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by an altered immune system
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Adipose tissue is a widely distributed organ that plays a critical role in age-related

physiological dysfunctions as an important source of chronic sterile low-grade

inflammation. Adipose tissue undergoes diverse changes during aging, including

fat depot redistribution, brown and beige fat decrease, functional decline of

adipose progenitor and stem cells, senescent cell accumulation, and immune

cell dysregulation. Specifically, inflammaging is common in aged adipose tissue.

Adipose tissue inflammaging reduces adipose plasticity and pathologically

contributes to adipocyte hypertrophy, fibrosis, and ultimately, adipose tissue

dysfunction. Adipose tissue inflammaging also contributes to age-related

diseases, such as diabetes, cardiovascular disease and cancer. There is an

increased infiltration of immune cells into adipose tissue, and these infiltrating

immune cells secrete proinflammatory cytokines and chemokines. Several

important molecular and signaling pathways mediate the process, including JAK/

STAT, NFkB and JNK, etc. The roles of immune cells in aging adipose tissue are

complex, and the underlying mechanisms remain largely unclear. In this review, we

summarize the consequences and causes of inflammaging in adipose tissue. We

further outline the cellular/molecular mechanisms of adipose tissue inflammaging

and propose potential therapeutic targets to alleviate age-related problems.
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1 Background

Adipose tissue is a widespread organ roughly divided into white adipose tissue (WAT) and

brown adipose tissue (BAT) (1). In addition, beige adipocytes are known to differentiate from

progenitors resident inWATwhile exhibiting BAT-likemorphology and function (1). According

to the depots, WAT can also be categorized into subcutaneous adipose tissue (SAT) and visceral

adipose tissue (VAT). SAT is located beneath the skin, while VAT surrounds internal organs and

is usually found in the mesentery and omentum (2). The function of adipose tissue, including

both SAT or VAT, is mainly to store energy, regulate temperature, modulate immune responses,

facilitate wound healing and promote tissue regeneration (2).
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Aging is considered to be associated with an increasing prevalence

of obesity, type 2 diabetes, and other comorbidities (3). These age-

related diseases are usually related to adipose tissue, which not only

mediates an organism’s adaptation and response to aging but also

plays a pivotal role in age-related metabolic dysfunction and

longevity (4).

Aging adipose tissue has several characteristics. First, the ratio of

VAT to SAT is increased in aged individuals (5). Second, brown and

beige fat are reduced during the aging process (3). Third, the function of

adipose stem cells and progenitor cells is decreased (6). Fourth, there is

an accumulation of senescent cells in aging adipose tissue (7). Finally, but

most importantly, aging adipose tissue is linked to a chronic, low-grade

inflammation termed inflammaging,which is a central characteristic as it

may promote other aging characteristics and influence the overall health

status. The thermogenic capability of brown adipose tissue is

compromised by proinflammatory cytokines, which may suppress the

uncoupled activity of protein-1 (UCP-1) (8). Proinflammatory cytokines

also compromise the adipogenic capacity of adipose stem cells (9).

Senescent cells promote an inflammatory environment, while

proinflammatory cytokines also promote senescent cells (10). Adipose

tissue inflammaging is related to an increased body mass, elevated

adipocyte size, emerging fragile states and chronic degenerative

disorders (11). Therefore, inflammation in adipose tissue may be a

potential therapeutic target in antiaging therapy.

The progenitor cell decline phenomenon is observed mainly in

agingWAT (3). Similarly, adipokine changes are only observed in aging

WAT rather than BAT (3). Briefly,WAT has a more dramatic response

to aging than BAT. Thus, we emphasize WAT inflammaging.

In this review, we first discuss the impact of inflammaging on aging

adipose tissue and the overall health status and then reveal the factors

contributing to adipose tissue inflammation. Furthermore, we frame the

alteration in immune cells in aging adipose tissue and the underlying

molecular mechanism of inflammaging. Finally, we summarize a

potential strategy for antiaging therapy through adipose tissue.
2 The impact of inflammaging
on adipose tissue

2.1 Adipose plasticity

During the process of inflammaging, the plasticity and function of

ADSCs are regulated by specific factors. Taha et al. cultured ADSCs

treated with TNFa to trigger a strong inflammatory response, and

then, deep next-generation mRNA sequencing was performed to

evaluate the inflammatory responses of the ADSCs (12). The results

showed that the ADSCs exhibited a strong response when exposed to

an inflammatory environment. Adipogenesis is also reduced by

inflammaging. Liu et al. showed that after the deletion of

proinflammatory macrophages in SAT, the differentiation of

preadipocytes was upregulated, and the expression of differentiation

genes was increased (9). Inflammaging is strongly related to hypoxia

(13). Chol et al. found that ADSCs cultured under low-oxygen

conditions exhibited a higher proliferative ability, significantly

higher basal migration, and reduced lipid production. ADSCs

maintain an undifferentiated status in a hypoxic environment, and

their potential to differentiate into adipocytes is decreased (14).
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2.2 Adipocyte remodeling

Adipose tissue inflammaging, as a consequence of proinflammatory

immune cell infiltration, may disrupt the recruitment of new adipocytes,

leading to adipocyte hypertrophy (15). Adipocyte hypertrophy is closely

related to metabolic diseases. Initially, adipocyte hypertrophy is an

adaptive reaction to excessive nutrition, which is beneficial in lean

objects as it can protect tissues other than adipose tissue from

lipotoxicity. However, in some obese or aging patients, the adipocyte

buffering ability may be exceeded, reaching the hypertrophic threshold,

leading to ectopic lipid deposition in other tissues (16). Adipocyte

hypertrophy further exacerbates adipose tissue hypoxia and

inflammation, leading to adipose tissue fibrosis and adipocyte apoptosis.
2.3 Adipose tissue fibrosis

In aging adipose tissue, the insufficient angiogenic potential,

inappropriate ECM remodeling and unresolved inflammation result in

adipose tissue fibrosis. An insufficient angiogenic potential leads to

hypoxia, which stimulates the transcription of HIF1a (5, 17). On the

one hand, the activation of HIF1a inhibits preadipocyte differentiation

and initiates adipose tissue fibrosis. On the other hand, HIF1a may

induce a change in the cellular redox status, which, in turn, affects

enzymes involved in collagen crosslinking and stabilization (18). Fibrosis

is characterized by an imbalance in ECM homeostasis, including the

balance between ECMproduction and ECMdegradation (19). Studies in

aged mice (~30 months of age) demonstrated an increase in WAT

collagen staining, indicating more fibrosis in this tissue (20). Two cells

play important roles in ECM production, M1-type macrophages and

mast cells. Macrophage-inducible C-type lectin (Mincle) production is

induced in macrophages through the saturated fatty acid/TLR4/NF-kB
pathway and contributes to ECM production. Mast cells can promote

fibroblast growth and collagen production by releasing cytokines,

chemokines, proteases, etc., eventually leading to ECM production (21,

22). Fibroblasts andmacrophages are the primary cell types that mediate

collagen internalization and degradation. Studies have shown that an

increase in proinflammatory cytokines is linked to the downregulation of

metalloproteinase (MMP) expression. MMPs have the ability to cleave

ECM components; thus, the increase in proinflammatory cytokines

inhibits ECM degradation (21, 22). The size of both VAT and SAT is

reduced in aged animals, suggesting that senescence affects lipid

processing in adipose tissue, promoting ectopic lipid accumulation.
2.4 Ectopic lipid accumulation

Inflammaging caused by proinflammatory immune cells largely

damages the function of adipose tissue and eventually leads to adipose

tissue fibrosis. As the function and composition of VAT and SAT are

affected, ectopic lipid storage is promoted (23). When the dietary

buffer cannot be addressed by senescent adipose tissue, lipotoxicity

mediated by the ectopic deposition of lipids occurs in the liver and

skeletal muscle. Lipotoxicity in these tissues increases the ROS levels

and activates serine threonine kinases, such as c-jun N-terminal

kinase (JNK), IkB kinase (IKK), and protein kinase C (PKC). These

events not only disrupt insulin receptor signaling cascades and
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promote insulin resistance but also are associated with the

development of hepatic steatosis and muscle dysfunction and may

trigger the development of sarcopenia (24).
3 The impact of adipose tissue
inflammaging on the overall
health status

3.1 Metabolic diseases

Aging-induced proinflammatory cytokines can directly interfere

with the insulin signaling pathway in adipocytes (25). In addition,

NLRP3 activated by DAMPs mediates chronic inflammation and

insulin resistance. The activation of NLRP3 contributes to a higher

expression of IL-1b, and IL-1b is a key cytokine in the etiology of type 2

diabetes. Briefly, IL-1b can affect insulin signaling, reduce glucose

transporter type 4 (GLUT4) expression, and have proapoptotic effects

on b-cells (mediated by theMAPK andNF-kB signaling pathways) (26).
3.2 Cardiovascular disease

Adipose tissue can act as an important source of inflammatory

mediators, thus promoting systemic inflammaging (27). Chronic

inflammation significantly increases the risk of CVD. The

proinflammatory cytokines released by inflamed adipose tissue may

force perivascular adipose tissue tomodify its composition and accelerate

atherosclerosis (28). Adipose tissue-derived proinflammatory cytokines,

such as IL-1b and TNF, induce the expression of endothelial cell

adhesion molecules, which further promote vascular inflammation

(29). Exosomes derived from inflamed VAT have been shown to

promote the M1 proinflammatory polarization of macrophages and

promote atherosclerosis (30).
3.3 Cancer

Cancer can arise at a site of inflammation, and a proinflammatory

microenvironment is an essential component of cancer. Chronic

inflammation can initiate cancer, promote its progression and

support its metastatic diffusion (31). Adipose tissue inflammation

may also be the driver of cancer (32).
4 Factors contributing to adipose
tissue inflammaging

4.1 Senescent cell accumulation
and cell death

A central reason for adipose tissue dysfunction and inflammation

during aging is the accumulation of senescent cells. Cellular

senescence is a basic aging mechanism that results in organ

dysfunction and chronic inflammation (33). Upregulated ROS are
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the main drivers of adipose tissue senescence. Following ROS

upregulation, the DNA damage response (DDR) triggers the p53/

p21 signaling pathway, followed by the consequent promotion of the

senescence phenotype along with exacerbated TNF-a/IL-6 secretion

and b-galactosidase activities. Such DNA injury can eventually pave

the path for ATM/p53/p21 upregulation (34). Senescent cells can

release several proinflammatory cytokines, which are currently

considered hallmark components of the SASP (35). These

proinflammatory factors continue to accumulate in tissues as the

clearance of senescent cells is compromised during aging (4).

Key essential cells within adipose tissue develop the senescence

phenotype. Adipose-derived stem cells (ADSCs) gradually lose the

ability to replicate before entering cellular senescence, a state

characterized by the upregulation of senescence markers, such as

p16INK4a, p21Waf1 and caveolin-1 (36). p16INK4a is upregulated

through p38 MAPK influence, possibly contributing to cellular

senescence. In addition, p53 MAPK is involved in age-related ADSC

functional transformation. Its activation impairs mitochondrial

function. Mitochondrial activities are essential players in

maintaining stem cell pluripotency (37). Additionally, ADSCs

expand in dimensions, morphology and structural complexity along

with the decreased expression of CD105 during the natural aging

process (38). Cellular senescence of preadipocytes can progress to

widespread shifts in preadipocyte function, such as reduced

proliferation, adipogenesis, and exacerbated production of

proinflammatory cytokines and extracellular matrix–modifying

proteases (39). Senescent preadipocytes also negatively influence

adipogenicity within surrounding progenitors and induce them to

senesce (34). Cellular senescence is also linked to downregulated

PPARg and the triggering of downstream targets in endothelial cells,

suggesting that capabilities, such as responding to fatty acids and

promoting lipid transport, are significantly diminished.Moreover, p53

protein upregulation typically occurs in endothelial cells. Senescent

endothelial cells lose the capability to discharge endogenous lipid

PPARg ligands, consequently leading to detrimental influences on the

differentiation and function of human adipocytes (34). Adipocyte

senescence is also induced by elevated DNA damage (40). In addition

to adipocyte senescence, adipocyte death occurs upon obesity or

during aging (41, 42). Dying adipocytes can attract macrophages,

and these macrophages produce various types of cytokines according

to the type of cell death. Apoptotic cells establish the production of

anti-inflammatory cytokines, whereas necrotic cells establish

proinflammatory cytokine production characterized by the secretion

of IL-1 by the macrophage population (43). The NOD-like receptor

(NLR) family of pattern recognition receptors (PRRs) can sense

obesity- or aging-induced signals, such as damage-associated

molecular patterns (DAMPs), originating from stressed adipocytes.

In macrophages, the activation of NLR activates the NLRP3

inflammasome (44). The inflammasome consists of a multiprotein

intracellular complex that develops as a stress-triggering response,

leading to the secretion of the proinflammatory cytokines IL-1b and

IL-18 (45). IL-1b upregulates IL-2 and TNFa, generating tissue

inflammatory activities by triggering cyclooxygenase-2, consequently

generating prostaglandin E2, inducible intercellular adhesion

molecules and NO (45).
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4.2 Hypoxia, mechanical stress and obesity
caused by adipocyte hypertrophy

Aging leads to adipocyte hypertrophy, even within a single white

adipose tissue (WAT) depot, and the cell diameters of different

adipocytes can dramatically vary, ranging from less than 20 µm to

300 mm (46). An increased adipocyte size results in decreased oxygen

diffusion. In addition, the blood supply to adipocytes is reduced

during aging (5). These two factors generate a hypoxic environment

in aged adipose tissue, which has been shown to occur with aging as

revealed by immunohistochemistry and direct measurements of the

interstitial partial pressure of oxygen (47). Hypoxia may induce a

reaction mediated by hypoxia-inducible factors (HIFs) to promote

angiogenesis and complement oxygen levels (17). However, as the

angiogenic potential of ADSCs declines and the expression of VEGF

and the density of blood vessels decrease with aging, compensation

from the vasculature becomes inadequate. As a result, the reduced

oxygen diffusion is aggravated due to insufficient compensation by the

vasculature (48).

The expression of HIFs is usually induced by hypoxia, and HIF

isoforms have defined, nonredundant functions concerning adipocyte

function. Even though HIF-2a expression within adipocytes is

beneficial since it exerts key senescence prophylaxis-related

metabolic effects, including enhanced vascularization possibilities

(49), HIF-1a could perform opposing functions. HIF-1a triggering

did not activate typical VEGFa-vascularization responses; rather,

HIF-1a induced a collagen-driven profibrotic response that paved

the path for maladaptive adipose tissue remodeling and insulin

resistance (49). HIF-1a may also reduce the expression of genes in

mitochondrial complex IV such that the reduced mitochondrial

activity contributes to adipocyte hypertrophy. A previous study

showed that the knockout of HIF-1a improved mitochondrial

function and reduced adipocyte hypertrophy in middle-aged mice

(5). Studies have shown that cultivating adipose tissue in a hypoxic

environment induces alterations in gene expression, including the

upregulation of inflammation-related genes (50). Furthermore,

evidence suggests that the NF-kB signaling pathway is enhanced in

hypoxic adipose tissue (13).

Mechanical stress also induces inflammation in adipose tissue. As

adipocyte hypertrophy is facilitated by aging, the pathological

expansion of the extracellular matrix (ECM) has also been

observed, leading to altered mechanical stress (51). Furthermore,

mechanical stress is exerted by enlarged lipid droplets within the

cell (52). Although the pathways controlled by mechanical stress in

adipocytes have not been elucidated, the NFkB signaling pathway

may be influenced by mechanical stress via the RhoA-Rock signaling

pathway (53).

As a metabolic syndrome, obesity frequently develops during old

age and is a critical factor associated with adipose tissue

inflammaging. Typically, obesity is mediated by adipocyte

hypertrophy or hyperplasia. Adipocyte hyperplasia is more

metabolically friendly than adipocyte hypertrophy. Adipocyte

hypertrophy caused by obesity can result in a hypoxic environment,

leading to adipose tissue inflammation. Multiple studies have shown

that PDGFa+CD9low proadipogenic adipose progenitor cells (APCs)

switch to PDGFa+CD9high profibrotic progenitor cells when

influenced by inflammation, ultimately promoting adipose tissue
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fibrosis and reducing adipocyte hyperplasia (54). The increased

adipocyte hypertrophy with reduced adipocyte hyperplasia

contributes to adipose tissue inflammation through aging (55).

However, obesity may further worsen immunosenescence by

enabling the activation and differentiation of immune cells passing

through the adipose tissue microvasculature. Previous research has

shown that adipose tissue dysfunction in obesity enables

immunological aging along with excessive inflammatory

responses (56).
4.3 Exogenous and endogenous fatty acids
and exogenous lipopolysaccharide

Exogenous and endogenous fatty acids and exogenous

lipopolysaccharide (LPS) are capable of inducing inflammation in

adipose tissue through the activation of toll-like receptors (TLRs)

expressed in both adipocytes and macrophages (57). Gut-derived LPS

binds TLR4, while free fatty acids (FFAs) can activate inflammatory

signaling through either TLR4 or TLR2 (58).
4.4 Dysregulation of immune cells in aging
adipose tissue

Immunosenescence, which results in a defective immune

response to pathogens and is often coupled with excessive

inflammatory activities, is also found in aging adipose tissue. In

particular, VAT shows immune cell activation and inflammation

compared to other tissues (59). The abnormal activation of immune

cells was first detected inWAT depots in middle age and is considered

a hallmark of aging (32). In old age, the adipose immune system shifts

toward being more unregulated. At this age, various resident

regulatory cell populations are dwindling and substituted by

inflammatory cells due to phenotypic switching in resident adipose

immune cells or the infiltration of inflammatory immune cells from

the periphery (60). Prior studies have mainly focused on

macrophages, ILCs and eosinophils in adipose tissue. Among these

cell types, M2-like macrophages tend to be lost in aged adipose tissue

(61). Moreover, there are differential age-related changes between

SAT and VAT. For example, the number of eosinophils is

substantially reduced in elderly VAT but remains unaffected in SAT

(62). Other changes in immune cells are also discussed in this

review (Figure 1).
5 The cellular mechanisms mediating
adipose tissue inflammaging

5.1 Proinflammatory adipose tissue resident
immune cells

5.1.1 Innate immune cells
M1-type macrophages release proinflammatory cytokines, such as

TNF-a and IL-1b, to promote adipose tissue inflammation (63, 64).

Monocyte chemotactic protein-1 (MCP-1) recruits circulating

monocytes to adipose tissue, where they become adipose tissue
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macrophages (ATMs). LTB4 also promotes macrophage activation

and chemotaxis into adipose tissue (65).

An increase in M1-type macrophages and a decrease in M2-type

macrophages are observed in aged adipose tissue (66). Inositol-

requiring enzyme 1a (IRE1a) induces M1-type macrophage

polarization while reducing polarization in M2-type macrophages

(67). Similarly, the IRE1a signaling pathway impairs white adipose

tissue browning, leading to the development of obesity during aging

(68). Further studies have shown that glucose may activate M1

macrophages via the ROCK/JNK and ROCK/ERK pathways (69).

The Notch 1 signaling pathway is important for M1 polarization and

is negatively regulated by the microRNA miR-30 (70). In addition,

endoplasmic reticulum (ER) stress signaling helps promote M1

polarization. CHOP, one of its downstream components, is induced

by a high-fat diet (71).

Many important signaling pathways are involved in macrophage-

induced adipose tissue inflammation. Long-chain saturated fatty acids

induce macrophages to produce an inflammatory response through

the activation of the JNK signaling pathway (61). TLR signaling is

important for macrophage-induced inflammation, acting in

conjunction with the Wnt signaling pathway to amplify the release

of proinflammatory cytokines (72). Moreover, TLR4 induces the

NLRP3 inflammasome in macrophages (73).

Senescent macrophages display increased JNK phosphorylation.

The JNK signaling pathway contributes to inflammation and plays a

key role in reshaping the metabolic status. Moreover, senescent

macrophages show a reduction in SIRT1 expression (74).

P38MAPK signaling is increased in senescent macrophages, which

is promoted by Arginase-II (Arg-II). In turn, Arg-II reduces Arg-I

expression and activity, induces interleukin (IL)-6 expression and

secretion, and increases active P38MAPK in aging senescent adipose

tissue macrophages (75).
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Approximately 80-90% of dendritic cells in adipose tissue are

CD11c+ conventional DCs (cDCs), and the other dendritic cells are

CD123+ plasmacytoid DCs (pDCs) (76). cDCs are further subdivided

into cDC1s and cDC2s (77). cDC1s are characterized by an activated

Wnt/b-catenin pathway, whereas cDC2s show activation of the

PPARg pathway, which suppresses NFkB target genes and leads to

the reduced expression of inflammatory genes (61, 78, 79). In a

homeostatic state in young and lean subjects, adipocytes can activate

the Wnt/b-catenin pathway in cDC1s, leading to the production of

the anti-inflammatory cytokine IL-10 (80). In addition, dietary lipids

secreted by adipocytes can induce PPARg signaling in cDC2s,

suppressing the activation of inflammatory DCs (81). Both

signaling pathways are able to suppress toll-like receptor-4 (TLR4)-

induced inflammation in VAT (77). However, when the homeostasis

of adipose tissue is compromised, antigen or lipid uptake by ATDCs

induces the activation of MAPK signaling, resulting in increased

MHC-II expression and cellular maturation (81).

Neutrophils are recruited by the LTB4-BCT1 axis and

cytoplasmic phospholipase A2a (cPLA2a). Neutrophils have

recently been shown to promote inflammation through the

activation of NFkB signaling, and neutrophil activation is closely

related to its interaction with adipocytes. Elgazar-Carmon et al.

reported that CD11b on neutrophils and ICAM1 on adipocytes

mediate their interaction (82). The interaction with adipocytes is

critical for the expression of IL-1b via NFkB activation in adipose

tissue neutrophils (82).

Innate lymphoid cells1/3 are proinflammatory. The activation

and proliferation of ILC1 proinflammatory immune cells is promoted

by JAK3/STAT5 signaling, while Lnk/Sh2b3 (Lnk) induced by high-

fat diet (HFD) signaling suppresses JAK3 (83). IL-15 has also been

proven to be important for ILC1 proliferation (83). Similarly, IL-12

could activate adipose ILC1s, leading to the production of IFN-g and
FIGURE 1

In aging adipose tissue, dead adipocytes induce macrophages and DAMPs, thereby activating the NLRP3 inflammasome in adipocytes. FFA and LPS
combine TLR on adipocytes and activate NFkB. Hypoxia and mechanical stress can also activate NFkB. Adipocytes can produce proinflammatory
cytokines and chemokines, thus recruiting inflammatory cells and promoting the proinflammatory polarization of recruited immune cells. FFA free fatty
acid, LPS lipopolysaccharide, TLR toll-like receptor, DAMP damage-associated molecular patterns, NLR NOD-like receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125395
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1125395
the polarization of M1 macrophages in adipose tissue at the early

stages of HFD consumption (84). Studies have shown that ILC1s

contribute to not only adipose tissue inflammation but also fibrosis,

and this process depends on IFN-g (85). Furthermore, ILC1s promote

fibrogenesis through the activation of CD11c+ macrophages and

TGF-b1/Smad3 signaling, with TGF-b1/Smad3 activation

contributing to persistent and aberrant ECM remodeling in VAT

(86). Studies investigating ILC3s are limited, but their

proinflammatory and pro-obesity characteristics are well defined.

On a mechanistic level, some studies have shown that ILC3s induce

obesity through the lymphotoxin/IL-23/IL-22 pathway (87).

Human adipose tissue-resident NK cells are predominantly

CD56brightCD16- NK cells (88, 89). NK cells and other ILC1s in

adipose tissue are often stimulated by proinflammatory factors, such

as IL-12, IL-15, and NKp46 ligands produced by macrophages and

stressed adipocytes, to promote the production of IFN-g, TNF-a and

IL-6, thereby aggravating the inflammatory response in adipose

tissue (Figure 2).

5.1.2 Adaptive immune cells
T cells are easily affected by aging and tend to polarize into a

proinflammatory phenotype. T cells from both SAT or VAT exhibit

senescent features, including the loss of CD28 and expansion of

CD44+CD62- memory T cells. With aging, there are increases in the

numbers of CD4+ and CD8+ T cells (90–92).

CD4+ T cells are activated by MHC-II, and the expression of

MHC-II on adipocytes is induced by free fatty acids possibly via the

activation of JAK and STAT1, which may further activate CIITA, a

prime regulator of MHC-II (93). MHC-II is also expressed on other

APCs, and in macrophages, CD40 signaling in adipose tissue

macrophages regulates MHC II and CD86 expression to control the

expansion of CD4+ T cells (94). Subtype changes among CD4+ T cells

represent an important modulator mechanism in different metabolic
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diseases. Adipose tissue contains a large amount of TGFb and IL-6.

The TGFb/Smad pathway limits Th1 and Th2 differentiation through

the downregulation of T-bet/GATA-3 expression, leading to

increased Th17 differentiation (95). IL-6-induced STAT3 can

promote the differentiation of Th17 cells (96). In addition,

MAP4K4 in T cells can phosphorylate TRAF2, thus downregulating

the expression of IL-6, leading to the inhibition of Th17

differentiation and preventing insulin resistance (95). Adiponectin

has been shown to directly enhance Th1 differentiation by activating

the p38-STAT4-T-bet axis (97). Nevertheless, studies have shown that

the PD-L1:PD-1 axis can inhibit Th1 proliferation and promote Th2

polarization, thus limiting the inflammation induced by T cells (98).

Regarding CD8+ T cells, it has been shown that CD40-TRAF2/3/5/6

signaling is important for CD8+ T cells to promote adipose tissue

inflammation (99).

Recent studies have shown that the numbers of gdT cells are

increased in adipose tissue during aging and contribute to adipose

tissue inflammation (100). However, gdT cells also play a role in

maintaining adipose tissue homeostasis through adipose tissue

browning. Studies have shown that gdT cells and IL-17F upregulate

the expression of TGFb1 in adipocytes by signaling through IL-17RC.

In turn, adipocyte-derived TGFb1 promotes sympathetic innervation,

promoting adipose tissue browning (101).

B2 cells accumulate in adipose tissue prior to T cells. LTB4R1

expression on B2 cells is important for B2 cell chemotaxis. B-cell

recruitment to fat-associated lymphoid clusters (FALC) and VAT is

also mediated by the CXCR5 signaling axis (102). IgG derived from

B2 cells can contribute to adipose tissue inflammation. Aging induces

the accumulation of B2 cells in VAT, and B2 cells become more

inflammatory once they infiltrate VAT. The following two B-cell

types emerge in aging mice: aged adipose B cells (AAB) and aging-

related B cells (ABC). The percentage of follicular B cells is reduced,

while ABC is increased in VAT in aging mice. Further studies have

shown that ABC originates from follicular B cells. AAB primarily

reside in FALC, and the expansion of AAB along with their secretion

of proinflammatory cytokines and monocyte-recruiting chemokines

further aggravate adipose tissue inflammation (103). The activation of

NLRP3 is essential for increasing the AAB numbers, FALCS number,

and lipolysis by upregulating IL-18 and the IL-1b/IL-1bR axis (104).

IL-1R signaling is critical for AAB proliferation (103). Furthermore,

activated monocytes can convert innate B1a cells into 4BL cells (4–

1BBL+ B1a cells), inducing cytolytic CD8+ T cells and insulin

resistance in elderly individuals (105) (Figure 3).
5.2 Anti-inflammatory adipose tissue
resident immune cells

5.2.1 Innate immune cells
M2-type macrophages and type 2 cytokine signaling are crucial

for adipose tissue homeostasis (63). The JAK/STAT pathway is

known to control macrophage biology. STAT1 induces M1

macrophage polarization, while STAT6 mediates IL-4a signaling

and regulates many M2 signature genes (106). PPAR-g promotes

primary human monocytes to differentiate toward an M2 phenotype

(107). Macrophage PPARg inhibits IFNb production by interfering

with the IRF3-mediated transcription of IFNb. Interactions between
FIGURE 2

Interactions among adipocytes, NK cells and ILCs (mediated by NKp46
ligands, expressed by stressed adipocytes) lead to further exacerbated
expression of IFN-g, TNF-a, and IL-6. Since macrophages are
triggered by such proinflammatory cytokines, IL-12 and IL-15 are
consequently secreted by macrophages to induce NK-cell and ILC
proliferation. CD11b on neutrophils and ICAM1 on adipocytes mediate
their interaction.
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PPARg and STAT6 facilitate the induction of PPARg-regulated genes

(108). PPARg activation in murine macrophages induces miR223

expression by binding upstream of miR223, which, in turn, inhibits

the expression of NFAT-5 and RAS p21 protein activator 1,

promoting the development of an anti-inflammatory M2-like

phenotype (109, 110). Several members of the CCAAT-enhancer-

binding protein (C/EBP) family play important roles in macrophage

activation. While C/EBPs was shown to induce M1-like

proinflammatory responses, cAMP response element-binding

protein (CREB) inhibits the expression of M1-associated genes

through p38-mediated induction of IL-10 (111). Interferon

regulatory factors (IRFs) also play important roles in macrophage

polarization. IRF5 was reported to promote M1 macrophage

polarization, while IRF3, 4, 6, and 9 promote M2 macrophage

polarization (110). The metabolic regulators SIRT and AMPK

perform important functions in macrophage polarization. The

adipocyte-specific knockout of SIRT accelerates the recruitment of

macrophages and polarizes cells into the M1 type. Moreover, the

levels of SIRT1 are inversely correlated with BMI (112). AMPK can

inhibit proinflammatory responses in macrophages and promote

macrophage polarization into an anti-inflammatory phenotype.

AMPK can interfere with inflammation by inhibiting NF-kB
signaling through the regulation of downstream mediators of NF-

kB signaling, including SIRT1, PGC-1a, p53, and Forkhead box O

(FoxO) factors (61). AMPK can enhance SIRT1 expression by

increasing the NAD/NADH ratio (113).

Although cDC2s are proinflammatory, cDC1s play pivotal roles

in circumventing obesity development during aging through a

reduction of inflammatory activities, affecting the iNKT and NK-

cell abundance. The presence of cDC1s is not typically affected by

aging, while there are increasing numbers of cDC2s in VAT in aged

mice (114). Regulatory DCs in adipose tissue have been shown to play

an important role in the prevention of adipose tissue inflammation as

they inhibit specialized autoreactive T cells through perforin (115).

However, recent studies have shown that regulatory DCs are reduced

with aging, resulting in greatly reduced immune tolerance in adipose

tissue (115).
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Eosinophils, identified by the CD45+CD14-CD16-CD117-Siglec-

8+CD66b+ phenotype, play a key protective role in the innate immune

response (116). One of their functions includes the induction of M2-

type macrophages through the production of IL-4 (117). Eosinophils

are also critical immune cells involved in adipose tissue browning that

may be capable of driving the activation of adipocyte beiging through

paracrine signaling mechanisms (118). The FGF21-CCL11 axis is

critical for type 2 immune cell activation and the beiging of SAT,

which is critical for adipose tissue homeostasis (119). FGF21 is usually

induced in adipocytes by cold exposure through cyclic AMP-

mediated activation of protein kinase A and p38 MAPK, which, in

turn, phosphorylates the transcription factor ATF2 for the

transactivation of the FGF21 gene promoter (120). Then, FGF21

stimulates CCL11 production through the KLB-ERK1/2 signaling

cascade. CCL11 further recruits eosinophils to SAT and contributes to

the recruitment of M2-type macrophages (121). Furthermore, iNKT

cells may also induce FGF21 (122). IL-4 is expressed and secreted by

eosinophils and binds its receptor IL-4R on adipocytes, where it

activates the PI3K-AKT and MAPK/ERK signaling pathways,

promoting adipocyte beiging. IL-13 produced by ILC2s has the

same properties as IL-4 (118). The IL4/13-IL4Ra-STAT6 pathway

is required for the biogenesis of functional beige fat (118). Limited

studies have shown that the distribution and function of ATEs change

throughout aging, leading to defects in adipose tissue homeostasis and

low-grade chronic inflammation. First, the migration and regulatory

functions of ATEs significantly decrease (123). Second, the level of

CCL11 (eotaxin-1), a potent ATE chemoattractant, systemically

increases with aging (124). However, CCL11 is negatively correlated

with the distribution of ATEs. Third, the decreased ATE/ATM ratio

in elderly individuals leads to significant increases in IL-6, IL-1b, and
adipocyte hypertrophy, which are closely related to adipose tissue

inflammation (125).

ILC2s (CD45+Lin–CD127+CD161+CRTH2+) play essential roles

in adipose tissue homeostasis by maintaining eosinophils and M2-

type macrophages (126). However, a significant loss of ILC2s is

observed during aging. Moreover, IL-33 normally stimulates the

expansion of ILC2s and promotes an anti-inflammatory profile.
FIGURE 3

In aging adipose tissues, the number of conventional T cells, gdT cells, increases, thus contributing to adipose tissue inflammation. CD28+ T memory
cells are converted to CD4+ CD62- memory T cells. FFA induces the expression of MHC-II through the JAK/STAT1 signaling pathway, facilitating antigen
presentation to CD4+ T cells. CD40/TRAF2/3/5/6 signaling is critical for CD8+ T-cell-induced inflammation. B2 cells are recruited to FALC by LTB4, and
CXCR5 on B2 cells is important for their recruitment to FALC. Some B2 cells become ABCs. B2 cells and ABC are proinflammatory, producing IgG and
exacerbating inflammation in adipose tissue. FFA free fatty acid, FALC fat-associated lymphoid cluster, LTB4 leukotriene B4, CXCR5 C-X-C chemokine
receptor type 5.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1125395
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1125395
The binding of IL-33 to the IL-1 receptor–related protein ST2 coupled

to an IL-1RAcP (IL-1 receptor accessory protein) unit leads to the

release of NFkB (127). Activated NFkB promotes the transcription of

GATA binding protein 3 (GATA3), ST2, and consequently, IL-5 and

IL-13, leading to the activation of ILC2s and a type 2 immune

response (128). IL-33, however, can also stimulate the accumulation

of pathogenic ILC2s, which leads to adipose tissue inflammation.

5.2.2 Adaptive immune cells
Aging leads to an increase in Tregs in VAT that continues as mice

age (129). IL-33 efficiently induces the process (130). Middle-aged to

old mice exhibit a 7- to 11-fold increase in adipose tissue Tregs

compared to young mice, with these cells accounting for more than

50% of all CD4+ T cells in adipose tissue (131). Interestingly, Treg

depletion in young mice may increase the levels of several

inflammatory markers in adipose tissue (132). However, the

depletion of adipose tissue Tregs in aging mice does not significantly

enhance systemic or tissue inflammation (131). Tregs play a protective

role in adipose tissue homeostasis. Studies have shown that inducible

T-cell costimulator (ICOS) signaling negatively regulates the

recruitment of Tregs via PI3k-dependent mechanisms. In contrast,

the absence of ICOS signaling enhances the recruitment of Tregs and

increases the expression of CCR3 (133). The maintenance of Tregs in

lean adipose tissue depends on PPARg, IRF4, BATF, Blimp1, and IL-33

signaling, with PPARg being a prime activator of Treg accumulation

(98). The combination of PPARg and Foxp3 can further enhance and

promote the expression of a Treg-specific transcriptome (134).

PPARg+ Tregs can be affected by IFN-g released by pDCs and

eventually become apoptotic (135). The IL-33 receptor ST2 plays

important roles in Tregs as follows: insulin signaling can drive the

transition of CD73hiST2lo into CD73loST2hi adipose Treg cell subsets

through the HIF-1a–Med23–PPARg axis (136). Furthermore, PLZF+

gdT cells were shown to induce the abundance of IL-33 and ST2

through enhanced IL-17A expression (129). The IL-33/ST2 axis is also

important for the differentiation of Tregs, and the downstream

signaling of IL-33 is mediated by MyD88 (137). In addition to IL-33,

a recent study showed that IL-2 can upregulate hydroxy-prostaglandin

dehydrogenase (HPGD) in Tregs through JAK3/STAT5 signaling, and

HPGD can further inhibit conventional T cells through PPARg, thus
maintaining the homeostasis of adipose tissue (98). Furthermore,

KLF10 is an important protein regulating the differentiation and

chemotaxis of Tregs. A decrease in KLF10 in obese subjects impairs

the PI3K-Akt-mTOR signaling pathway in Tregs, leading to the

impaired migration and decreased accumulation of Tregs in adipose

tissue (138). AKT signaling, however, is reported to reverse the ability

of Treg cells to inhibit TNF-a production by macrophages (98). TCR

signaling is another important signaling pathway for the induction of

Treg precursors in VAT (139). Similarly, Stat6/Pten signaling plays an

important role in the induction of Tregs into adipose tissue during cold

stimulation (134). Tregs, however, can also play a negative role in

adipose tissue homeostasis by producing IL-10, which is mediated by

Blimp-1. IL-10 can directly suppress thermogenesis in adipocytes

through a STAT3-dependent signaling pathway (140).

Invariant natural killer T cells (iNKT) play a protective role in

adipose tissue homeostasis. iNKT produce anti-inflammatory cytokines,

such as IL-4 and IL-10, and regulate the function of M2 macrophages.

iNKT can also upregulate the expression of FGF21 in both BAT and
Frontiers in Immunology 08
SAT, which drives the activation of BAT and browning ofWAT (141). In

addition, in obese subjects, iNKT cells can help eliminate hypertrophic

adipocytes while promoting adipogenesis through the FAS/FASL

pathway, contributing to adipose tissue homeostasis (142). However,

recent studies have identified heterogeneity in iNKT subtypes; NK1.1-

iNKT cells have upregulated IRE1a/XBP1 signaling, exerting an anti-

inflammatory profile, while NK1.1+ iNKT cells can release IFNg,
promoting adipose tissue inflammation (143). iNKT cells decrease in

aging adipose tissue (90–92).

IgM derived from B1 cells blocks inflammation. IgM antibodies

can clear self-antigens and play a regulatory role by promoting B-cell

tolerance. They can also induce M2 macrophage polarization in

adipose tissue (102) (Figure 4 and Tables 1, 2).
6 The molecular mechanisms
mediating adipose tissue inflammaging

6.1 JAK/STAT signaling pathway

Over the past two decades, the JAK/STAT signaling pathway has

been shown to play vital roles in the regulation of lipid metabolism,

glucose metabolism, and adipokine secretion in adipose tissue (158).

While early research mainly focused on the role of JAK/STAT

signaling in adipogenesis, subsequent studies further demonstrated

a role in mediating inflammation in adipose tissue (159). The JAK/

STAT signaling pathway mediates the activation of peripheral blood B

cells and promotes the activation and proliferation of ILC1s in

adipose tissue (83). Adipocytes also express several receptors for

JAK/STAT-activating cytokines and hormones, including immune

cytokines acting in a paracrine manner to induce JAK/STAT signaling

in adipocytes (160). For example, IFN-g can induce JAK1/STAT1

signaling in human adipocytes and promote inflammation and

insulin resistance (161). STAT proteins heterodimerize with

phosphorylated IRFs to activate the expression of inflammatory

gene signatures (162). Ligands, including IL-6 and platelet-derived

growth factor receptors (PDGFRs), also signal through the JAK/STAT

signaling pathway (163). Oncostatin M (OSM) is a cytokine expressed

in immune cells in adipose tissue, while its receptor OSMR is

expressed on adipocytes (164). The loss of OSMR expression is

accompanied by decreased STAT5 phosphorylation in adipocytes

and a reduction in the expression of proinflammatory cytokines and

chemokines (165). Recent studies have reported crosstalk between the

JAK/STAT and TGFb signaling pathways. Transient inflammation

caused by lipolysis leads to the upregulation of IL-6 and activation of

JAK/STAT3 signaling in adipose progenitors, alleviating the

inhibitory effect of TGFb on adipogenic lineage commitment and

thermogenic beige adipocyte differentiation (166).
6.2 Wnt/b-catenin and PI3K/AKT
signaling pathways

Wnt signaling plays pivotal roles in modulating the adipose tissue

microenvironment. Wnt signals can alter important steps of insulin

utilization within cells, leading to the progression of insulin resistance

(167). The binding of Wnt ligands to their receptors activates the Wnt
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pathway and causes adipose tissue inflammation, obesity, and glucose

homeostasis. Wnt signaling can be further divided into canonical and

noncanonical Wnt signaling. Noncanonical Wnt ligands, such as

Wnt5a, are expressed in adipocytes at high levels when the diet

consists of fatty substances, which contributes to obesity-associated

inflammation (168). Wnt5a can also activate JNK and promote

insulin resistance (169). The Wnt signaling pathway is activated in

cDC1s, leading to the production of the anti-inflammatory cytokine

IL-10 (80). However, TLR signaling acts in conjunction with the Wnt

signaling pathway to amplify the release of proinflammatory

cytokines in macrophage-induced inflammation (72). PI3K

signaling is also closely related to chronic inflammation and insulin

resistance. Inflammation or other stress stimuli block the PI3K

signaling pathway downstream of the insulin receptor through the

activation of several serine/threonine kinases, contributing to insulin

resistance in adipocytes (170). PI3K signaling and its downstream

effectors, including protein kinase B (AKT), help preserve beneficial

macrophage subpopulations (75). However, the PI3K/AKT-mediated

anti-inflammatory effects are inhibited in aging adipose tissue DCs

(171). PI3Kg can promote neutrophil infiltration.
6.3 NF-kB signaling pathway

The NF-kB and JNK signaling pathways are two central

mediators of the inflammatory response in adipose inflammation.

Specific dietary saturated fatty acids induce the expression of MCP-1

and SAA in adipocytes through the activation of the NF-kB and ROS

pathways (172). The activation of NF-kB signaling increases the

expression of TNF-a, IL-6 and MCP-1, leading to serine

phosphorylation of IRS-1, thus blocking insulin signaling

downstream of insulin receptors (26). The transcription of NF-kB
is mainly controlled by the phosphorylation of inhibitor of NF-kB
(IkB) by the upstream IkB kinase (IKK). Canonical IKKs, including

IKKa and IKKb, phosphorylate IkB and other subunits of NF-kB to

induce the expression of NF-kB target genes. IKKa phosphorylates

IRS-1 and, thus, induces insulin resistance (153). Panahi et al. found
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that IKKb deficiency in adipocytes prevents the expression of

proinflammatory cytokines, such as IL-6 and TNF-a, induced by

free fatty acids. In contrast, the activation of IKKb inhibits the

expression of anti-inflammatory cytokines, such as adiponectin and

leptin (173). In addition to canonical IKKa and IKKb, two

noncanonical IKKs, IKKϵ and tank-binding kinase 1 (TBK1), play

roles in adipocyte biology (174). Proinflammatory cytokines, such as

TNF-a, activate TBK1, which attenuates adipose tissue inflammation

by repressing the atypical NF-kB pathway. In this pathway, NF-kB-
inducing kinase (NIF) phosphorylates Ser176 to activate IKKa,
which, in turn, activates the RelB (NF-kB2) precursor p100,

inducing its maturation. This pathway induces the expression of

target genes, such as CCL2, and promotes infiltration by

macrophages. TBK1 can further inhibit the metabolic regulator

AMPK, thus promoting inflammation (175). Moreover, NFkB
activation in adipose tissue neutrophils is important for its

expression of IL-1b (82). Activated NFkB also promotes the

activation of ILC2s and a type 2 immune response (128). DR3, a

recently defined receptor expressed on ILC2s, can also induce and

activate ILC2s through NFkB pathways (176).
6.4 MAPK signaling pathway

The following two distinct MAPK signaling pathways play

important roles in adipocyte inflammation: the p38 pathway and

the JNK pathway. JNK signaling is activated in adipocytes in obese

humans and mice and promotes insulin resistance through the

phosphorylation of IRS, thereby decreasing PI3K/PKB signaling

downstream of insulin receptors (153). The activation of JNK can

further activate the transcriptional regulator AP-1 and induce the

expression of inflammatory genes, such as IL-6 and TNF, inhibiting

insulin signaling and causing insulin resistance (25). In contrast to

JNK, p38a activity is reduced in obese mice, with concurrent

activation of other p38 isoforms, including p38g and p38d (177).

The p38 pathway is activated in adipose tissue immune cells, such as

macrophages, to promote the production of inflammatory cytokines
FIGURE 4

M2 macrophages, DCregs, Tregs, eosinophils, and iNKT cells are significant anti-inflammatory immune cells in adipose tissue, and their abundance is
mostly decreased in aging adipose tissue. Cell–cell interactions are essential for adipose tissue homeostasis. ILC2s can promote the proliferation of
eosinophils and M2 macrophages, and eosinophils can promote the proliferation of M2 macrophages through IL-4. iNKT cells can promote the
proliferation of M2 macrophages through IL-4 and IL-10. B1 cells produce IgM, which exerts anti-inflammatory effects and promotes the proliferation of
M2 macrophages.
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and the recruitment of monocytes, leading to adipose tissue

inflammation (178). Activated p38MAPK signaling in mast cells

can also contribute to metabolic dysfunction in SAT (179). The p38

pathway is also implicated in adipocytes as the inhibition of p38 in

adipocytes results in a decreased secretion of TNF-a-induced IL-6

(180). JNK plays a role in lipolysis induced by TNF-a, while the role
of p38 in this process needs further elucidation (181). When MAPK

signaling is activated in DCs, the expression of MHC-II and cellular

maturation are increased (81).
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6.5 AMPK signaling pathway

The final signaling pathway we aim to discuss here is the AMPK

pathway, an important anti-inflammatory signaling pathway in adipose

tissue. AMPK signaling can inhibit the synthesis of proinflammatory

cytokines, including IL-6 and IL-8, in adipocytes, while a deficiency in

AMPK leads to an increased production of proinflammatory cytokines.

The knockdown of AMPKa1 in 3T3-L1 adipocytes leads to an increase

in themRNA levels of the proinflammatory cytokines TNF-a, IL-1b and
TABLE 1 Immune cells and their functional implications in aging.

Immune
cell types

Marker gene
(mouse)

Functional implications References

Macrophages Apoe, F13a1, Rbpj, Mrc1,
Mmp12, Mctp1, Gpnmb,
Apobec1, Atp6v0d2, Cd84

1) An increase in M1-type macrophages and a decrease in M2-type macrophages are observed in aged
adipose tissue. 2) Senescent macrophages display increased JNK phosphorylation and P38MAPK
signaling and a reduction in SIRT1 expression.

Chung, Nati
et al. (63)
Varghese,
Griffin et al.
(144),
Hildreth, Ma
et al. (64),
Albright, Dunn
et al. (145),

Dendritic
cells

Wdfy4, Cd74, H2-Ab1, H2-Eb1,
Plbd1, AC163354.1, H2-Aa,
Cbfa2t3, Tbc1d8, Flt3

1) cDC1s are characterized by an activated Wnt/b-catenin pathway, whereas cDC2s show activation of
the PPARg pathway. 2) cDC1s play pivotal roles in circumventing obesity development during aging.
3) cDC2s increased in aging adipose tissue.

Mráz,
Cinkajzlová
et al. (76),
Soedono and
Cho (77)
Sundara Rajan
and Longhi
(146)

Neutrophils S100a9, Csf3r, S100a8, Il1b,
Cd300lf, Cxcr2, Trim30b,
Retnlg, Sell, Nlrp12

1) Neutrophil recruitment is mediated by cPLA2a and the LTB4-BCT1 axis. 2) Neutrophil activation
is closely related to its interaction with adipocytes.

Hadad,
Burgazliev
et al. (147),
Tam, Chan
et al. (148),

Eosinophils Ccr3, Ccl11, Prg2, Epx, Il15, Il4,
Mpo, Cebpa, Cebpe, Etv6

1) Eosinophils are necessary for adipose tissue homeostasis. 2) Most immune regulatory characteristics
of ATE are achieved through IL-4.

Wu, Molofsky
et al. (117),
Brigger,
Riether et al.
(125),

ILCs Csf2, Arg1, Cd3e, Cd28, Il12rb2,
Alox5, Pparg, Il23r, Chad,
Tnfrsf21

1) ILC2s contribute to AT hemostasis by maintaining eosinophils and M2 macrophages. 2) ILC1s
contribute to the polarization of macrophages toward an M1-like phenotype. 3) ILC3s induce
inflammation through the lymphotoxin/IL-23/IL-22 pathway.

Brüggen, Strobl
et al. (126),
Hildreth, Ma
et al. (64),
Suffiotti,
Carmona et al.
(149),

NK cells AC140209.1, Skap1, Klrk1,
Gzma, Ncr1, Kcnq5, Ripor2,
Prkcq, Stat4, Txk

1) NK-cell-derived TNF is a primary driver of ATM activation. 2) NK cells are stimulated by
proinflammatory factors, such as IL-12, IL-15, and NKp46 ligands produced by macrophages and
stressed adipocytes to promote the production of IFN-g, TNF-a and IL-6

Fernø, Strand
et al. (25),

T cells Skap1, Inpp4b, AC140209.1,
Themis, St6galnac3, Prkcq, Tox,
Bcl11b, Cd247, Arhgap15

1) Polarize into a pro-inflammatory phenotype. 2) Loss of CD28 and expansion of CD44+CD62-

memory T cells. 3) Increases in the numbers of CD4+ and CD8+ T cells and a decrease in the number
of iNKT cells. 4) Treg is elevated during aging. 5) gdT cells are increased in adipose tissue during
aging

Pan, Yao et al.
(150),
Bapat, Suh
et al. (131),
Kohlgruber,
Gal-Oz et al.
(129),

B cells Bank1, Agbl1, Ighm, Ripor2,
Pax5, Tmem163, Aff3, Ralgps2,
Inpp4b, Ikzf3

1) B1 accumulate in aged mice. 2) Activated monocytes convert innate B1a cells into 4BL cells. 3) B2
cells produce pro-inflammatory igG and cytokines

Reyes-Farias,
Fos-Domenech
et al. (105),.
Carter, Miard
et al. (151),
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MCP-1 in response to FA treatment (182). In a recent study, the

following more detailed mechanism was elucidated: AMPK might

block a proinflammatory IL-6 trans-signaling mechanism involving

IL-6/soluble IL-6R that can stimulate JAK, thus influencing the JAK/

STAT3 signaling pathway in adipocytes. Furthermore, AMPK can block

IL-1b-stimulated IRAK-4, thus influencing the JNK signaling pathway in

adipocytes. Moreover, AMPK can block TNF-a-stimulated IKKb, thus
influencing the NF-kB signaling pathway in adipocytes (183). Thus,

AMPK plays a critical role as a master regulator of inflammation by

regulating several inflammatory pathways (82). In addition, AMPK can

promote M2-type macrophage polarization (61) and compromise the

function of ILC2s by interactingwith theNFkBpathway (184) (Figure 5).
7 Adipose tissue as a therapeutic
target in aging

In a recent targeted pathway proteomics study, the researchers

revealed that aging has tissue-specific effects on WAT in mice, with

alterations in metabolic and inflammatory pathways, suggesting that

WAT could be critical for an organism’s adaptation and response to

aging (185). It has also been shown using bulk RNA-sequencing of 17

organs and plasma proteomics at 10 ages across the mouse lifespan that

immune cell activation was first detected in white adipose depots during

middle age (186). Many classic mechanisms of aging, such as cellular

senescence, chronic inflammation, and metabolic disorders, occur in

adipose tissue. Therefore, adipose tissue should be considered a

significant therapeutic target in antiaging treatments. Emerging

interventions against aging targeting adipose tissue have recently been

developed. Many studies have demonstrated that reducing the WAT

mass and ameliorating WAT dysfunction through many methods, such

as exercise, caloric restriction, senolytics and other signaling pathways,

can extend health and the lifespan in various organisms (187–195).
7.1 Caloric restriction as the foundation
of anti-aging therapies

Caloric restriction (CR) without malnutrition has been the

foundation of aging for decades (196). A reduction in food intake
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prolongs the lifespan and delays the onset of age-related diseases in

diverse species. The life-prolonging effect of CR is due to changes in

many physiological processes, and the biology of AT is closely related

(197). As we previously mentioned, hypoxia, mechanical stress and

obesity caused by adipocyte hypertrophy are factors contributing to

adipose tissue inflammaging. Research has found that the surgical

removal of VAT in rats offered approximately 20% of the effect of CR

on longevity, preventing insulin resistance and glucose intolerance of

aging (189). A reduction in the fat mass, specifically visceral fat, may

be a possible underlying mechanism of the antiaging effect of CR

(190). However, a recent study has shown that 30% CR alone without

fasting or circadian alignment accounts for a 10% extension of the

lifespan; however, a daily fasting interval and circadian alignment of

feeding act together to extend the lifespan by 35% in male C57BL/6J

mice, with improvements in inflammation and immune and

metabolic function (198), which are consistent with the results of

other recent studies in C57BL/6J male mice (199). Moreover,

researchers have found that CR and fasting have overlapping effects

on gene expression by performing transcriptomic profiling of inguinal

white adipose tissue (iWAT), where CR and fasting altered many

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,

including PPAR, insulin, TGF-b and AMPK signaling and various

metabolic pathways (198–201). Many molecules have been discovered

to function in regulating the lifespan by dietary restriction; among

these, SIRT1, an NAD-dependent deacetylase that participates in cell

cycle regulation, is the best established longevity determinant. Studies

have shown that SIRT1 mediates the effect of CR on longevity by

suppressing lipid accumulation and enhancing adipocyte lipolysis

(202, 203). SIRT1 also participates in the regulation of other signaling

pathways related to aging. The transactivation of PPARg, which is

essential for proper adipose tissue development and function, is

repressed in WAT by SIRT1 (204). Previous studies suggested that

experimental Pparg2-deficient mouse models with a lower expression

of PPARg in WAT exhibited a reduction in the lifespan (205). In

addition, a new study identified reduced expression of platelet-

activating factor acetylhydrolase (PLA2G7) in adipose tissue from

people undergoing CR for 2 years by using gene expression profiles,

and PLA2G7-deficient mice showed decreased age-related

inflammation, lower NLRP3 inflammasome activation, and

improved adipose tissue metabolism. These findings demonstrate
TABLE 2 Comparison of subcutaneous and visceral adipose tissue inflammation.

SAT VAT Reference

Macrophages 1. Lipid-rich CD11c+ATMs appear late
2. Less ATMs form crown-like clusters surrounding dying
adipocytes

1. Lipid-rich CD11c+ATMs appear early
2. More ATMs form crown-like clusters surrounding dying
adipocytes

Muir, Kiridena et al. (152)
Michailidou, Gomez-Salazar et al.
(153),

Eosinophils Eosinophil numbers remain unchanged during aging Eosinophil numbers decrease during aging Wu and Ballantyne (154)

Mast cells 1. The ratio of MCTC and MCT is higher in lean
individuals
2. Lower TNF levels present in mast cells

1. The ratio of MCTC to MCT is lower in lean individuals
2. Higher TNF levels present in mast cells

Żelechowska, Agier et al. (155),
Altintas, Nayer et al. (156),

NK cells Contains less inflammatory NK cells Contains more inflammatory NK cells Bonamichi and Lee (157)

T cells 1. Higher numbers of Foxp3+ Treg
2. The number of T cells decreases during aging

1. Lower numbers of Foxp3+ Treg
2. The number of T cells increases during aging

Wang and Wu (141)
Pan, Yao et al. (150),

B cells 1. B2 cells do not accumulate during aging
2. The ratio of B1 to B2 cells is much lower
3. FALCs cannot be detected

1. B2 cells accumulate during aging
2. The ratio of B1 to B2 cells is much higher
3. FALCs can be detected

Srikakulapu and McNamara
(102)
Carter, Miard et al. (151),
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that PLA2G7 may become an immunometabolic regulator of CR and

could potentially be used to lower inflammation and extend the

lifespan (206). Moreover, the pathologic expansion of adipose tissue

leads to the excessive production of FFA, thereby stimulating TLR4

signaling through the TLR4-NFkB pathway, resulting in the release of

proinflammatory cytokines. A study suggested that the expression of

three major proinflammatory cytokines (IL-6, MCP1 and TNF-a) in
adipose tissue is significantly reduced in old TLR4-KO mice

compared to old wild-type mice, showing that TLR4-deficient mice

are protected from adipose tissue inflammation during aging (207).

Thus, the manipulation of the TLR4 pathway might have great

therapeutic potential in aging. The possible molecular pathways

described above link caloric restriction to life extension in

mammals, providing new insight into the targets of anti-

aging treatments.
7.2 Senothrerapeutics: senolytics and
senomorphics

Over the past decade, the search for strategies that can achieve the

beneficial effects of CR without reducing calorie intake has undergone

considerable expansion (208). The accumulation of senescent cells

(SnCs) is one of the hallmarks of aging, which leads to tissue and

organismal aging, and the selective elimination of SnCs in animal

models extends the health span (209). Therefore, pharmacological

interventions targeting SnCs, also known as senotherapeutics, might

be a potential strategy for longevity and the prevention of age-related
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diseases. Senolytics, drugs that specifically kill SnCs, have shown

efficacy against atherosclerosis (210), osteoarthritis (211) and other

age-related diseases (212–214). The first senolytics reported by Zhu

et al. in 2015 were a drug combination of dasatinib (D), a protein

tyrosine kinase inhibitor, and quercetin (Q), a plant flavonoid. By

using a transcriptome analysis of senescent and nonsenescent human

preadipocytes, the authors revealed that SnCs protect themselves

from apoptosis through senescent cell antiapoptotic pathways

(SCAPs), including ephrin receptors, BCL-2/BCL-XL family

members, P13K/AKT, HIF-1a, etc. (213). In vivo, the D + Q

combination reduced the senescent cell burden in fat tissue by

targeting SCAPs with the benefit of reduced frailty and an extended

healthspan (194, 213). To date, D + Q treatment has been tested in

several human clinical trials; for example, a clinical trial of D + Q in

individuals with diabetic kidney disease found that the D + Q

treatment alleviated adipose tissue and the skin senescent cell

burden, decreased the resulting adipose tissue macrophage

accumulation, enhanced the adipocyte progenitor replicative

potential, and reduced key circulating SASP factors (215).

In addition, SnCs can lead to extensive microenvironment

dysfunction and cause damage to surrounding cells and tissues due

to their proinflammatory SASP (216). Senomorphics, another class of

senotherapeutics, is known for modulating the phenotypes of SnCs by

interfering with inflammaging, senescence-related signaling

pathways, and SASP without inducing apoptosis (217). Resveratrol,

a plant-derived polyphenol, is the most potent of the natural SIRT1

activators, and several studies have reported that it can extend the

lifespan of various organisms (218–221). In addition to the features of
FIGURE 5

The MAPK signaling pathway is critical for the expression of MHC-II in DCs. JNK signaling can interact with IRS to reduce PI3K/AKT signaling and
contribute. JNK can further promote AP-1 production and promote inflammation in adipose tissue. The NF-kB signaling pathway mediates the
production of IL-1b in neutrophils and the activation of ILC2s. This pathway is also essential for the adipocyte response to TNF and the production of
CCL2. Wnt signaling mediates IL-10 production in CDC1s and binds TLR to produce proinflammatory cytokines in macrophages. Wnt5a can induce JNK
in adipocytes. The JAK/STAT signaling pathway is essential for activating peripheral blood B cells and the proliferation of ILC1s. This pathway is also
critical for the adipocyte response to IFN-g. STATs can further bind IRFs to induce the production of proinflammatory cytokines. The AMPK signaling
pathway mediates the proliferation of M2-type macrophages and blocks the proinflammatory signaling pathway in adipocytes. However, it may cause a
decrease in the function of ILC2s. AP-1 activator protein 1, CCL2 chemokine ligand 2, TLR toll-like receptor, IRF interferon regulation factor.
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SIRT1 mentioned above, SIRT1 exerts anti-inflammatory activity by

inhibiting NF-kB, a key regulator of the immune response and

inflammaging (222, 223). Research involving rhesus monkeys fed a

high-fat, high-sugar diet suggested that resveratrol improves adipose

insulin signaling and reduces the inflammatory response in WAT

with increased SIRT 1 expression and decreased NF-kB activation

(224). Moreover, SASP in SnCs is regulated by the JAK/STAT

pathway, and using the JAK inhibitor roxolitinib in aged mice for

10 weeks reduced both adipose tissue and systemic inflammation and

enhanced physical function (225). Metformin, originally approved for

the treatment of type 2 diabetes, has been found to have therapeutic

effects on age-related diseases, such as insulin resistance, obesity and

cardiovascular diseases (226). Numerous studies have proven that

metformin is effective in inhibiting cellular senescence and SASPs and

preventing age-associated dysfunctions in many model organisms.

Metformin modulates aging-related protein synthesis by regulating

AMPK/mTOR signaling and enhancing autophagy to increase aging-

related protein degradation (227). A recent study demonstrated that

metformin reduced cell cycle progression and mTOR signaling and

decreased the secretion of most proinflammatory SASP cytokines in

mature human adipocytes, exerting anti-inflammatory effects on

adipose tissue function (228). Rapamycin, a specific mTOR

inhibitor, has been regarded as one of the most well-established

senomorphics that reduce cell senescence, suppress SASPs and

extend the lifespan. A study focusing on the effects of rapamycin on

inflammation in gonadal white adipose tissue (gWAT) of HET3 mice

revealed that rapamycin led to a 56% increase in CD45+ leukocytes in

gWAT, where the majority of these are ATMs. Interestingly,

rapamycin led to an increase in M1 type ATMs, suggesting that

rapamycin may achieve life-span extension partially through adipose

tissue inflammation (229). L-carnitine, an inhibitor of the JNK/p53

pathway that can prevent apoptosis, has been found to attenuate

aging adipose tissue dysfunction by reducing the expression of SASP

factors in the WAT of aged (> 18 months old) rats (230).
7.3 Immune therapy as an antiaging strategy

Since immune cells play a key role as sources and integrators of

inflammatory signals, the regulation of immune cell phenotypes could

be a target for intervention to limit ‘inflammaging’ and restore repair

capacity in older organisms. Heterochronic parabiosis, a model

system in which two animals of different ages are joined to share a

common circulatory system, represents an important milestone in

aging biology (231). Various circulatory factors have been identified

as mediators of the prorejuvenation and proaging systemic effects of

heterochronic parabiosis. A recent study demonstrated that

transferring eosinophils from young mice reduces WAT and

systemic low-grade inflammation, with lower levels of inflammatory

factors (such as IL-6, CCL2 and IL-1b), resulting in the restoration of

adipose immune homeostasis and widespread rejuvenating

consequences for the aging host (125). Another study suggested

that adoptive NK-cell infusion reduces senescent markers (p16 and

p21) and decreases the SASP phenotype in human adipose tissue

(232). Therefore, immune therapy could be a promising strategy for

intervention in aging in the future.
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7.4 Antiaging therapy targeting potential
signaling pathways

The JAK/STAT pathway is of great importance in regulating

cytokine production and has been investigated as a therapeutic target

formany diseases (233–236). Studies have found that the JAK pathway is

more highly activated in fat tissue from old than young animals and

senescent than nonsenescent cells, and 2 months of administration of

ruxolitinib, a specific JAK1/2 inhibitor, reduced systemic inflammation,

enhanced physical capacity, preserved fat tissue homeostasis, and

improved metabolic function in 22– to 24-month-old mice (237, 238).

As we previously discussed, the p38MAPK pathway also plays a vital

role in adipose tissue inflammaging. Studies have proven that the l-

arginine-metabolizing enzyme arginase-II (Arg-II) promotes IL-6

production in aging adipose tissues through the p38MAPK pathway.

There is moremacrophage accumulation in visceral adipose tissues in old

WT mice than Arg-II knockout mice. The treatment of aging adipose

tissues inWTmicewith the specific p38mapk inhibitor SB203580 reduces

IL-6 secretion, suggesting that targeting Arg-II or inhibiting p38mapk

could be beneficial in reducing age-associated adipose tissue

inflammation (239).

In addition, studies have shown that Rolipram is a selective

phosphodiesterase 4 (PDE4) inhibitor that activates the AMPK-

SIRT6 pathway to reduce adipose deposition and inflammation in

aged mice, suggesting that targeting the AMPK-SIRT6 pathway and

selective PDE4 inhibitors may be useful agents for the treatment of

age-related metabolic dysfunction and diseases (240).

In summary, adipose tissue aging is of great value for studying the

basic mechanisms of aging and is an effective therapeutic target for

developing new strategies to combat aging and age-related

disease (Table 3).
8 Conclusions and future prospective

Adipose tissue is essential for age-related dysfunction such as

metabolic diseases, while aging can also generate multiple effects on

adipose tissue, including redistribution of deposits and composition,

adipose tissue plasticity reduction, senescent cell accumulation and

inflammaging. Among them, adipose tissue inflammation is the most

important. This chronic inflammation is usually promoted by

senescent/dead cell accumulation, adipocyte hypertrophy, FFA and

LPS, and immune cell dysregulation. Various cellular and molecular

mechanisms regulate adipose tissue inflammaging. Immune cells are

recruited to adipose tissue by different chemokines, and undergo

tremendous changes in both their numbers and characteristics during

aging. Proinflammatory signaling pathways, including the JAK/

STAT, Wnt/b-catenin, NF-kB, and MAPK signaling pathways,

control the process of adipose tissue inflammaging in different way.

Indeed, Increased inflammaging in aging impacts adipose tissue,

leading to adipose tissue dysfunction and ectopic lipid

accumulation, further impacting the overall health status. Systemic

diseases, such as type II diabetes, CVD and cancer, are somewhat

caused by adipose tissue inflammation. Since adipose tissue

inflammaging plays pivotal roles, emerging anti-aging interventions

have recently been developed targeting adipose tissue. In this review,
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we summarize the latest approaches that can extend healthy lifespan

and delay the onset of age-related diseases including caloric

restriction, senothrerapeutics, immune therapies and other

strategies targeting adipose tissue inflammaging related signaling

pathways. Further research may need to focus on whether

suppressing the inflammatory response in adipose tissue can reverse

the senescent phenotype, an approach that may identify new targets

to relieve aging-associated complications.
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