in a polyclonal and

Ag-independent manner from Tregs (113). Initial Tfr cell

differentiation relies on CD28 and ICOS signaling, whereas

interaction with B cells via SLAM/SAP is required for their full

differentiation (90, 108, 120). Besides Tfh cells, BCL-6 is also the

key TF regulating Tfr cell differentiation. In contrast to Tfh cells, Tfr

cells express both BCL-6 and BLIMP-1 (108). It is assumed that the

balanced regulation by these two opposing TFs is essential for efficient

Tfr differentiation and function, since BCL-6 ablation results in the

absence of Tfr cells (108), while lack of Blimp-1 increases Tfr cell

numbers, however, with reduced suppressive capacity (122).

Therefore, it is hypothesized that BCL-6 is essential for Tfr

generation, whereas BLIMP-1 is required to limit and control Tfr

cell numbers (122). Another key TF of Tfr cells is FoxP3, which is the

known master regulator of Treg cells. FoxP3 modifies the Tfh

transcriptional program to induce a Tfr-like functional state (123)

as well as to maintain the Tfr cell transcriptional program (123).

Thus, FoxP3 is required for Tfr cell identity and suppressive function

(123). GC homing in Tfr cells is initiated by the TF NFAT2 (Nuclear

factor of activated T cells 2), which upregulates CXCR5 expression,

thus playing a comparable role to ASCL2 in Tfh cells (124). In this

context, store-operated Ca2+ entry (SOCE) through Ca2+ release-

activated Ca2+ (CRAC) channels mediated by stromal interacting

molecules (STIM) and ORAI proteins were shown to promote Tfr cell

differentiation through NFAT-mediated IRF4, BATF, and BCL-6 TFs

(125). Subsequently, CXCR5 expression is maintained by BCL-6 (107,

108). BCL-6 in turn is regulated by ICOS and mTORC1 in Tfr cells.

ICOS induces PI3 kinase and its subunit p85a interacts with

osteopontin (OPN-i) (126). OPN-i translocates to the nucleus

preventing BCL-6 from ubiquitin-dependent proteasome

degradation (126). Additionally, mTORC1 was shown to promote

Tfr cell differentiation via STAT3/TCF-1/BCL-6 pathway (127). TFs

Id2/Id3 (Inhibitor of DNA Binding 2/3) are also involved in Tfr cell

differentiation. Id2 and Id3 expression decreases upon TCR

stimulation allowing the induction of the Tfr cell specific

transcriptional program including CXCR5 and IL10 expression

(128). The sclerostin domain-containing protein 1 (SOSTDC1) was

shown to block the WNT-b-catenin axis thereby facilitating Tfr cell

differentiation, possibly by upregulating FoxP3 and CXCR5 (129). In

addition, the ablation of c-Maf, which is also involved in Tfh cell

differentiation, resulted in reduced Tfr cell numbers (130). However,

the exact mechanisms by which c-Maf regulates Tfr cell

differentiation remain to be elucidated.

2.2.4 Role of BOB.1/OBF.1 in regulatory T cells
As BOB.1/OBF.1 was previously shown to be required for Tfh cell

differentiation by regulating BCL-6 expression, as outlined in the

previous chapter, it is likely that BOB.1/OBF.1 might also be involved

in Tfr cell differentiation. BOB.1/OBF.1 was already linked to FoxP3

and Tregs, since an altered expression of Pou2af1 in Tregs was

revealed (111, 131, 132). In detail, POU2AF1 was shown to be up-

regulated in circulating human blood Tfr cells compared to Tfh and

Treg cells (111). Additionally, Pou2af1 expression is suppressed in

stimulated FoxP3+ cells in comparison to FoxP3- cells and FoxP3
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occupies the Pou2af1 promoter (131). On the other hand, co-culture

experiments of T cells with Tregs resulted in an upregulation of

Pou2af1 expression in suppressed compared to non-suppressed T

cells (133). Metenou et al. reported a downregulation of Pou2af1 in

Tregs from patients with chronic infection compared to healthy

individuals (132). B cells co-cultured with Tfr cells downregulate

Pou2af1 expression (134), which further suggests a relation between

Tfr cells and Pou2af1 expression in a broader context. Ablation of

BOB.1/OBF.1 in T cells using Pou2af1fl/fl x CD4-Cre mice resulted in

an increase of Treg cells in our study (105). Additionally, these mice

revealed an impaired Ag-specific immune response (105). These

results imply that BOB.1/OBF.1 expression in both Tfh and Tfr

cells might balance affinity maturation. Indeed, the exact role of Tfr

cells for affinity maturation is not clear. Originally, Tfr cells were

thought to control the production of Ag-specific Abs, while more

recent studies suggest Tfr cells to restrain affinity maturation (15).

However, the exact role of BOB.1/OBF.1 in Tregs and Tfr cells

especially in terms of affinity maturation needs to be further

elucidated. So far, the role of BOB.1/OBF.1 for Treg/Tfr cell

development and function and whether its expression in these cell

subsets promotes or restrains affinity maturation is not clear. RNA-

seq analysis of BOB.1/OBF.1-sufficient compared to BOB.1/OBF.1-
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deficient CD4+ T cells of immunized mice revealed the histone

methyltransferase Kmt2d (Lysine Methyltransferase 2d) among the

top differentially expressed genes. We found increased Kmt2d

expression in BOB.1/OBF.1-deficient CD4+ T cells compared to

WT CD4+ T cells (105). Kmt2d deficiency was reported to

compromise Treg cell development (135), possibly due to its

requirement for the induction of FoxP3 expression (135).

Mechanistically, Kmt2d catalyzed H3K4 methylation at distant

enhancers via chromatin looping thereby contributing to the

induction of FoxP3 expression (135).

Altogether, only little is known about the function of BOB.1/

OBF.1 in Tregs so far. There is evidence that BOB.1/OBF.1 has a role

in Tregs and/or Tfr cells, as several studies described altered Pou2af1

expression in these cells in different experimental settings, as outlined

above. However, there is no definite knowledge about the role of

BOB.1/OBF.1 in these cells at the current time. Some studies report an

induction of Pou2af1 expression in Tregs or Tfr cells, while others

describe a suppression. Further studies are required to get deeper

insights into how BOB.1/OBF.1 expression is regulated, particularly

in Tfr cells, as well as how Treg-specific BOB1.OBF.1 contributes to

the balanced regulation of induction and suppression of an ongoing

GC reaction.
FIGURE 3

Transcriptional control of Tfr cell differentiation. Initial Tfr cell differentiation depends on CD28 and ICOS signaling, whereas interaction with B cells via
SLAM/SAP is required for their full differentiation. Tfr cells express both BCL-6 and BLIMP-1 and possibly their balanced regulation is essential for Tfr cell
differentiation. BCL-6 is regulated by ICOS and mTORC1. ICOS induces PI3K and its subunit p85a interacts with osteopontin (OPN-i). OPN-i translocates
to the nucleus preventing BCL-6 from ubiquitin-dependent proteasome degradation. mTORC1 induces phosphorylation of STAT3, activating TCF-1
expression, which upregulates BCL-6. Stromal interacting molecules (STIM) and ORAI proteins mediate Ca2+ entry inducing NFAT2, which upregulates
CXCR5. Id2/Id3, c-Maf and BOB.1/OBF.1 are also involved in Tfr cell differentiation, but the exact mechanisms are incompletely understood so far. This
figure was created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2023.1125503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Betzler et al. 10.3389/fimmu.2023.1125503
3 Deregulation of the GC
transcriptional program in disease

3.1 TFs hijacked during tumorigenesis of
GC-derived lymphomas

The GC reaction relies on the interplay of multiple TFs regulating

distinct phases of GC formation, as described in the preceding chapters.

These TFs can be hijacked to drive tumorigenesis of GC-derived

lymphomas. The majority of non-Hodgkin lymphomas (NHLs)

derive from GC B cells including diffuse large B cell lymphoma

(DLBCL), follicular lymphoma (FL) and Burkitt lymphoma (BL)

(136, 137). The exact signaling pathways and mechanisms driving B

cell lymphomagenesis are thoroughly reviewed elsewhere (136–140). In

this chapter, we highlight the contribution of key TFs of the GC

reaction as well as of the transcriptional co-activator BOB.1/OBF.1 to

malignant transformation.

3.1.1 MYC
The gene encoding the TF MYC was the first to be linked to GC B

cell lymphomagenesis even before its role in GC physiology was

resolved (141, 142). MYC is expressed during the early initiation

phase of the GC and subsequently repressed by BCL-6. However, it

becomes re-expressed in a subset of light zone B cells later on (56, 57).

The ectopic and constitutive expression of MYC is a frequent feature

of GC-derived lymphomas. Chromosomal translocations of MYC are

found in all BLs and in a proportion of DLBCLs (143, 144). In most

cases, the MYC gene translocates into the Ig heavy chain locus and is

brought under the transcriptional control of the Ig enhancer elements

resulting in its transcriptional deregulation (141–143). Moreover, it is

thought that translocations remove BCL-6 binding sites on the MYC

promoter (56). Consequently, repression of MYC by BCL-6 is

prevented, leading to ectopic MYC expression. A further link

between MYC and cancer is that functions of the TF include

controlling proliferation, cell growth, apoptosis and DNA

replication (136, 145). Aberrant MYC expression thereby

drives tumorigenesis.

3.1.2 BCL-6
As BCL-6 is a key TF for GC reaction, its dysregulation is also

involved in the pathogenesis of GC-derived lymphomas. Aberrant

BCL-6 expression is triggered by different mechanisms.

Translocations or mutations of BCL-6 are found in DLBCL and FL

(146). The most frequent cause of altered BCL-6 expression is

translocation. These translocations replace the regulatory region of

BCL-6 with promoters from Ig and non-Ig genes, preventing

downregulation of BCL-6 (147–149). In addition, GC-derived

lymphomas display various somatic mutations in the BCL-6

regulatory region that occur separately from translocations,

avoiding the auto-regulatory mechanisms of BCL-6 to repress its

own expression or block binding of suppressive IRF4 (150–152).

BCL-6 dysregulation is also caused by indirect mechanisms including

mutations of MEF2B. These mutations are commonly found in

DLBCL and FL. MEF2B transactivates BCL-6. Thus, MEF2B

mutations contribute to lymphomagenesis by deregulating BCL-6

expression (26, 153).
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3.1.3 FOXO1
FOXO1 is a well-known tumor suppressor, but recent studies also

reported tumor-promoting functions of the TF for different tumor

entities (154–157). In GCs, FOXO1 instructs the dark zone program

(38, 39). Recurrent somatic mutations of FOXO1 are common in B-

NHL of GC origin including GCB-DLBCL, FL and BL (157–161), but

their pathogenetic significance might differ in these entities. In GCB-

DLBCL, the FOXO1 mutations are associated with poor prognosis

and they are more frequent in relapsed or primary refractory cases

(159, 160, 162), whereas in BL, there is no correlation with outcome or

progression of the disease (161). The mechanisms regulated by the

FOXO1 mutations are also obscure. Importantly, both activating

(repressing FOXO1 inactivating phosphorylation) and inactivating,

(targeting DNA-binding domains) are common in GCB-DLBCL

(163). Physiologically, PI3K/AKT phosphorylates FOXO1 leading to

its nuclear export and transcriptional inactivation (162, 164).

Consequently, it has been hypothesized that in BL and GCB-

DLBCL, mutations in the N-terminal hotspot help FOXO1 to

escape the AKT-mediated inactivation (157). Nevertheless,

following studies in BL cell lines and original tumors demonstrated

strong nucleal FOXO1 expression virtually in all cases independently

on the mutational status (161, 165). Moreover, the postulation on

high AKT activity in BL has been questioned (166). Overall, there is a

lack of correlation between PI3K/AKT signaling status, FOXO1

mutations, and subcellular localization, suggesting that selection of

FOXO1 mutations during lymphomagenesis cannot be explained

solely by the effects of PI3K/AKT on FOXO1.

Although the mechanisms underlying the oncogenic effects of

activating and inactivating FOXO1 mutations are still obscure, the

essential role of FOXO1 in maintenance of BL is clearly documented

(165). A recent study provides evidence that FOXO1 mutations

encode for proteins that mimic signaling and transcriptional

features of positively selected B cells (167). Consequently,

expansion of FOXO1 mutant B cells is favoured (167).
3.1.4 PRDM1/BLIMP-1
Disrupted PRDM1 gene expression is frequently found in

Activated B-cell-like (ABC) DLBCLs, which is a post-GC

malignancy. However, it is supposed that the disease is caused by a

blockade of the terminal differentiation at the plasmablast stage (136,

138). This blockade seems to be due to BLIMP-1 inactivation, caused

by truncations, mutations or frameshift deletions of the PRDM1 gene

(168–170). As PRDM1 is directly repressed by BCL-6, dysregulated

BCL-6 expression can constitutively repress PRDM1 (34). The TF Spi-

B also represses PRDM1 expression (171). Spi-B is highly upregulated

in ABC-DLBCLs promoting PRDM1 inactivation (172, 173).

Experiments using mouse models further suggest that development

of ABC DLBCL is a consequence of both BLIMP-1 inactivation and

constitutive NF-kB activation (174).
3.1.5 POU2AF1/BOB.1/OBF.1
Dysregulated BOB.1/OBF.1 expression in GC-derived lymphomas

including FL, BL, DLBCL and HL has been reported by multiple

studies. High expression levels of BOB.1/OBF.1 have been found in

GC-derived lymphomas (FL, BL, DLBCL), whereas its expression

could not be detected in lymphomas that represent other stages of B
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cell development (175–177). A study by Wang et al. identified BOB.1/

OBF.1 as essential for BL cell lines (178). Moreover, others described a

requirement of BOB.1/OBF.1 for proliferation and survival of DLBCL

cells (179, 180). Chapuy et al. identified a DLBCL-specific super-

enhancer near the BOB.1/OBF.1 promoter controlling its expression

(179). Inhibition of this super-enhancer impaired DLBCL proliferation

(179). Later it was shown that BOB.1/OBF.1 seems to mediate its

effects in DLBCL by interaction with Oct-2 (180). Thus, targeting the

BOB.1/OBF.1-Oct-2 interaction could be an effective therapeutic

strategy in DLBCL (180). Most recently, Song et al. revealed that the

fast proliferation of GC-derived lymphoma cells is dependent on

BOB.1/OBF.1 (68). Mechanistically, BOB.1/OBF.1 is repressing IRF4

thereby driving GC-derived lymphoma cell proliferation (68).

Interestingly, lymphoma cells with reduced BOB.1/OBF.1 expression

adopt features associated with favorable prognosis suggesting the

transcriptional co-activator a valuable prognostic marker (68).

In contrast, BOB.1/OBF.1 expression is aberrantly silenced in

classical Hodgkin lymphoma (cHL). Hodgkin and Reed-Sternberg

cells (HRS) are a malignant component of cHL. These cells are

characterized by the extinction of B cell program including Ig

production (181). The HRS cells lack expression of B cell specific

TFs BOB.1/OBF.1 and Oct-2 (182–185). Mechanistically, there is

evidence that downregulation of B cell specific genes including

BOB.1/OBF.1 in HRS cells is a result of promoter hypermethylation

(186). Possibly, the silencing of BOB.1/OBF.1 combined with

additional mutations might have a causative role in classical HL.

Besides aberrant expression, BOB.1/OBF.1 chromosomal

rearrangements or mutations involved in lymphomagenesis have also

been reported. Fusion of LAZ3/BCL-6 and BOB.1/OBF.1 genes by

chromosomal translocation have been revealed (187–189). Additionally,

a germline variation in the 3′-untranslated region of the POU2AF1 gene
was shown to be associated with susceptibility to lymphoma (190).

In total, all of these studies underline the involvement of BOB.1/

OBF.1 in lymphomagenesis, highlighting its diagnostic and

therapeutic potential.

Besides lymphomagenesis, deregulation of the transcriptional

program regulating the GC reaction can also lead to imbalanced

immune responses driving autoimmunity. In particular, deregulated

expression of BOB.1/OBF.1 was shown to contribute to the

pathogenesis of several autoimmune diseases (191–194). As its

contribution to autoimmunity is thoroughly reviewed elsewhere (195),

we rather focused on its role in driving lymphomagenesis in this review.
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4 Conclusion and perspectives

Understanding of the GC biology has made considerable progress

in recent years. An effective GC reaction needs interaction of several

cell types including reticular cells, FDCs, DCs, GC B, Tfh and Tfr

cells. This complex network is coordinated by multiple distinct TFs,

which became increasingly clear over the past years. However, it is

still not completely resolved how exactly these TFs perform their

function. Also, further regulatory factors including co-activators, co-

repressors, miRNAs as well as post-transcriptional or epigenetic

regulations need to be considered. The requirement of the

transcriptional co-activator BOB.1/OBF.1 for the GC reaction not

only in B, but also in T cells became more and more evident in recent

years. Nevertheless, further studies are required to understand its role

especially in Tfr cells. Uncovering mechanisms that have not yet been

fully understood, will also help to improve our understanding of

dysregulations driving GC-derived lymphomagenesis and therefore

help to define new therapeutic approaches to treat GC-derived

B malignancies.
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